用户名: 密码: 验证码:
一氧化碳加氢合成C2含氧化合物铑基催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着石油资源的逐渐枯竭,开发新的技术路线来合成燃料及化工原料成为了科学研究者关注的焦点。乙醇等C2含氧化合物不仅是未来燃料的最佳替代品,而且也是重要化工原料和清洁氢源。因此,CO加氢合成乙醇等C2含氧化合物在能源、环保和化工等多重领域具有重要意义。
     本文分析了Rh基催化剂催化CO加氢合成C2含氧化合物的研究现状,在此基础上有针对性地从助剂的作用、催化剂制备方法及载体SiO2的性质等方面开展了研究,取得了如下主要的研究结果:
     一、Mn、La引入方式对Rh/SiO2催化性能的影响
     研究了Rh、Mn浸渍次序对Rh-Mn/SiO2催化性能的影响。当Rh先于Mn浸渍时,Rh、Mn的相互作用相对较强,增加了具有高反应活性的Rh-Mn界面,促进了搭式CO吸附物种的形成,提高了CO加氢活性和C2+含氧化合物的选择性。
     研究了La的掺杂方式对Rh/SiO2催化剂催化CO加氢性能的影响。当载体SiO2中掺杂入La后,使负载的Rh的分散度提高,含氧化合物选择性升高,其中甲醇选择性为40.5%,C2+含氧化合物的选择性为37.6%。当Rh、La共浸渍在SiO2载体上,Rh、La的相互作用增强了Rh-La界面的性能,从而提高了C2+含氧化合物的选择性。
     二、Mn、Li对Rh/SiO2催化性能的影响
     研究了Mn、Li助剂对Rh/SiO2催化性能的影响及其作用机制。结果表明,Mn、Li的协同作用可以显著提高催化剂的CO转化率和C2含氧化合物选择性。当Rh、Mn、Li含量分别为1.5wt.%,1.5wt.%和0.075wt.%时,对CO吸附和加氢能力较强,吸附态CO的脱附速率较慢,因此获得了较高的C2含氧化合物选择性和收率(309.1g/(kg·h))。
     研究表明,Mn、Li的掺杂能抑制Rh的还原。当Rh:Mn为1:1时,能有效形成(RhxRhy)-Mn构型的活性中间物,促进了CO的解离。Mn的添加能增强Rh对CO的吸附,Li的掺杂会削弱Rh对CO的吸附能力;Mn和Li均能抑制吸附态CO的脱附,促进H2的解离;当Mn、Li含量过高时,助剂对H2解离的促进作用会被削弱。根据C2含氧化合物的生成机理,较强的CO吸附及加氢能力有利于CO转化,较慢的CO脱附速率有利于吸附态CO进行插入反应,从而促进C2含氧化合物的生成。
     三、Fe掺杂对Rh-Mn-Li/SiO2催化性能的影响
     研究了Fe掺杂对Rh-Mn-Li/SiO2催化剂性能的影响。结果表明,当Fe掺杂量小于0.1wt.%时,有助于促进吸附态CO的转化和C2+含氧化合物的生成;当Fe的掺杂量大于0.1wt.%时,会使CO的吸附能力削弱和CO转化率的下降。当Fe位于Rh-Mn-Li的内层时有利于孪式CO吸附物种向H-Rh-CO和Rh-CO-Fe的转化,进而提高了C2+含氧化合物的选择性。Fe的添加还增强了催化剂的加氢性能,能促进乙醛向乙醇的转化。
     四、SiO2性质对Rh基催化剂性能的影响
     考察了载体性质对Rh-Mn-Li/SiO2催化CO加氢生成C2含氧化合物性能的影响。结果农明,SiO2载体表面羟基的种类和数量能明显影响Rh的状态及Rh、Mn、Li的相互作用,进而影响Rh-Mn-Li/SiO2催化剂的性能。
     与溶胶-凝胶法制备的SiO2和商业化的SiO2相比,以Stober法合成的SiO2为载体的Rh-Mn-Li催化剂表现出了最为优越的催化性能,在300℃、3.0MPa和空速为10000h-1的反应条件下,CO转化率为8.2%,C2+含氧化合物的选择性为59.1%。研究表明,Stober法合成的SiO2表面上弱氢键的羟基有利于Rh、Mn之间发生适中的相互作用,削弱了Rh-CO键的强度,促进了孪式CO吸附态向线式CO吸附态的转变,加快了吸附态CO的脱附或反应,从而加速了CO的转化和C2+含氧化合物的生成。
     研究了Stober法制备SiO2过程中焙烧温度和氨水浓度对载体和催化剂表面性能的影响。研究表明,经350℃焙烧的SiO2表面具有适量的羟基能获得适中的Rh-Mn相互作用,使其具有合适的CO吸附和解离性能,有利于CO的插入反应,从而获得较高的C2+含氧化合物选择性。另一方面,当制备过程中氨水浓度过低时,所得SiO2小球表面凹凸不平,使负载的Rh颗粒在反应过程中容易长大,从而使Rh、Mn相互分离,导致反应向加氢方向发展,不利于C2+含氧化合物的生成。
With the escalating oil crisis, how to develop new technology route to synthetize fuels and chemical raw materials has become a focus of scientific research. Ethanol and other C2oxygenates synthesis by CO hydrogenation is of great significance on the basis of the viewpoint of environmental protection, energy sources and chemical industry, because they are not only the best alternative fuel of the future, but also an important chemical raw material and clean source of hydrogen.
     In this dissertation, the research progress of Rh-based catalysts for C2oxygenates synthesis by CO hydrogenation has been reviewed, and then the effects of promoters, preparation methods of catalysts, and properties of SiO2on the catalytic performance of Rh-based catalyst were investigated. The results obtained are mainly as follows.
     1. The effects of methods for introducing Mn and La on the catalytic performance of Rh/SiO2catalysts
     The effects of impregnation sequences for Rh and Mn upon SiO2on the catalytic performance of Rh-Mn/SiO2were investigated. When Mn was impregnated second onto a calcined Rh/SiO2catalyst, the Rh-Mn interaction enhances, which can increase the high activated Rh-Mn interface and promote the formation of tilted CO species, resulting in a high CO hydrogenation activity and selectivity of C2+oxygenates.
     The effects of La doping on the catalytic performance of Rh/SiO2during CO hydrogenation were investigated. When the La doped into the support of SiO2, the Rh dispersion is improved, thus the selectivity of oxygenates can be increased, such as the methanol selectivity and C2+oxygenates selectivity reach40.5%and37.6%, respectively. When La is co-impregnated with Rh, the effective Rh-La interface increases because of the strong Rh-La interaction, which promotes the selectivity of C2+oxygenates.
     2. The effects of promoters of Mn and Li on the catalytic performance of Rh/SiO2catalysts
     The effects of Mn and Li on the catalytic performance of Rh/SiO2catalysts as well as their role in the catalyst were studied. The results show that, the presence of Mn and Li can improve the CO conversion and selectivity of C2oxygenates. Since the catalyst containing1.5wt.%of Rh,1.5wt.%of Mn, and0.075wt.%of Li has a strong ability of CO adsorption, slow desorption rate of adsorbed CO and high activity of hydrogenation, the highest selectivity of C2oxygenates can be obtained, that is, the yield of C2oxygenates reaches309.1 g/(kg-h).
     It has been found that the doping of Mn and Li inhibits the reduction of Rh. When the ratio of Rh versus Mn is1:1, the (RhxRhy)-Mn active structures can be formed to promote the CO dissociation. The presence of Mn enhances the ability of CO adsorption, and the doping of Li weakens the CO adsorption capacity. The doping of Mn and Li both can suppress the desorption of adsorbed CO and promote the H2dissociation and reaction. When the contents of Mn and Li are too high, the promotional effect of Mn and Li on the H2dissociation can be weakened. According to the mechanism of C2oxygenates synthesis by CO hydrogenation, the increase in the ability of CO adsorption and hydrogenation is beneficial to CO conversion, and the decreased desorption rate of adsorbed CO is conducive to CO insertion, which promotes the formation of C2oxygenates.
     3. The effects of Fe doping on the catalytic performance of Rh-Mn-Li/SiO2catalysts
     The effects of Fe doping on the catalytic performance of Rh-Mn-Li/SiO2were investigated. The results show that, the transformation of adsorbed CO and formation of C2+oxygenates are promoted at the lower Fe loading (Fe≤0.1wt.%), and at the higher Fe loading (Fe>0.1wt.%), the CO conversion decreases due to the decreasing its ability of CO adsorption. The facile transformation of dicarbonyl Rh+(CO)2into H-Rh-CO and Rh-CO-Fe is responsible for the higher selectivity of C2+oxygenates over the catalyst, in which Fe was impregnated first followed by Rh-Mn-Li impregnation. Moreover, the presence of Fe can increase the hydrogenation of acetaldehyde to ethanol, because of its high hydrogenation ability.
     4. The effects of properties of SiO2on the catalytic performance of Rh-based catalysts
     The effect of nature of SiO2on the catalytic performance of the Rh-Mn-Li/SiO2catalyst for C2oxygenates synthesis by CO hydrogenation was investigated. The results show that the types and amount of surface hydroxyl groups on the SiO2can affect the properties of Rh particles and the interaction among Rh, Mn and Li, which further affects the catalytic performance of Rh-Mn-Li/SiO2catalysts.
     Compared with the SiO2synthesized by the sol-gel and industrial methods, in the reaction condition of300℃,3.0MPa and GHSV of10000h-1, the Rh-Mn-Li catalyst supported on the SiO2synthesized by the Stober method exhibits an excellent CO conversion (8.2%) and higher selectivity to C2+oxygenates (59.1%). The results show that, the weakly H-bonded hydroxyls on the SiO2prepared by the Stober method is favorable for the moderate Rh-Mn interaction and weakens the Rh-CO bond strength, which facilitates the transformation from Rh+(CO)2into Rh-CO and desorption/reactivity of adsorbed CO, which accelerates the CO conversion and formation of C2+oxygenates.
     The effects of the calcination temperature and ammonia concentration in the preparation of SiO2by the Stober method on the surface properties of SiO2and catalysts were investigated. The results show that, an appropriate amount of surface Si-OH groups on the SiO2calcined at350℃can gain a moderate Rh-Mn interaction, which can achieve the right ability of CO adsorption and dissociation, is beneficial to the reaction of CO insertion, resulting in a higher C2+oxygenates selectivity. On the other hand, if the ammonia concentration in the preparation process is too low, the surface of prepared SiO2is uneven, the supported Rh particles will grow up during the reaction, and the Rh-Mn interaction is weakened, which promotes hydrogenation rather than the formation of C2+oxygenates.
引文
[1]Dudley B, Statistical Review of World Energy 2011 [R]. The United Kingdom:British Petroleum,2011.
    [2]Cho A. Energy's tricky tradeoffs [J]. Science.2010,329(5993):786-787.
    [3]Boden T A, Marland G, Andres R J. Global, Regional, and National Fossil-Fuel CO2 Emissions [R]. America:Carbon Dioxide Information Analysis Center (CDIAC),2010.
    [4]Alley R. Climate Change 2007:The Physical Science Basis [R]. Switzerland: Intergovernmental Panel on Climate Change (IPCC),2007.
    [5]朱之培,高晋生.煤化学[M].上海:上海科学技术出版社,1984:1-5.
    [6]李文钊.天然气转化二十一世纪展望[C].第六届全国青年催化学术会议论文摘要集.哈尔滨,1998:4-6.
    [7]Spivey J J, Egbebi A. Heterogeneous Catalytic Synthesis of Ethanol from Biomass-derived Syngas [J]. Chem Soc Rev,2007,36(9):1514-1528.
    [8]Schulz H. Short Histrory and Present Trends of Fischer-Tropsch Synthesis [J]. Appl Catal A:Gen,1999,186(1):3-12.
    [9]Hao X, Dong G Q, Yang Y. Coal to Liquid(CTL):Commercialization Prospects in China [J]. Chem Eng Technol,2007,30(9):1157-1165.
    [10]陆世维.C1化学创造未来的化学[M].北京:宇航出版社,1990:1-10.
    [11]Smith K J, Anderson R B. The Higher Alcohol Synthesis over Promoted Cu/ZnO Catalysts [J]. Can J Chem Eng,1983,61(1):40-45.
    [12]Elliott D J, Pennella F. Mechanism of Ethanol Formation from Synthesis Gas over CuO/ZnO/Al2O3 [J]. J Catal,1988,114(1):90-99.
    [13]Nunan J G, Herman R G, Klier K. Higher Alcohol and Oxygenate Synthesis over Cs/Cu/ZnO/M2O3 [J]. J Catal,1989,116(1):222-229.
    [14]Nunan J G, Bogdan C E, Klier K, Smith K J, Young C W, Herman R G. Higher Alcohol and Oxygenate Synthesis Over Cesium-doped CuZnO Catalysts [J]. J Catal,1989, 116(1):195-221.
    [15]Nunan J G, Bogdan C E, Klier K, Smith K J, Young C W, Herman R G. Methanol and C2-oxygenate Synthesis over Cesium Doped CuZnO and Cu/ZnO/Al2O3 Catalysts:A Study of Selectivity and 13C Incorporation Patterns [J]. J Catal,1988,113(2):410-433.
    [16]Vedage G A, Himelfarb P B, Simmons G W, Klier K. Alkali-Promoted Copper-Zinc Oxide Catalysts for Low Alcohol Synthesis [J]. ACS Symp Ser,1985,279:295-312.
    [17]Hilmen A M, Xu M T, Gines M J L, Iglesia E. Synthesis of Higher Alcohols on Copper Catalysts Supported on Alkali-promoted Basic Oxides [J]. Appl Catal A:Gen,1998, 169(2):355-372.
    [18]Frolich P, Cryder D. Catalysts for the Formation of Alcohols from Carbon Monoxide and Hydrogen [J]. Ind Eng Chem,1930,22(10):1051-1057.
    [19]Slaa J C, Vanommen J G, Ross J R H. The Synthesis of Higher Alcohols Using Modified Cu/ZnO/Al2O3 Catalysts [J]. Catal Today,1992,15(1):129-148.
    [20]Gall D, Gibson E J, Hall C C. The Distribution of Alcohols in the Products of the Fischer-Tropsch Synthesis [J]. J Appl Chem,1952,2(7):371-380.
    [21]Pijolat M, Perrichon V. Synthesis of Alcohols from CO and H2 on a Fe/Al2O3 Catalyst at 8-30 Bars Pressure [J]. Appl Catal,1985,13(2):321-333.
    [22]Razzaghi A, Hindermann J P, Kiennemann A. Synthesis of C1 to C5 Alcohols by CO+H2 Reaction on Some Modified Iron-catalysts [J]. Appl Catal,1984,13(1):193-210.
    [23]Fujimoto K, Oba T. Synthesis of C1-C7 Alcohols from Synthesis Gas with Supported Cobalt Catalysts [J]. Appl Catal,1985,13(2):289-293.
    [24]Inoue M, Miyake T, Takegami Y, Inui T. Alcohol Synthesis from Syngas on Ruthenium-based Composite Catalysts [J]. Appl Catal,1984,11(1):103-116.
    [25]Takeuchi K, Matsuzaki T, Arakawa H, Sugi Y. Synthesis of Ethanol from Syngas over Co-Re-Sr/SiO2 Catalysts [J]. Appl Catal,1985,18(2):325-334.
    [26]Hamada H, Kuwahara Y, Kintaichi Y, Ito T, Wakabayashi K, Iijima H, Sano K. Selective Synthesis of C2-oxygenated Compounds from Synthesis Gas over Ir-Ru Bimetallic Catalysts [J]. Chem Lett,1984,13:1611-1612.
    [27]Kintaichi Y, Kuwahara Y, Hamada H, Ito T, Wakabayashi K. Selective Synthesis of C2-oxygenates by CO Hydrogenation over Silica-supported Co-Ir Catalyst [J]. Chem Lett,1985,14:1305-1306.
    [28]Hedrick S A, Chuang S S C, Pant A, Dastidar A G. Activity and Selectivity of Group VIII, Alkali-promoted Mn-Ni, and Mo-based Catalysts for C2+ Oxygenate Synthesis from the CO Hydrogenation and CO/H2/C2H4 Reactions [J]. Catal Today,2000,55(3): 247-257.
    [29]Kintaichi Y, Ito T, Hamada H, Nagata H, Wakabayashi K. Hydrogenation of Carbon-monoxide Into C2-oxygenated Compounds over Silica-supported Bimetallic Catalyst Composed of Ir and Ru [J]. Sekiyu Gakkaishi J Jpn Pet Inst,1998,41(1):66-70.
    [30]Matsuzaki T, Takeuchi K, Hanaoka T, Arawaka H, Sugi Y. Effect of Transition Metals on Oxygenates Formation from Syngas over Co/SiO2 [J]. Appl Catal A:Gen,1993, 105(2):159-184.
    [31]Tatsumi T, Muramatsu A, Tominaga H O. Effects of Alkali Metal Halides in the Formation of Alcohols from CO and H2 over Silica-supported Molybdenum Catalysts [J]. Chem Lett,1984,13:685-688.
    [32]Woo H C, Park T Y, Kim Y G, Nam I S, Lee J S, Chung J S. Alkali-promoted MoS2 Catalysts for Alcohol Synthesis:the Effect of Alkali Promotiom and Preparation Condition on Activity and Selectivity [J]. Stud Surf Sci Catal,1993,75(3):2749-2752.
    [33]Muramatsu A, Tatsumi T, Tominaga H. Mixed Alcohol Synthesis from CO-H2 by Use of KCl-promoted Mo/SiO2 Catalysts [J]. Bull Chem Soc Jpn,1987,60(9):3157-3161.
    [34]Qi H J, Li D B, Yang C, Ma Y G, Li W H, Sun Y H, Zhong B. Nickel and Manganese Co-modified K/MoS2 Catalyst:High Performance for Higher Alcohols Synthesis From CO Hydrogenation [J]. Catal Commun,2003,4(7):339-342.
    [35]Alyea E C, He D, Wang J. Alcohol Synthesis From Syngas:I. Performance of Alkali-promoted Ni-Mo(MOVS) Catalysts [J]. Appl Catal A:Gen,1993,104(1):77-85.
    [36]Tatsumi T, Muramatsu A, Tominaga H. Importance of Sequence of Impregnation in the Activity Development of Alkali-promoted Mo Catalysts for Alcohol Synthesis from CO+H2 [J]. J Catal,1986,101(2):553-556.
    [37]Lu G, Zhang C F, Gang Y Q, Zhu Z B, Ni Y H, Cheng L J, Yu F. Synthesis of Mixed Alcohols from CO2 Contained Syngas on Supported Molybdenum Sulfide Catalysts [J]. Appl Catal A:Gen,1997,150(2):243-252.
    [38]Bhasin M M, O'Connor G L. Procede De Preparation Selective De Derives Hydrocarbones Oxygenes A Deux Atomes De Carbone [P]. Belgian Patent:824822, 1975.
    [39]Bhasin M M, Bartley W J, Ellgen P C, Wilson T P. Synthesis Gas Conversion over Supported Rhodium and Rhodium-Iron Catalyst [J]. J Catal,1978,54(2):120-128.
    [40]Ellgen P C, Bartley W J, Bhasin M M, Wilson T P. Rhodium-based Catalysts for the Conversion of Synthesis Gas to Two-Carbon Chemicals [J]. Adv Chem Ser,1979,178: 147-157.
    [411 Forzatti P, Tronconi E, Pasquon I. Higher Alcohol Synthesis [J]. Catal Rev Sci Eng,1991, 33(1-2):109-168.
    [42]Poutsma M L, Elek L F, Ibarbia P A, Risch A P, Rabo J A. Selective Formation of Methanol from Synthesis Gas over Palladium Catalysts [J]. J Catal,1978,52(1): 157-168.
    [43]Underwood R P, Bell A T. CO Hydrogenation over Rhodium Supported on SiO2, La2O3, Nd2O3, and Sm2O3 [J]. Appl Catal A:Gen,1986,21(1):157-168.
    [44]Ichikawa M. Catalytic Synthesis of Ethanol from CO and H2 under Atmospheric Pressure over Pyrolysed Rhodium Carbonyl Clusters on TiO2, ZrO2, and La2O3 [J]. J Chem Soc Chem Commun,1978, (13):566-567.
    [45]Bastein A G T M, Van Der Boogert W J, Van Der Lee G. Selectivity of Rh Catalysts in the Syngas Reactions:on the Role of Supports and Promoters [J]. Appl Catal.1987, 29(2):243-260.
    [46]Van der Lee G, Schuller B, Post H. On the Selectivity of Rh Catalysts in the Formation of Oxygenates [J]. J Catal,1986,98(2):522-529.
    [47]Zhang Z L, Kladi A, Verykios X E. Surface Species Formed During CO and CO2 Hydrogenation over Rh/TiO2 (W6+) Catalysts Investigated by FTIR and Mass-Spectroscopy [J]. J Catal,1995,156(1):37-50.
    [48]Arakawa H, Takeuchi K, Matsuzaki T. Effect of Metal Dispersion on the Activity and Selectivity of Rh/SiO2 Catalyst for High Pressure CO Hydrogenation [J]. Chem Lett, 1984,13:1607-1610.
    [49]Orita H, Naito S, Tamaru K. Improvement of Selectivity for C2-oxygenated Compounds in CO-H2 Reaction over TiO2-Supported Rh Catalysts by Doping Alkali Metal Cations [J]. Chem Lett,1983,12:1161-1164.
    [50]Theolier A, Smith A K, Leconte M. Surface Supported Metal Cluster Carbonyls Chemisorption Decomposition and Reactivity of Rh4(CO)12 Supported on Silica and Alumina [J]. J Org Chem,1980,191:415-424.
    [51]Jackson S D, Brandreth B J, Winstanley D. Carbon Monoxide Hydrogenation over Silica-supported Rhodium Catalysts [J]. J Chem Soc Faraday Trans,1988,84: 1741-1749.
    [52]Kip B J, Dime F W A, Van Grondelle J, Prins R. The Effect of Chlorine in the Hydrogenation of Carbon Monoxide to Oxygenated Products at Elevated Pressure on Rh and Ir on SiO2 and Al2O3 [J]. Appl Catal,1986,25(1):43-50.
    [53]Ojeda M, Granados M L, Rojas S, Terreros P, Fierro J L G. Influence of Residual Chloride Ions in the CO Hydrogenation over Rh/SiO2 Catalysts [J]. J Mol Catal A:Chem, 2003,202(1-2):179-186.
    [54]Jiang D H, Ding Y J, Pan Z D, Li X M, Jiao G P, Li J W, Chen W M, Luo H Y. Roles of Chlorine in the CO Hydrogenation to C2-oxygenates over Rh-Mn-Li/SiO2 Catalysts [J]. J Mol Catal A:Chem,2007,331(1-2):70-77.
    [55]Guczi L, Schay Z, Matusek K, Bogyay I. Surface Structure and Selectivity Control in the CO+H2 Reaction over FeRu Bimetallic Catalysts [J]. Appl Catal,1986,22(2):289-309.
    [56]Tago T, Hanaoka T, Dhupatemiya P, Hayashi H, Kishida M, Wakabayashi K. Effects of Rh Content on Catalytic Behavior in CO Hydrogenation with Rh-silica Catalysts Prepared Using Microemulsion [J]. Catal Lett,2000,64(1):27-31.
    [57]Orita H, Naito S, Tamaru K. Mechanism of Formation of C2-oxygenated Compounds from CO+H2 Reaction over SiO2-supported Rh Catalysts [J]. J Catal,1984,90(2): 183-193.
    [58]Hamada H, Funaki R, Kuwahara Y, Kintaichi Y, Wakabayashi K, Ito T. Systematic Preparation of Supported Rh Catalysts Having Desired Metal Particle Size by Using Silica Supports with Controlled Pore Structure [J]. Appl Catal,1987,30(1):177-180.
    [59]Chen W M, Ding Y J, Jiang D H, Pan Z D, Luo H Y. An Effective Method of Controlling Metal Particle Size on Impregnated Rh-Mn-Li/SiO2 Catalyst [J]. Catal Lett, 2005,104(3):177-180.
    [60]Ichikawa M. Catalysis by Suppoted Metal Crystallites from Carbonyl Clusters. II. Catalytic Ethanol Synthesis from CO and H2 under Atmospheric Pressure over Suppored Rhodium Carbonyl Clusters Deposited on TiO2,ZrO2, and La2O3 [J]. Bull Chem Soc Jpn, 1978,51(8):2273-2277.
    [61]Ichikawa M. Catalysis by Supported Metal Crystallites from Carbonyl Clusters. I. Catalytic Methanol Synthesis under Mild Conditions over Supported Rhodium, Platinum, and Iridium Crystallites Prepared from Rh, Pt, and Ir Carbonyl Cluster Compounds Deposited on ZnO and MgO [J]. Bull Chem Soc Jpn,1978,51(8):2268-2272.
    [62]Gronchi P, Tempesti E, Mazzocchia C, Metal Dispersion Dependent Selectivities for Syngas Conversion to Ethanol on V2O3 Supported Rhodium [J]. Appl Catal A:Gen, 1994,120(1-2):115-126.
    [63]Ojeda M, Granados M L, Rojas S, Terreros P, Garcia-Garcia F J, Fierro J L G. Manganese-promoted Rh/Al2O3 for C2-oxygenates Synthesis from Syngas Effect of Manganese Loading [J]. Appl Catal A:Gen,2004,261(1):47-55.
    [64]Dall'Agnol C, Gervasini A, Morazzoni F, Pinna F, Strukul G, Zanderighi L. Hydrogenation of Carbon Monoxide:Evidence of a Strong Metal-support Interaction in RhZrO2 Catalysts [J]. J Catal,1985,96(1):106-114.
    [65]Benedetti A, Carimati A, Marengo S, Martinengo S, Pinna F, Tessari R, Stmkul G, Zerlia T, Zanderighi L. Activity and Selectivity in Carbon Monoxide Hydrogenation over Rhodium Supported on Pure Zirconia and on K-, P-, and Y-doped Zirconia [J]. J Catal, 1990,122(2):330-345.
    [66]Guglielminotti E, Pinna F, Rigoni M, Strukul G, Zanderighi L. The Effect of Iron on the Activity and the Selectivity of Rh/ZrO2 Catalysts in the CO Hydrogenation [J]. J Mol Catal A:Chem,1995,103(1):105-116.
    [67]Trevino H, Sachtler W M H. On the Nature of Catalyst Promotion by Manganese in CO Hydrogenation to Oxygenates over RhMn/NaY [J]. Catal Lett,1994,27(3-4):251-258.
    [68]Trevino H, Lei G D, Sachtler W M H. CO Hydrogenation to Higher Oxygenates over Promoted Rhodium:Nature of the Metal-promoter Interaction in RhMn/NaY [J]. J Catal, 1995,154(2):245-252.
    [69]Schunemann V, Trevino H, Lei G D, Tomczak D C, Sachtler W M H, Fogash K, Dumesic J A. Fe Promoted Rh-clusters in Zeolite NaY:Characterization and Catalytic Performance in CO Hydrogenation [J]. J Catal,1995,153(1):144-157.
    [70]Haider M A, Gogate M R, Davis R J. Fe-promotion of Supported Rh Catalysts for Direct Conversion of Syngas to Ethanol [J]. J Catal,2009,261(1):9-16.
    [71]Gogate M R, Davis R J. Comparative Study of CO and CO2 Hydrogenation over Supported Rh-Fe Catalysts. Catal Commun,2010,11(10):901-906.
    [72]Fan Z L, Chen W, Pan X L, Bao X H. Catalytic Conversion of Syngas into C2 Oxygenates over Rh-based Catalysts-Effect of Carbon Supports [J]. Catal Today,2009, 147(2):86-93.
    [73]Chen G C, Guo C Y, Zhang X H, Huang Z J, Yuan G Q. Direct Conversion of Syngas to Ethanol over Rh/Mn-supported on Modified SBA-15 Molecular Sieves:Effect of Supports [J]. Fuel Process Tech,2011,92(3):456-461.
    [74]Lavalley J C, Saussey J, Lamotte J, Breault R, Hindermann J P, Kiennemann A. Infrared Study of Carbon Monoxide Hydrogenation over Rhodium/Ceria and Rhodlum/Silica Catalysts [J]. J Phys Chem,1990,94(15):5941-5947.
    [75]Wang Y Q, Li J, Mi W L. Probing Study of Rh Catalysts on Different Supports in CO Hydrogenation [J]. React Kinet Catal Lett,2002,76(1):141-150.
    [76]Ichikawa M, Hoffmann P E, Fukuoka A.13C and 18O Labelling Fourier Transform IR Studies on C-and O-ended CO Chemisorption on Mn-promoted Rh/SiO2 Catalysts [J]. J Chem Soc Chem Comm,1989, (18):1395-1396.
    [77]Jiang D H, Ding Y J, Pan Z D, Chen W M, Luo H Y. CO Hydrogenation to C2-oxygenates over Rh-Mn-Li/SiO2 Catalyst:Effects of Support Pretreatment with nC1-C5 Alcohols [J]. Catal Lett,2008,121(3-4):241-246.
    [78]Smith A K, Hugues F, Theolier A, Basset J M, Ugo R, Zanderighi G M, Bilhon J L, Bilhou-Bougnal V, Graydon W F. Surface-supported Metal Cluster on Alumina, Silica-alumina, and Magnesia [J]. Inorg Chem,1979,18(11):3104-3112.
    [79]Basu P, Panayotov D, Yates Jr. J T. Rhodium-Carbon Monoxide Surface Chemistry:The Involvement of Surface Hydroxyl Groups on Al2O3 and SiO2 Supports [J]. J Am Chem Soc,1988,110:2074-2081.
    [80]Trautmann S, Baerns M. Infrared Spectroscopic Studies of CO Adsorption on Rhodium Supported by SiO2, Al2O3, and TiO2 [J]. J Catal,1994,150(2):335-344.
    [81]Ponec V. Chapter 4 Selectivity in the Syngas Reactions:The Role of Supports and Promoters in the Activation of Co and in the Stabilization of Intermediates [J]. Stud Surf Sci Catal,1991,64:117-157.
    [82]Lin, P Z, Liang D B, Lou H Y, Xu C H, Zhou H W, Huang S Y, Lin L W. Synthesis of C2+-oxygenated Compounds Directly from Syngas [J]. Appl Catal A:Gen,1995,131(2): 207-214.
    [83]Ichikawa M, Fukushima T. Mechanism of Syngas Conversion into C2-oxygenates Such As Ethanol Catalysed on a SiO2-supported Rh-Ti Catalyst [J]. J Chem Soc Chem Commun,1985, (6):321-323.
    [84]Kowalski J, Lee G V D, Ponec V. Vanadium Oxide As a Support and Promoter of Rhodium in Synthesis Gas Reactions [J]. Appl Catal,1985,19(2):423-426.
    [85]Luo H Y, Zhou H W, Lin L W, Liang D B, Role of Vanadium Promoter in Rh-V/SiO2 Catalysts for the Synthesis of C2-oxygenates from Syngas [J]. J Catal,1994,145(2): 232-234.
    [86]Lisitsyn A S, Stevenson S A, Knozinger H. Carbon Monoxide Hydrogenation on Supported Rh-Mn Catalysts [J]. J Mol Catal,1990,63(2):201-211.
    [87]Beutel T, Siborov V, Tesche B, Knozinger H, Strong Metal-promoter Oxide Interactions Induced by Calcinations in V, Nb, and Ta Oxide Promoted Rh/SiO2 Catalysts [J]. J Catal, 1997,167(2):379-390.
    [88]罗洪原,Bastein A G T M, Ponec V.合成二碳含氧化合物的Rh/VOCl2/SiO2催化剂中V的状态[J].催化学报,1988,9(3):254-259.
    [89]Luo H Y, Lin P Z, Xie S B. The Role of Mn and Li Promoters in Supported Rhodium Catalysts in the Formation of Acetic Acid and Acetaldehyde [J]. J Mol Catal A:Chem, 1997,122(2-3):115-123.
    [90]Van der Berg F G A, Glezer J H E, Sachtler W M H. The Role of Promotion in CO/H2 Reactions:Effects of MnO and MoO2 in Silica-supported Rhodium Catalysts [J]. J Catal, 1985,93(2):340-352.
    [91]顾桂松,刘金波,杨意泉.合成气制乙醇Rh-Nb2O5/SiO2催化剂中SMPI和助催化剂作用本质的研究[J].物理化学学报,1985,1(1):175-185.
    [92]Arakawa H, Fukushima T, Ichikawa M. Selective Synthesis of Ethanol Over Rh-Ti-Fe-Ir/SiO2 Catalyst at High Pressure Syngas Conversion [J]. Chem Lett,1985, 14(7):881-884.
    [93]Kip B J, Smeets P A T, Van Grondelle J, Prins R. Hydrogenation of carbon monoxide over vanadium oxide-promoted rhodium catalysts [J]. Appl Catal,1987,33(1):181-208.
    [94]蔡启瑞,彭少逸.碳一化学中的催化作用[M].北京:化学工业出版社,1995:167-186.
    [95]Luo H Y, Zhou H W, Lin L W. Role of Vanadium Promoter in Rh-V/SiO2 Catalysts for the Synthesis of C2-oxygenates from Syngas [J]. J Catal,1994,145(2):232-234.
    [96]Sachtler W M H, Ichikawa M, Catalytic Site Requirements for Elementary Steps in Syngas Conversion to Oxygenates Over Promoted Rhodium [J]. J Phys Chem,1986, 90(20):4752-4758.
    [97]Wang Y, Luo H Y, Liang D B, Bao X H, Different Mechanisms for the Formation of Acetaldehyde and Ethanol on the Rh-Based Catalysts [J]. J Catal,2000,196(1):46-55.
    [98]Luo H Y, Zhang W, Zhou H W. A Study of Rh-Sm-V/SiO2 Catalysts for the Preparation of C2-oxygenates from Syngas [J]. Appl Catal A:Gen,2001,214(2):161-166.
    [99]Gysling H J, Monnier J R, Apai G. Synthesis, Characterization, and Catalytic Activity of LaRhO3 [J]. J Catal,1987,103(2):407-418.
    [100]Underwood R P, Bell A T. Lanthana-Promoted Rh/SiO2 II. Studies of CO Hydrogenation [J]. J Catal,1988,111(2):325-335.
    [101]Du Y H, Chen D A, Tsai K R. Promoter Action of Rare Earth Oxides in Rhodium/silica Catalysts for the Conversion of Syngas to Ethanol [J]. Appl Catal,1987,35(1):77-92.
    [102]Mo X, Gao J, Goodwin Jr. J G. Role of Promoters on Rh/SiO2 in CO Hydrogenation:A Comparison Using DRIFTS [J]. Catal Today,2009,147(1):139-149.
    [103]Mo X, Gao J, Umnajkaseam N, Goodwin Jr. J G. La, V, and Fe Promotion of Rh/SiO2 for CO Hydrogenation:Effect on Adsorption and Reaction [J]. J Catal,2009,267(1): 167-176.
    [104]Kesraoui S, Oukaci R, Blackmond D G. Adsorption and Reaction of CO and H2 on K-promoted Rh/SiO2 Catalysts [J]. J Catal,1987,105(2):432-444.
    [105]罗洪原,谢水波,林励吾.合成C2含氧物的Rh-Mn-Li/SiO2催化剂的优化研究[J].催化学报,1995,16(1):136-139.
    [106]Chuang S C, Goodwin J G, Wender I. Investigation by Ethylene Addition of Alkali Promotion of CO Hydrogenation on Rh/TiO2 [J]. J Catal,1985,92(2):416-421.
    [107]Chuang S C, Goodwin J G, Wender I. The Effect of Alkali Promotion on CO Hydrogenation over Rh/TiO2 [J]. J Catal,1985,95(2):435-446.
    [108]Ngo H, Liu Y Y, Murata K. Effect of Secondary Additives (Li, Mn) in Fe-promoted Rh/TiO2 Catalysts for the Synthesis of Ethanol from Syngas [J]. Reac Kinet Mech Cat, 2011,102:425-435.
    [109]Sano K, Mita Y, Matsuhira S. Oxygen-containing hydrocarbons [P], Jpn Patent: JP60161933,1985.
    [110]Kusama H, Okabe K, Sayama K, Arakawa H. CO2 Hydrogenation to Ethanol Over Promoted Rh/SiO2 Catalysts [J]. Catal Today,1996,28(3):261-266.
    [111]Egbebi A, Schwartz V, Overbury S H, Spivey J J. Effect of Li Promoter on Titania-supported Rh Catalyst for Ethanol Formation from CO Hydrogenation [J]. Catal Today, 2010,149(1):91-97.
    [112]李经伟,丁云杰,林荣和,龚磊峰,宋宪根,陈维苗,王涛,罗洪原.锂助剂对Rh-Mn/SiO2催化CO加氢制碳二含氧化合物性能的影响[J].催化学报,2010,31(3):365-369.
    [113]Kato H, Nakashima M, Mori Y, Mori T, Hattori T, Murakami Y. Promotion Effect of Metal Oxides on C-O Bond Dissociation in CO Hydrogenation Over Rh/SiO2 Catalyst-possible Role of Partially Reduced State Cations [J]. Research on Chemical Intermedi,1995,21(2):115-126.
    [114]Bhasin M M, Bartley W J, Ellgen P C. Synthesis Gas Conversion over Supported Rhodium and Rhodium-Iron Catalysts [J]. J Catal,1978,54(1):120-128.
    [115]Ichikawa M, Fukushima T. Infrared Studies of Metal Additive Effects on CO Chemisorption Modes on SiO2-supported Rh-Mn,-Ti,-Fe Catalysts [J]. J Phys Chem, 1985,89(9):1564-1567.
    [116]Ichikawa M, Fukuoka A, Kimura T. Selective CO Hydrogenation to C1-C2 Alcohols Catalyzed on Fe-containing Rh, Pt, and Pd Bimetal Carbonyl Cluster-derived Catalysts [C]. Proceedings of the 9th International Congress on Catalysis, Ottawa,1988:569-577.
    [117]Burch R, Petch M I. Investigation of the Synthesis of Oxygenates from Carbon Monoxide/hydrogen Mixtures on the Supported Rhodium Catalysts [J]. Appl Catal A: Gen,1992,88(1):39-60.
    [118]Wang J J, Zhang Q H, Wang Y. Rh-catalyzed Syngas Conversion to Ethanol:Studies on the Promoting Effect of FeOx [J]. Catal Today,2011,171(1):257-265.
    [119]Chen G C, Guo C Y, Huang Z J, Yuan G Q. Synthesis of Ethanol from Syngas Over Iron-promoted Rh Immobilized on Modified SBA-15 Molecular Sieve:Effect of Iron Loading [J]. Chem Eng Res Des,2011,89(3):249-253.
    [120]Nakajo T, Sano K I, Matsuhira S. Selective Synthesis of Acetic Acid in High Pressure Carbon Monoxide Hydrogenation Over a Rh-Mn-Ir-Li/SiO2 Catalyst [J]. J Chem Soc Chem Commun,1987, (9):647-649.
    [121]Chuang S S C, Pien S I. Role of Silver Promoter in Carbon Monoxide Hydrogenation and Ethylene Hydroformylation Over Rh/SiO2 Catalysts [J]. J Catal,1992,138(2): 536-546.
    [122]Chuang S S C, Pien S I, Narayanan R. C2-oxygenate Synthesis from CO Hydrogen-nation on AgRh/SiO2 [J]. Appl Catal,1990,57(1):241-251.
    [123]Yin H M, Ding Y J, Luo H Y. Zhu H J, He D P, Xiong J M, Lin L W. Influence of Iron Promoter on Catalytic Properties of Rh-Mn-Li/SiO2 for CO Hydrogenation [J]. Appl Catal A:Gen,2003,243(1):155-164.
    [124]Holy N L, Carey Jr. T F. Ethanol and N-propanol from Syngas [J]. Appl Catal,1985, 19(2):219-223.
    [125]Burch R, Hayes M J. The Preparation and Characterisation of Fe-Promoted Al2O3-Supported Rh Catalysts for the Selective Production of Ethanol from Syngas [J]. J Catal,1997,165(2):249-263.
    [126]Kishida M, Fujita T, Umakoshi K. Novel Preparation of Metal-supported Catalysts by Colloidal Microparticles in A Water-in-oil Microemulsion; Catalytic Hydrogenation of Carbon Dioxide [J]. J Chem Soc Chem Commun,1995, (7):763-764.
    [127]Kim W Y, Hanaoka T, Kishida M, Wakabayashi K. Hydrogenation of Carbon Monoxide Over Zirconia-supported Palladium Catalysts Prepared Using Water-in-oil Microemulsion [J]. Appl Catal A:Gen,1997,155(2):283-289.
    [128]Kisllida M, Umakoshi K, Ishiyalna J. Hydrogenation of Carbon Dioxide Over Metal Catalysts Prepared Using Microemulsion [J]. Catal Today,1996,29(1-4):355-359.
    [129]Boutonnet M, Kizling J, Touroude R. Monodispersed Colloidal Metal Particles from Nonaqueous Solutions:Catalytic Behaviour in Hydrogenolysis and Isomerization of Hydrocarbons of Supported Platinum Particles [J]. Catal Lett,1991,9(5-6):347-354.
    [130]陈维苗,丁云杰,罗洪原,严丽,王涛,潘振栋,朱何俊.制备方法和条件对Rh-Mn-Li-Ti/SiO2催化剂CO加氢制C2含氧化物性能的影响[J].应用化学,2005,22(5):470-474.
    [131]Hu J, Wang Y, Cao C, Elliott D C, Stevens D J, White J F. Conversion of Biomass-derived Syngas to Alcohols and C2-oxygenates Using Supported Rh Catalysts in A Microchannel Reactor [J]. Catal Today,2007,120(1):90-95.
    [132]Hu J, Dagle R A, Holladay J D, Cao C, Wang Y, White J F, Elliott D C, Stevens D J. Alcohol synthesis from CO or CO2 [P]. US Patent:US2007/0161717,2007.
    [133]王毅.合成气制备C2含氧化合物的铑基催化剂的研究[D].大连:中国科学院大连化学物理研究所,1999.
    [134]Xu B Q, Sachtler W M H. Rh/NaY:A Selective Catalyst for Direct Synthesis of Acetic Acid from Snygas [J]. J Catal,1998,180(2):194-206.
    [135]尹红梅.铑基催化剂上CO加氢制备C2含氧化合物的研究[D].大连:中国科学院大连化学物理研究所,2003.
    [136]Robert C, Brady III, Pettit R. Reactions of Diazomethane on Transition-metal Surfaces and Their Relationship to the Mechanism of the Fischer-Tropsch Reaction [J]. J Am Chem Soc,1980,102 (19):6181-6182.
    [137]Sachtler W M H, Ichikawa M. Elementary Steps in the Catalyzed Conversion of Synthesis Gas [C]. Proceedings of the 8th International Congress on Catalysis, Berlin, 1984:3-14.
    [138]Ichikawa M. Cluster-derived Supported Catalysts and Their Use [J]. Chem Tech,1982, 12(11):674-680.
    [139]Wender I. Reactions of Synthesis Gas [J]. Fuel Process Technol,1996,48(3):189-297.
    [140]Luo M S, Davis B H. Deactivation and Regeneration of Alkali Metal Promoted Iron Fischer-Tropsch Synthesis Catalysts [J]. Stud Surf Sci Catal,2001,139:133-140.
    [141]Yates I C, Satterfield C N. Intrinsic Kinetics of the Fischer-Tropsch Synthesis on A Cobalt Catalyst [J]. Energy Fuels,1991,5(1):168-173.
    [142]Van Der Laan G P, Beenackers A A C M. Intrinsic Kinetics of the Gas-solid Fischer-Tropsch and Water Gas Shift Reactions Over A Precipitated Iron Catalyst [J]. Appl Catal A:Gen,2000,193(1-2):39-53.
    [143]Kellner C S, Bell A T. The Kinetics and Mechanism of Carbon Monoxide Hydrogenation Over Alumina-supported Ruthenium [J]. J Catal,1981,70(2):418-432.
    [144]Dadyburjor D B. Use of Adsorption Entropy to Choose Between Kinetic Mechanisms and Rate Equations for Fischer-Tropsch Synthesis [J]. J Catal,1983,82(2):489-492.
    [145]Lo J M H, Ziegler T. Density Functional Theory and Kinetic Studies of Methanation on Iron Surface [J]. J Phys Chem C,2007,111(29):11012-11025.
    [146]Fisher I A, Bell A T. A Comparative Study of CO and CO2 Hydrogenation Over Rh/SiO2 [J]. J Catal,1996,162(1):54-65.
    [147]Inderwildi O R, Jenkins S J, King D A. Fischer-Tropsch Mechanism Revisited: Alternative Pathways for the Production of Higher Hydrocarbons from Synthesis Gas [J]. J Phys Chem C,2008,112(5):1305-1307.
    [148]Storsaeter S, Chen D, Holmen A. Microkinetic Modelling of the Formation of C1 and C2 Products in the Fischer-Tropsch Synthesis Over Cobalt Catalysts [J]. Surf Sci,2006, 600(10):2051-2063.
    [149]Huo C F, Li Y W, Wang J G, Jiao H J. Formation of CHx Species from CO Dissociation on Double-Stepped Co(001):Exploring Fischer-Tropsch Mechanism [J]. J Phys Chem C,2008,112(36):14108-14116.
    [150]Vannice M A. The Catalytic Synthesis of Hydrocarbons from H2 and CO Mixtures Over the Group VIII Metals:I. The Specific Activities and Product Distributions of Supported Metals [J]. J Catal,1975,37(3):449-461.
    [151]Mori Y, Mori T, Hattori T, Murakami Y. Selectivities in Carbon Monoxide Hydrogenation on Rhodium Catalysts As a Function of Surface Reaction Rate Constants [J]. Appl Catal,1990,66(1):59-72.
    [152]Shustorovich E, Bell A T. Analysis of CO Hydrogenation Pathways Using the Bond-order-conservation Method [J]. J Catal,1988,113(2):341-352.
    [153]Anderson A B, Onwood D P. Carbon Monoxide Adsorption on (111) and (100) Surfaces of the Pt3Ti Alloy. Evidence for Parallel Binding and Strong Activation of CO [J]. Sci Tech Aerosp Rep,1985,23:1-25.
    [154]Choi Y, Liu P. Mechanism of Ethanol Synthesis from Syngas on Rh(111) [J]. J Am Chem Soc,2009,131(36):13054-13061.
    [155]Watson P R, Somorjai G A. The Hydrogenation of Carbon Monoxide over Rhodium Oxide Surfaces [J]. J Catal,1981,72(2):347-363.
    [156]Castner D G, Blackadar R L, Somorjai G A. CO Hydrogenation over Clean and Oxidized Rhodium Foil and Single Crystal Catalysts Correlations of Catalyst Activity, Selectivity, and Surface Composition [J]. J Catal,1980,66(2):257-266.
    [157]Konishi Y, Ichikawa M, Sachtler W M H. Hydrogenation and Hydroformylation with Supported Rhodium Catalysts:Effect of Adsorbed Sulfur [J]. J Phys Chem,1987, 91(24):6286-6291.
    [158]Chuang S S C, Pien S I. Infrared Study of the CO Insertion Reaction on Reduced, Oxidized, and Sulfided Rh/SiO2 Catalysts [J]. J Catal,1992,135(2):618-634.
    [159]Calderazzo F. Synthetische und mechanistische Aspekte anorganischer Insertionsreakti-onen Insertion von Kohlenmonoxid [J]. Angewandte Chemie,1977,89(5):305-317.
    [160]Noack K, Calderazzo F. Carbon Monoxide Insertion Reactions V. The Carbonylation of Methylmanganese Pentacarbonyl with 13CO [J]. J Organometal Chem,1967,10(1): 101-104.
    [161]Horwitz C P, Shriver D F. C- and O-Bonded Metal Carbonyls:Formation, Structures, and Reactions [J]. Adv in Organometal Chem,1984,23:219-315.
    [162]Chuang S S C, Brundage M A, Balakos M W. Mechanistic Study in Catalysis Using Dynamic and Isotopic Transient Infrared Spectroscopy:CO/H2C2H4 Reaction on Mn-Rh/SiO2 [J]. Appl Catal A:Gen,1997,151(1):333-354.
    [163]Chuang S S C, Srinivas G, Brundage M A. Role of Tilted CO in Dynamics of CO Insertion on Ce-Rh/SiO2 [J]. Energy Fuels,1996,10(3):524-530.
    [164]Chuang S S C, Sze C. Effects of Alkali Species and H2S on the CO Hydrogenation Over Rh/SiO2 [J]. Stud Surf Sci Catal,1988,38:125-130.
    [165]Hedrick S A, Chuang S S C, Brundage M A. Deuterium Pulse Transient Analysis for Determination of Heterogeneous Ethylene Hydroformylation Mechanistic Parameters [J].J Catal,1999,185(1):73-90.
    [166]Efstathiou A M, Chafik T, Bianchi D, Bennett C O. A Transient Kinetic Study of the Co/H2 Reaction on Rh/Al2O3 Using FTIR and Mass Spectroscopy [J]. J Catal,1994, 148(1):224-239.
    [167]Katzer J R, Sleight A W, Gajardo P, Michel J B, Gleason E F, McMillan S. The Role of the Support in CO Hydrogenation Selectivity of Supported Rhodium [J]. Faraday Discuss Chem Soc,1981,72:121-133.
    [168]Chuang S S C, Stevens Jr. R W, Khatri R. Mechanism of C2+ oxygenate synthesis on Rh catalysts [J]. Top Catal,2005,32(3-4):225-232.
    [169]Boffa A, Lin C, Bell A T, Somorjai G A. Promotion of CO and CO2 Hydrogenation over Rh by Metal Oxides:The Influence of Oxide Lewis Acidity and Reducibility [J]. J Catal,1994,149(1):149-158.
    [170]Dry M E. The Fischer-Tropsch synthesis [J]. Catal Sci Technol,1981,1:159-166.
    [171]Chuang S S C. Sulfided Group Ⅷ Metals for Hydroformylation [J]. Appl Catal,1990, 66(1):L1-L6.
    [172]Gao J, Mo X, Chien A C, Torres W, Goodwin Jr. J G. CO Hydrogenation on Lanthana and Vanadia Doubly Promoted Rh/SiO2 Catalysts [J]. J Catal,2009,262(1):119-126.
    [173]Gao J, Mo X, Goodwin Jr. J G. La, V, and Fe Promotion of Rh/SiO2 for CO Hydrogenation:Detailed Analysis of Kinetics and Mechanism [J]. J Catal,2009,268(1): 142-149.
    [174]Mei D H, Rousseau R, Kathmann S M, Glezakou V A, Engelhard M H, Jiang W L, Wang C M, Gerber M A, White J F, Stevens D J. Ethanol Synthesis from Syngas over Rh-based/SiO2 Catalysts:A Combined Experimental and Theoretical Modeling Study [J]. J Catal,2010,271(2):325-342.
    [175]Ichikawa M, Fukushima T. EXAFS Evidence for Direct Rhodium-Iron Bonding in Silica-supported Rhodium-Iron Bimetallic Catalysts[J]. J Phys Chem,1986,90(7): 1222-1224.
    [176]Gogate M R, Davis R J. X-ray Absorption Spectroscopy of an Fe-promoted Rh/TiO2 Catalyst for Synthesis of Ethanol from Synthesis Gas [J]. ChemCatChem,2009,1(2): 295-303.
    [177]Ledford J S, Houalla M, Proctor A, Hercules D M, Petrakis L. Influence of Lanthanum on the Surface Structure and Carbon Monoxide Hydrogenation Activity of Supported Cobalt Catalysts [J]. J Phys Chem,1989,93(18):6770-6777.
    [178]Szekeres M, Kamalin O, Grobet P G, Schoonheydt R A, Wostyn K, Clays K, Persoons A, Dkenay 1. Two-dimensional Ordering of Stober Silica Particles at the Air/Water Interface [J]. Colloids Surf A:Physicochem Eng Aspects,2003.227(1-3):77-83.
    [179]Jiang D H, Ding Y J, Pan Z D, Li X M, Jiao G P, Li J W, Chen W M, Luo H Y. Roles of Chlorine in the CO Hydrogenation to C2-oxygenates over Rh-Mn-Li/SiO2 Catalysts [J]. Appl Catal A:Gen,2007,331(1):70-77.
    [180]Yang C, Garland C W. Infrared Studies of Carbon Monoxide Chemisorbed on Rhodium [J]. J Phys Chem,1957,61(11):1504-1512.
    [181]Hanaoka T, Arakawa H, Matsuzaki T, Sugi Y, Kanno K, Abe Y. Ethylene Hydrofor-mylation and Carbon Monoxide Hydrogenation over Modified and Unmodified Silica Supported Rhodium Catalysts [J]. Catal Today,2000,58(4):271-280.
    [182]Cavanagh R R, Yates Jr. J T. Site Distribution Studies of Rh Supported on A12O3—An Infrared Study of Chemisorbed CO [J]. J Chem Phys,1981,74(7):4150-4155.
    [183]Rice C A, Worley S D, Curtis C W, Guin J A, Tarrer A R. The Oxidation State of Dispersed Rh on Al2O3 [J]. J Chem Phys,1981,74(11):6487-6497.
    [184]Guo S L, Arai M, Nishiyama Y. Activation of a Silica-supported Nickel Catalyst Through Surface Modification of the Support [J]. Appl Catal,1990,65(1):31-44.
    [185]Ichikawa M, Fukushima T, Shikakura K. the Role of Fe, Mn-and Ti-Oxide Additives Modifying C2-oxygenate Formation Catalyzed by SiO2-Supported Rh-containing Catalysts in a CO-H2 Conversion [C]. Proceedings of the 8th International Congress on Catalysis, Berlin,1984:69-79.
    [186]Kip B J, Hermans E G E, Prins R. Carbon Monoxide Hydrogenation Over Alkali-promoted Rh/Al2O3, Rh/V2O3/SiO2 and Rh/ThO2/SiO2 [J]. Appl Catal,1987, 35(1):141-152.
    [187]王毅,宋真,马丁,罗洪原,梁东白,包信和.由合成气制备C2含氧化合物用铑基催化剂中各组分间的相互作用[J].催化学报,1998,19(6):533-537.
    [188]汪海有,刘金波,傅锦坤,蔡启瑞.催化合成气合成乙醇的铑基催化剂中助剂锰的作用本质研究[J].分子催化,1993,7(4):252-260.
    [189]Blyholder G, Allen M C. Infrared Spectra and Molecular Orbital Model for Carbon Monoxide Adsorbed on Metals [J]. J Am Chem Soc,1969,91(12):3158-3162.
    [190]Peri J B. Infrared Study of OH and NH2 Groups on the Surface of A Dry Silica Aerogel [J]. J Phys Chem,1966,70(9):2937-2945.
    [191]Solymosi F, Erdohelyi A, Kocsis M. Surface Interaction between H2 and CO2 on RhAl2O3, Studied by Adsorption and Infrared Spectroscopic Measurements [J]. J Catal,1980,65(2):428-436.
    [192]McKee M L, Dai C H, Worley S D. The Rhodium Carbonyl Hydride Species. A Theoretical and Experimental Investigation [J]. J Phys Chem,1988,92(5):1056-1059.
    [193]Burch R, Petch M I. Investigation of the Reactions of Acetaldehyde on Promoted Rhodium Catalysts [J]. Appl Catal A:Gen,1992,88(1):61-76.
    [194]Basu P, Panayotov D, Yates J T. Spectroscopic Evidence for the Involvement of Hydroxyl Groups in the Formation of Dicarbonylrhodium(I) on Metal Oxide Supports [J]. J Phys Chem,1987,91(12):3133-3136.
    [195]Solymosi F, Tombacz I, Kocsis M. Hydrogenation of CO on Supported Rh Catalysts [J]. J Catal,1982,75(1):78-93.
    [196]Fujimoto K, Kameyama M, Kunugi J. Hydrogenation of Adsorbed Carbon Monoxide on Supported Platinum Group Metals [J]. J Catal,1980,61(1):7-14.
    [197]Rieck J S, Bell A T. Studies of the Interactions of H2 and CO with Silica-and Lanthana-supported Palladium [J]. J Catal,1985,96(1):88-105.
    [198]Solymosi F, Pasztor M. Infrared Study of the Effect of Hydrogen on Carbon Monoxide-induced Structural Changes in Supported Rhodium [J]. J Phys Chem,1986,90(21): 5312-5317.
    [199]Chen W M, Ding Y J, Song X G, Wang T, Luo H Y. Promotion Effect of Support Calcination on Ethanol Production from CO Hydrogenation over Rh/Fe/Al2O3 Catalysts [J]. Appl Catal A:Gen,2011,407(1-2):231-237.
    [200]Seip U, Tsai M C, Christmann K, Kuppers J, Ertl G. Interaction of Co with an Fe(111) Surface [J]. Surf Sci,1984,139(1):29-42.
    [201]Subramani V, Gangwal S K. A Review of Recent Literature to Search for an Efficient Catalytic Process for the Conversion of Syngas to Ethanol [J]. Energy Fuels,2008, 22(2):814-839.
    [202]Rostrup-Nielsen J R. Making Fuels from Biomass [J], Science,2005,308:1421-1422.
    [203]Hindermann J P, Hutchings G J, Kiennemann A. Mechanistic Aspects of the Formation of Hydrocarbons and Alcohols from CO Hydrogenation [J]. Catal Rev Sci Eng,1993, 35(1):1-127.
    [204]Underwood R P, Bell A T. Lanthana-promoted Rh/SiO2:I. Studies of CO and H2 Adsorption and Desorption [J]. J Catal,1988,109(1):61-75.
    [205]Dai C H, Worley S D. Decomposition of Methanol, Acetaldehyde, and Acetone on Supported Rhodium Catalysts [J]. Langmuir,1988,4(2):326-329.
    [206]Fan Z L, Chen W, Pan X L, Bao X H. Catalytic Conversion of Syngas into C2-oxygenates over Rh-based Catalysts-Effect of Carbon Supports [J]. Catal Today, 2009,147(2):86-93.
    [207]Subramanian N D, Gao J, Mo X, Goodwin Jr. J G, Torres W, Spivey J J. La and/or V Oxide Promoted Rh/SiO2 Catalysts:Effect of Temperature, H2/CO Ratio, Space Velocity, and Pressure on Ethanol Selectivity from Syngas [J]. J Catal,2010,272(2): 204-209.
    [208]Anderson J A, Khader M M. A High Pressure, High Temperature Infrared Study of CO Hydrogenation over Rh/ZrO2 [J]. J Mol Catal A:Chem,1996,105(3):175-183.
    [209]Ho S, Su Y. Effects of Ethanol Impregnation on the Properties of Silica-Supported Cobalt Catalysts [J].J Catal,1997,168(1):51-59.
    [210]Solymosi F, Tombacz I, Kocsis M. Hydrogenation of CO on Supported Rh Catalysts [J]. J Catal,1982,75(1):78-93.
    [211]罗洪原,尹红梅,丁云杰,林励吾.合成气制C2含氧化物的Rh-Mn-Li-Fe/SiO2催化剂的优化研究[J].石油化工,2004,33(增刊):194-196.
    [212]Hsu W P, Yu R C, Matijevic E. Paper Whiteners:I. Titania Coated Silica [J]. J Colloid Interface Sci,1993,156(1):56-65.
    [213]Brenner A, Hucul D A. The Synthesis and Nature of Heterogeneous Catalysts of Low-valent Tungsten Supported on Alumina [J]. J Catal,1980,61(1):216-222.
    [214]Hucul D A, Brenner A. A Strong Metal-support Interaction between Mononuclear and Polynuclear Transition Metal Complexes and Oxide Supports Which Dramatically Affects Catalytic Activity [J]. J Phys Chem,1981,85(5):496-498.
    [215]Solymosi F, Pasztor M. An Infrared Study of the Influence of Carbon Monoxide Chemisorption on the Topology of Supported Rhodium [J]. J Phys Chem,1985,89(22): 4789-4793.
    [216]Qu Z P, Huang W X, Zhou S T, Zheng H, Liu X M. Cheng M J, Bao X H. Enhancement of the Catalytic Performance of Supported-metal Catalysts by Pretreatment of the Support [J]. J Catal,2005,234(1):33-36.
    [217]Ioannides T, Verykios X. Influence of the Carrier on the Interaction of H2 and CO with Supported Rh [J]. J Catal,1993,140(2):353-369.
    [218]Wang Y, Song Z, Ma D, Luo H Y, Liang D B, Bao X H. Characterization of Rh-based Catalysts with EPR, TPR, IR and XPS [J]. J Mol Catal A:Chem.1999,149(1-2): 51-61.
    [219]马洪涛,王毅,包信和.合成气制备乙醇Rh-Mn/SiO2催化剂中活性金属表面结构的表征研究[J].北京大学学报(自然科学版),2001,37(2):210-214.
    [220]陈建刚,相宏伟,孙予罕.硅胶来源对费—托合成用Co/SiO2催化剂性能的影响[J].催化学报,2000,21(2):169-171.
    [221]Ugo R. The Contribution of Organometallic Chemistry and Homogeneous Catalysis to the Understanding of Surface Reactions [J]. Catal Rev,1975,11:255-297.
    [222]陈维苗,丁云杰,江大好,焦桂萍,朱何俊,潘振栋,罗洪原.改善Rh基催化剂上CO加氢生成C2含氧化物性能的本质及途径[J].催化学报,2006,27(11):999-1004.
    [223]罗洪原,谢水波,林励吾,梁东白.合成C2含氧化物的Rh-Mn-Li/SiO2催化剂的优化研究[J].催化学报,1995,16(2):136-140.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700