用户名: 密码: 验证码:
桥梁钢热压缩变形动态再结晶行为的双尺度模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着控冷控轧技术与合金化的综合应用,性能更加优越的各种新型钢种不断得到开发和应用。其中,奥氏体区再结晶轧制发挥了重要作用。为了确定最佳的热轧工艺参数以实现合理的再结晶控轧,深入研究钢的热变形期间动态再结晶行为十分必要,特别是采用计算机模拟方法进行的动态再结晶研究更具有重要的理论和实际意义。
     由于形成机制复杂、影响因素众多、过程较快、组织变化模型难以构建等,桥梁钢动态再结晶模拟的研究相对较晚,且基于物理或实验模拟的有限元-宏观组织模拟与有限元—介观组织模拟相结合的双尺度动态再结晶模拟的相关研究更是鲜见。为此,本文以新型桥梁钢特别是HPS485wf钢为研究对象,在结合了热模拟实验、定量金相分析技术、有限元分析技术和动态再结晶组织模拟技术的基础上,以MARC软件作为数值模拟的支撑平台、基于唯象模型或MC模型所开发的应用程序作为动态再结晶组织模拟的工具,对该钢单道次热压缩变形过程中动态再结晶行为进行了物理模拟—有限元模拟—双尺度组织模拟(宏观与介观)的全面研究。
     首先,对HPS485wf和Q420qE两种典型的桥梁钢进行了系统的热模拟等温压缩实验,揭示了变形参数对它们的热变形力学行为和动态再结晶组织演变的影响规律及其形成机理,获得了发生动态再结晶的特征参数值,为后序的唯象模型和MC模型的建立、检验以及它们的宏观和介观组织模拟奠定了实验基础。
     其次,根据变形条件对形变和动态再结晶行为存在影响进行的热模拟实验研究,建立了能够描述HPS485wf钢流变行为的通用本构关系模型和简化本构关系模型。基于Najafizadeh和Jonas提出的简化0-σ模型以及Cingara和McQueen提出的流变应力模型,得到了该钢热压缩变形动态再结晶临界参数模型以及对应的动态再结晶唯象模型,使得后续有限元—动态再结晶唯象模型的宏观组织模拟得以进行。
     随后,采用热/力耦合刚塑性有限元—动态再结晶唯象模型,以通用的大型商业分析软件MSC. MARC与二次开发的子程序为软件支撑,成功模拟了HPS485wf(?)冈在不同热压缩变形条件下其内部的等效应变、动态再结晶状态的演化过程,验证了所建临界参数模型、动态再结晶唯象模型的合理性;研究了变形条件对其力学行为、组织演化及其动态再结晶行为的影响,全面揭示了该钢内部的宏观动态再结晶规律,为有限元—介观动态再结晶组织模拟的研究提供了对比素材。
     然后,基于MC法建立了包括能量模型、形核模型、实时转换模型等的介观动态再结晶模型,成功模拟了不同热压缩条件下HPS485wf(?)冈的微观组织、动态再结晶体积分数、平均晶粒尺寸演变的介观尺度特征,实现了多轮次动态再结晶共存现象的介观模拟,揭示了该钢内部介观组织动态再结晶规律,为有限元—介观动态再结晶组织模拟提供了有效模型。
     最后,采用热/力耦合有限元—动态再结晶MC模型,完成了选定变形条件下HPS485wf钢内部微区的动态再结晶行为的介观组织模拟,并与相应的热/力耦合有限元—动态再结晶唯象模型的宏观组织模拟进行了对比,证实了两种尺度模拟结果的相互关联,实现了该钢动态再结晶宏观—介观的双尺度模拟。
     综上所述,本文实现了热压缩变形的HPS485wf钢动态再结晶的双尺度模拟;创建了该钢的本构关系模型、临界参数模型、动态再结晶唯象模型、动态再结晶MC模型,开发了相关应用程序,成功地模拟了它的多轮次共存动态再结晶现象;完成了该钢热压缩变形的物理模拟—有限元数值模拟—动态再结晶组织模拟的系统研究,从宏观和介观层次上全面揭示了变形条件对其形变和动态再结晶行为的影响规律及其物理本质,实现了它的动态再结晶行为及其组织演变的全面仿真和预报。
With the comprehensive application of controlled rolling and controlled cooling technology and alloying, various new steels with superior performance get to be developed and applied, in which controlled recrystallization rolling at the austenitic area plays an important role. In order to determine the optimum parameters to achieve reasonable controlled recrystallization rolling, it is necessary to intensively investigate the dynamic recrystallization (DRX) behavior during hot rolling, especially, the research on DRX by computer simulation methods is of theoretical and practical significance.
     Due to the complex deformation mechanism, a number of influence factors, fast deformation process and the difficulty of establishing microstructure models, the study on simulation of DRX for bridge steel started relatively late, and little attention has been paid on physical or experimental modelling based finite element method (FEM) microstructure simulation in macro scale, and FEM-mesoscopic microstructure modelling combined dual-scale simulation of DRX. Therefore, novel high performance bridge steels, especially advanced HPS485wf steel, were selected as object of this study. Combined with thermo-mechanical simulation experiment, quantitative metallographic analysis, FEM analysis technology, and DRX microstructure simulation technology, choosing MARC software as the FEM modelling support platform, and using the application programs based on phenomenological model or MC model as tools for simulation of DRX microstructure evolutions, physical-FEM modeling-dual scale (macro scale and meso scale) simulation of the DRX behavior during single pass hot compressive deformation for HPS485wf steel was carried out.
     To start with, systemic isothermal compressive tests of HPS485wf steel and Q420qE steel were conducted. The effects of deformation parameters on mechanical behavior of hot deformation and microstructure evolutions of DRX were investigated. The values of characteristic parameters of DRX were obtained, which could provide experimental foundation not only for establishment and verification of phenomenological model and MC model, but also for macroscopic and mesoscopic microstructure simulation.
     Secondly, according the true stress-true strain data collected from hot compressive tests, a general constitutive relationship model and a simplified one, which can describe the flow behavior of HPS485wf steel, were established. The critical parameters model of DRX for HPS485wf steel were obtained by using both simplifiedθ—σmodel proposed by Najafizadeh and Jonas and flow stress model proposed by Cingara and McQueen, respectively. These models made it possible to simulate microstructure evolutions by FEM-DRX phenomenological model in macro scale.
     Thirdly, based on the large commercial finite element software MSC.MARC, necessarily secondary development using the MARC platform, and the thermo-mechanical coupled rigid-plastic FEM-DRX phenomenological model, the evolutions of equivalent effective strain and state of DRX during hot compressive deformation in HPS485wf steel were successfully simulated, which verified the phenomenological model and the critical parameters model. The impacts of deformation conditions on mechanical behavior and microstructure evolutions were analyzed and the macroscopic law of DRX in the steel was totally revealed. These results provide raw data for FEM-mesoscopic microstructure simulation of DRX.
     In the next place, a mesoscopic DRX MC model, including energy model, nucleation model, R-grain growth model and real time model, was developed. The mesoscopic characteristics of evolutions of microstructure, volume fraction and mean grain size under different deformation conditions for HPS485wf steel were investigated. The phenomenon of coexistence of multi-circles DRX was successfully simulated. Thus, the mesoscopic law of DRX in the steel was displayed. Meanwhile, an effective mesoscopic model was prepared for FEM-mesoscopic simulation for DRX.
     Finally, mesoscopic DRX behavior of different deformation zones in HPS485wf steel at a certain deformation condition was studied by using the thermal-mechanical coupled FEM—DRX MC model, and the simulation results were compared with those obtained from thermal-mechanical coupled FEM-DRX phenomenological model. The macroscopic and mesoscopic simulation results were well interrelated, indicating the proposed model for macro-meso dual-scale simulation of DRX was reasonable.
     To conclude, in this study, dual scale simulation of DRX during hot compressive deformation for HPS485wf steel has been realized. The constitutive relationship model, the critical parameter model and the DRX phenomenological model for HPS485wf steel were established. The DRX MC model and corresponding application program was developed, which well simulated the phenomenon of coexistence of multi-circles DRX of this steel. Systemic studies on physical simulation-FEM modeling-mesoscopic DRX microstructure simulation of HPS485wf steel were carried out. The effects of deformation conditions on DRX behavior and involved physical essence were revealed in both macro and meso scale. As a result, it is achievable to simulate and predict DRX behavior and microstructure evolutions of HPS485wf steel.
引文
[1]S.S.葛列里克著,仝健民等译.金属和合金的再结晶[M].北京:机械工业出版社,1985
    [2]王有铭,李曼云等.钢材的控制轧制和控制冷却[M].北京:冶金工业出版社,1995
    [3]刘志恩.材料科学基础[M].陕西:西北工业大学出版社,2004
    [4]张维丽,朱有兰.计算机模拟技术在材料科学中的应用[J].冶金丛刊,1999,(2):17-19
    [5]陈舜麟.计算材料科学[M]一北京:化学工业出版社,2005
    [6]D.Raabe编著,项金钟、吴兴惠译.计算材料学[M].北京:化学工业出版社,2002
    [7]刘红艳,何宜柱.材料组织结构演变的介观模拟[J].包头钢铁学院学报,2001,20(4):330-334
    [8]郑成武,兰勇军,肖纳敏等.热变形低碳钢中奥氏体静态再结晶介观尺度模拟[J].金属学报,2006,42(5):474-480
    [9]毛卫民,赵新兵.金属的再结晶和晶粒长大[M].北京:冶金工业出版社,1994
    [10]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Material Science,1979,13(34):187-194
    [11]Senuma T, Yada H, Futanura T. Structure of austenite of carbon steels in high speed hot working processes[J]. Tetsu-to-Hagane,1984,70(15):2112-2118
    [12]Yada H, Senuma T. Resistance to hot deformation of steels[J]. Journal of the Japan Society for Technology of Plasticity,1986,27(30):34-44
    [13]Kopp R, Karnhausen R, Souza M M. Numerical Simulation Method for Designing Thermo mechanical Treatment[J]. Bar Rolling Scand Journal of Metallurgy,1991,20(6):351-360
    [14]Karhausen K, Kopp R. Model for Intergraded Process and Microstructure Simulation in Hot deforming[J]. Steel Research,1992,63(6):247-256
    [15]Shen G S, Semiatin S L, Shivpuri R. Modelling microstructure development during the forging of waspalog[J]. Metallurgical and Materials Transactions,1995,26A:1795-1803
    [16]Satio Y. Modelling of Microstructural Evolution in Thermomechanical Processing of Structural Steels[J]. Meterials Science and Engeneering,1997, A233:134-145
    [17]Ding R, Guo Z X. Microstructural Modelling of Dynamic Recrystallization Using a Extended Cellar Automation Approach[J]. Computational Materials Science,2002,23(1-4):209-218
    [18]Sandstrom R, Lagneborg R. A model for hot working occurring by recrystallization[J]. Acta Metall,1975,23:387-398
    [19]Stuwe H P, Ortner B. Recrystallization in hot working and creep[J]. Meterials Science and engineering,1974,8:161-167
    [20]赵品,谢辅洲,孙振国.材料科学基础教程[M].哈尔滨:哈尔滨工业大学出版社,2001
    [21]Rollett A D, Srolovitz D J, Doherty R D, et al. Simulation and Theory of Abnormal Grain Growth- Variable Grain Boundary Energies and Mobilities[J].Acta Metall,1989,37:1227-1240
    [22]Laasraoui A, Jonas J J. Prediction of Steel Flow Stress at High Temperatures and Strain Rates [J]. Metallurgical Transaction,1991,22A(7):1545-1558
    [23]金泉林.金属动态再结晶的数值模拟[C].第七届锻压学术年会论文集,北京:1995
    [24]高维林.金属塑性变形的耗散结构和协同学模型及含铌低碳钢的热变形行为[D].东北大学博士学位论文,1993
    [25]杜随更,吴诗,段立宇,等.初始动态再结晶过程中的位错动态行为[J].西北工业大学学报,1997,15(3):333-337
    [26]李淼泉,陈胜晖,李晓丽.钛合金高温变形时的微观组织模型[J].稀有金属材料与工程,2006,35(2):172-175
    [27]Johnson W A, Mehl R F. Reaction kinetics in processes of nucleation and growth[J]. American Institute of Mining and Metallurgical Engineers-Transactions,1939,135:416-442
    [28]Avrami M. Kinetics of Phase Change. Ⅰ:General Theory[J]. Journal of Chemical Physics,1939, 7(12):1103-1112
    [29]Anderson W A, Mehl R F. Recrystallization of aluminum in terms of rate of nucleation and rate of growth [J]. Metallurgia,1945,33(193):45-46
    [30]Shen G, Shivpuri R, Semiantin S L, et al. Investigation of microstructure and thermomechanical history in the hammer forging of an Incoloy 901 disk[J]. Annals of the CIRP,1993,42(1): 343-346
    [31]Yada H, Matsudzu N, Nakajima K, et al.Strength and structural changes under high strain-rate hot deformation of C steels[J]. Transactions of ISIJ,1983,23:100-109
    [32]Sellars C M. Computer modeling of hot-working processes[J]. Materials Science snd Technology,1985,1(4):325-332
    [33]Sellars C M. Modelling microstructural development during hot rolling[J]. Meterials Science and Technology,1990,6(11):1072-1081
    [34]Sellars C M, McTegart W C. On the mechanism of hot deformation[J].Acta Metellurgica,1966, 14(9):1136-1138
    [35]李治华,吴迪等.带钢热连轧过程奥氏体再结晶的数学模型[D].沈阳:东北大学硕士学位论文,2004
    [36]刘振宇.C-Mn钢热轧板带组织—性能预测模型的开发及在生长中的应用[D].沈阳:东北大学博士学位论文,1995
    [37]张斌.结构钢热加工过程的物理与数值模拟[D].上海:上海交通大学博士学位论文,2003
    [38]窦晓峰,鹿守理,赵辉.Q235钢动态再结晶模型的建立[J].北京科技大学学报,1998,20(5):467-470
    [39]沈丙振,方能炜,沈厚发,等.低碳钢奥氏体再结晶模型的建立[J].材料科学与工艺,2005,13(5):516-520
    [40]何宜柱,陈大宏,雷廷权,等.动态再结晶动力学模型的研究[J].华东冶金学院学报,1995,12(1):146-151
    [41]张继祥,杨钢,钟厉.金属再结晶Monte Carlo Potts模拟新模型[J].重庆交通大学学报(自然科学版),2009,28(4):789-793
    [42]Radhakrishnan B, Sarma G, Zacharia T. Coupled finite element-Monte Carlo simulation of microstructure and texture evolution during thermomechanical processing[A]. Proceedings of the 1998 TMS Fall Meeting. Warrendale, USA:TMS,1998:267-278
    [43]雍岐龙,马鸣图,吴宝榕.微合金钢—物理和力学冶金[M].北京:机械工业出版社,1989
    [44]肖纳敏,岳珠峰,兰勇军,等.介观尺度上热变形奥氏体储存能演化的计算机模拟[J].金属学报,2005(5):496-502
    [45]Yanagimoto J, Kiuchi M, Inoue Y. Characterization of Wire and Rod Rolling with Front and Back Tensions by Three-Dimensional Rigid-Plastic Finite Element Method[A]. Proceedingso f4 thI CTP,1993:754-757
    [46]申孝民,关小军,张继祥,等.有限元与Monte Carlo方法耦合的冷轧纯铝板再结晶模拟[J].中国有色金属学报,2007,17(1):124-130
    [47]廖舒纶.GCr15轴承钢棒线材热连轧过程微观组织演化的数值模拟[D].大连:大连理工大学,2008
    [48]张先宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学博士学位论文,2006
    [49]李立新.热轧板带的数值模拟、组织预报及工艺优化[D].重庆:重庆大学博士学位论文,2003
    [50]张晓明.双辊铸轧薄带钢过程数值模拟及实验研究[D].沈阳:东北大学博士学位论文,2005
    [51]原思宇.特殊钢棒线材热连轧过程的有限元模拟与分析[D].大连:大连理工大学博士学位论文,2007
    [52]宋晓艳.介观层次优化设计在高新材料开发中的应用[J].自然科学进展,2004(5):481-486
    [53]Rollett A D, Luton M J, Srolovitz D J. Microstructure simulation of dynamic recrystallization [J]. Acta Metallurgica Materialia,1992,40(1):43-55
    [54]Peczak P, Luton M J. The effect of nucleation models on dynamic recrystallization I.homogeneous stored energy distribution[J]. Philosophical Magazine:Part B,1993,68(1): 115-144
    [55]Hesselbarth H W, Goebel I R. Simulation of recrystallization by cellular automata[J]. Acta Metallurgica et Materialia,1991,39(9):2135-2143
    [56]Steck E, Hesselbarth H W. Simulation of dislocation pattern formation by cellular automata[C]// Tanimura S, Khan A S. Proceedings of Plasticity'91:The Third International Symposium on Plasticity and Its Current Applications. Elsevier Science Ltd,1991
    [57]Goetz R L, Seethearaman V. Modelling dynamic recrystallization using cellular automata[J]. Scripta Mater,1998,38(3):405-413
    [58]Kugler G,, Turk R. Modelling the dynamic recrystallization under multi-stage hot deformation[J]. Acta Materialia,2004,52(15):4659-4668
    [59]Kroc J. Simulation of dynamic recrystallization by celluar automata[D]. Prague:Charles University,2001
    [60]Kroc J. Lecture application of cellular automata simulations to modelling of dynamic recrystallization[J]. Computer Science,2002(23):773-782
    [61]Kroc J. Application of cellular automata simulations to modelling of dynamic recrystallization [J].International conference on computational science APR 21-24,2002 computational science-ICCS 2002, PTI, proceedings volume:2329, pages:773-782
    [62]Qian M, Guo Z X. Cellular automation of microstructural evolution during dynamic recrystallization of an HY 100 steel[J]. Material Science and Engineering A,2004,365(12): 180-185
    [63]Goetz R L. Particles stimulate nucleation during dynamic recrystallization using cellular automata mode[J].Scripta Materialia,2005,52(9):851-856
    [64]Yazdipour N, Davies C H G, Hodgson P D. Microstructural modeling of dynamic recrystallization using irregular cellular automata[J].Computational Material Science,2008,44(2):566-576
    [65]李殿中,杜强,胡志勇,等.金属成形过程组织演变的Cellular Automaton模拟技术[J].金属学报,1999,35(11):1201-1205
    [66]肖宏,柳本润.采用Cellular automaton法模拟动态再结晶过程的研究[J].机械工程学报,2005,41(2):140-152
    [67]肖宏,徐玉辰,闫艳红.考虑晶粒变形动态再结晶过程模拟的元胞自动机法[J].中国机械工程,2005,16(24):2245-2248
    [68]何燕,张立文,牛静,等.元胞自动机方法对动态再结晶过程的模拟[J].材料热处理学报,2005,26(4):120-123
    [69]邓小虎,张立文,何燕,等.应变速率对金属动态再结晶影响的数值模拟[J].塑性工程学报,2007,14(2):24-29
    [70]卢瑜,张立文,邓小虎.纯镍动态再结晶过程的元胞自动机模型[J].塑形工程学报,2008,15(2):70-75
    [71]卢瑜,张立文,邓小虎,等.纯铜动态再结晶过程的元胞自动机模拟[J].金属学报,2008,44(3):292-296
    [72]Huang S Q, Yi Y P, Liu C. Simulation of dynamic recrystallization for aluminium alloy 7050 using cellular automaton[J]. Journal of Central South University of Technology,2009,16(1): 18-24
    [73]周盛,傅建,彭必友,等.元胞自动机在研究模锻叶片动态再结晶中的应用[J].塑性工程学报,2009,16(3):88-92
    [74]Xiao N M, Zheng C, Li D, et al. A simulation of dynamic recrystallization by coupling a cellular automaton method with a toplogy deformation technique[J].Computational Materials Science, 2008,41(3):366-374
    [75]佟铭明,莫春利,李殿中.纯铜动态再结晶的Monte Carlo法模拟[J].金属学报,2002,37(7):745-749
    [76]Taku Sakai. Dynamic recrystallization microstructures under hot working conditions[J]. Journal of Materials Processing Technology,1995,53(1-2):349-361
    [77]李晓丽,陈胜晖,李淼泉.金属热态塑性成形过程中组织演变的模型化研究[J].中国机械工程,2004,15(1):87-90
    [78]Radhakrishnan B, Sarma G, Zacharia T. Monte Carlo simulation of deformation substructure evolution during recrystallization[J]. Scripta Materialia,1998,39(12):1639-1645
    [79]Radhakrishnan B, Sarma G, Weiland H, et al. Simulations of deformation and recrystallization of single crystals of aluminium containing hard particles[J]. Modelling and Simulation in Materials Science and Engineering,2000,8(5):737-750
    [80]Radhakrishnan B, Zacharia T.The effect of lattice temperature on abnormal subgrain growth simulations using a Monte Carlo technique[J]. Interface Science,2002,10(2-3):171-180
    [81]宋晓艳,刘国权,何宜柱.一种改进的晶粒长大Monte Carlo模拟方法[J].自然科学进展,1998,8(3):337-341
    [82]宋晓艳,刘国权,谷南驹.第二相粒子尺寸对基体晶粒长大影响的仿真研究[J].金属学报,1999,35(6):565-568
    [83]Song X Y, Liu G Q. Kinetics and grain size distribution of two dimensional normal grain growth with the modified Monte Carlo simulation[J]. Journal of Materials Science and Technology, 1998,14(6):506-510
    [84]张继祥.基于Monte Carlo方法的材料退火过程模拟模型及计算机仿真关键技术研究[D].济南:山东大学博士学位论文,2006
    [85]张林.元胞自动机方法模拟材料微观结构演化[D].沈阳:东北大学博士学位论文,2002
    [86]Hibbard W R. Dunn C G.A study of 112 edge dislocations in bent silicon-iron single crystals [J]. Acta Metallurgica,1956,4(3):306-315
    [87]Cahn R W.A new theory of recrystallization nuclei[J]. Proceedings of the Physical Society of London,1950,63(4A):323-336
    [88]Paulo P R, Angelo F D.Microstructural path of recrystallization in a commercial Al-Mn-Fe-Si (AA3003) alloy[J]. Materials Research,2003,6(4):1516-1530
    [89]Mott N F. The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals[J]. Proceedings of the Physical Society of London,1949,62(7):416-422
    [90]Cottrell A H. Dislocation and Plastic Flow in Crystals[M]. Oxford:Clarendon Press,1953
    [91]Mcqueen H J.Development of dynamic recrystallization theory[J], Materials Science and Engineering,2004, A 387-389:203-208
    [92]李龙飞.低碳钢中铁素体动态再结晶规律及机制的研究[D].北京:北京科技大学博士学位论文,2005
    [93]Saden H, Zahiri, Chris H J, et al. A mechanical approach to quantify dynamic recrystallization in polycrystalline metals[J]. Scripta Materialia,2005,52:299-300
    [94]Cetlin P R, Yue S, Jonas J J.Warm working in the simulated rod rolling of IF steels[J]. Material Science Forum,1993,113-115:405-410
    [95]Hines J A, Vecchio K S. Recrystallization kinetics within adiabatic shear bands[J]. Acta Mater, 1997,45(2):635-649
    [96]Tamura I, Sekine H, Tanaka T, et al. Thermomechanical processing of high strength low-alloying steel[J]. New York:Butterworths & Co.ltd,1998
    [97]Muraki, Mineo, Toge T, et al. Formation mechanism of {111} recrystallization texture in ferritic steels[J]. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan,1999,85:751-757
    [98]Urabe T, Jonas J J. Modeling texture change during recrystallization of an IF steel[J]. ISIJ International,1994,34:435-442
    [99]Andrade U, Meyers M A. Dynamic Recrystallization in High-Strain High-Strain-Rate Plastic Deformation of Copper [J]. Acta Metall Mater,1994,42(9):3183-3195
    [100]Tamura I. Some elementary steps in the thermomechanical processing of steels [J].Tstsa-to-Hagae, 1988,74(1):18-35
    [101]Wusatowska-Sarnek A M, Miura H, Sakai T. Nucleation and microtexture development under dynamic recrystallization of copper[J]. Materials Science and Engineering A,2002,323A(1-2): 177-186
    [102]Miura H, Sakai T, Hamaji H, et al. Preferential nucleation of dynamic recrystallization at triple junction[J]. Scripta Materialia,2004,50(1):65-69
    [103]Andiarwanto S, Minra H, Sakai T. Strain rate effect on dynamic nucleation at triple junctions in a copper tricrystal[J]. Materials transactions,2003,44(10):2213-2219
    [104]Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation[J]. Acta Metall Mater,1969,17(8):1033-1043
    [105]Sakai T, Jonas J J. Dynamic recrystallization:Mechanical and microstructural considerations [J]. Acta Metall Mater,1984,32(2):189-209
    [106]Brunger E, Wang X, Gottstein GNucleation mechanisms of dynamic recrystallization in austenitic steel alloy 800H [J]. Scripta Materialia,1998,38(12):1843-1849
    [107]McQueen H J, Yue S, Ryan N D, et al. Hot working characteristics of steels in austenitic state[J]. Journal of Materials Processing Technology,1995,53(1-2):293-310
    [108]McQueen H J, Imbert C A C. Dynamic recrystallization:plasticity enhancingstructural development [J]. Journal of Alloys and Compounds,2004,378(1-2):35-43
    [109]Ion S E, Humphreys F J, White S H. Dynamic recrystallization and the development of microstructure during the high temperature deformation of magnesium[J]. Acta Metall Mater, 1982,30(10):1909-1919
    [110]王泾文.高速钢中形核—长大动态再结晶[J].安徽机电学院学报,1997,12(2):59-61
    [111]肖福仁,乔桂英,胡怡,等.86CrMoV7钢动态再结晶行为[J].钢铁,2001,36(11):55-58
    [112]Wang X, Brunger E, Gottstein G. Mocrosture characterization and dynamic recrystallization in an alloy 800H[J]. Materials Science and Engineering A,2000,290A(1-2):180-185
    [113]Wang X, Brunger E, Gottstein G. The role of twinning during dynamic recrystallization in alloy 800H[J]. Scripta Materialia,2002,46(12):875-880
    [114]Ponge D, Gottstein G. Necklace formation during dynamic recrystallzation:mechanisms and impact on flow behavior[J]. Acta Metall Mater,1998,46(1):69-80
    [115]朱志远.高速变形条件下动态再结晶机制的研究进展[J].铝合金组织与性能,2000,23(3):43-54
    [116]Flaquer J, Gil S J. Dynamic subgrain coalescence during low-temperature large plastic strains [J]. Journal of Materials Science.1984,19(2):423-427
    [117]Barnett M R, Kelly G L, Hodgson P D. Predicting the cristical strain for dynamic,recrystallization using the kinetica of static recrystallization[J]. Scripts Materialia,2000,43(4):365-369
    [118]周晓光,刘振宇,吴迪,等.FTSR热轧含Nb钢动态再结晶数学模型中参数的确定[J].金属学报,2008,10(44):1188-1192
    [119]Turner M J, Clongh R W, Martin H C, et al. Siffness and deflection analysis of complex structures [J]. Journal of Aerospace Science and Technologies,1956,23:805-824
    [120]Zienkiewicz O C. The finite element method in engineering science[M]. Londen: Mcgraw-Hill, 1971
    [121]Zienkiewicz O C. The Finite Element Method[M]. Londen:Mcgraw-Hill,1977
    [122]Oden J T, Clough R W, Yamamate Y. Advance in computational methods in structural and mechanics design. The 20nd U.S. Japan Seminar on Matrix Methods of Structural Analysis and Design.University of Alabame press,1972
    [123]刘建生,陈慧琴,郭小霞.金属塑性加工有限元模拟技术与应用[M],北京:冶金工业出版社,2003
    [124]陈火红编著MARC有限元实例分析教程[M].北京:机械工业出版社,2002
    [125]徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985
    [126]张孝泽.蒙特卡罗方法在统计物理中的应用[M].郑州:河南科学技术出版社,1991
    [127]Curtin K M. Monte Carlo approach to evaluate multimoded system reliability[J]. Operations Research,1959,7(6):721-727
    [128]Kumamoto H, Tanaka K, Inoue K. Efficient evalution of system reliability by Monte Carlo method [J].EEE Transactions on Reliability,1977, R-26(5):311-315
    [129]Chen C N, Chou C I, Hwang C R, et al. Monte Carlo dynamics in global optimization [J]. Physical Review E,1999,60(2B):2388-2393
    [130]Zhang L, Zhang C B, Liu X H,, et al. Modeling recrystallization of austenite for C-Mn steels during hot deformation by cellular automaton[J]. Journal of Materials Science and Technology, 2002,18(2):163-166
    [131]Xiao H, Liu B R. Simulation of dynamic recrytallization using extended cellular automaton method[J]. Jixie Gongcheng Xuebao/Chinese Journal of Mechanical Engineering,2005,41 (2): 148-152
    [132]刘运腾.织构材料再结晶退火的蒙特卡罗模型及其模拟研究[D].济南:山东大学博士学位论文,2008
    [133]Safran S A, Sahni P S, Grest G S.Kinetics of ordering in two dimensions[J]. Physical review B, 1983,28(5):2693-2716
    [134]Srolovitz D J, Anderson M P, Grest G S, et al. Grain growth in two dimensions[J]. Scripta Metallurgica,1983,17(2):241-246
    [135]Anderson M P, Srolovitz D G, Grest G S, et al. Computer simulation of grain growth-1. Kinetics [J].Acta Metallurgica,1984,32(5):783-791
    [136]Sgrest G, Safran S A, Sahni P S. Temperature dependence of modain growth[J]. Journal of Applied physics,1983,55(6):2432-2434
    [137]Srolovitz D J, Anderson M P, Sahni P S, et al. Computer simulation of grain growth-Ⅱ. Grain size distribution.topolopy and local dynamics[J].Acta Metallurgica,1984,32(5):793-802
    [138]Soucail M, Messina R, Cosnuau A, et al. Monte Carlo simulation of Zener pinning in two dimensions[J]. Materials Science and Engineering A,1999,271:1-7
    [139]Messina R, Soucail M, Kubin L. Monte Carlo simulation of abnormal grain growth in two dimensions[J]. Materials Science and Engineering A,2001,308:258-267
    [140]张继祥,关小军.异常晶粒长大的Monte Carlo模拟[J].中国有色金属学报,2006,16(10):1689-1697
    [141]Holm E A, Srolovitz D J, Cahn J W. Microstructural evolution in two dimensional two phase polycrystals [J]. Acta Metallurgica Materialia,1993,41(4):1119-1136
    [142]秦湘阁,刘国权.基于Monte Carlo Potts方法的三维大尺度晶粒组织仿真模型及定量表征[J].北京科技大学学报,2004,26(1):49-52
    [143]韩振强.基于Monte Carlo方法的金属动态再结晶组织模拟[D].济南:山东大学硕士学位论文,2007
    [144]Samet-Meziou A, Gerber P, Tarasiuk J, et al. Monte Carlo modelling of recrystallization process in cold rolled IF-Ti steel[J]. Materials Science Forum,2004,467-470(1):665-670.
    [145]Tong M M, Mo C L, Li D Z, et al. Simulation of the static recrystallization of pure copper using Monte Carlo method[J]. Cailiao Yanjiu Xuebao/Chinese Journal of Materials Research,2002, 16(5):485-489
    [146]Choi S H. Monte Carlo technique for simulation of recrystallization texture in interstitial free steels[J]. Materials Science Forum,2002,408-412(Ⅰ):469-474
    [147]Tong M M, Mo C L, Li D Z, et al. Simulation of the dynamic recrystallization of pure copper using Monte Carlo method[J].Jinshu Xuebao/Acta Metallurgica Sinica,2002,38(7):745-749
    [148]Song X Y, Rettenmayr M. Modelling study on recrystallization, recovery and their temperature dependence in inhomogeneously deformed materials[J]. Materials Science and Engineering A, 2002,332(1-2):153-160
    [149]Song X Y, Rettenmayr M, Muller C, et al. Modelling of recrystallization after inhomogeneous deformation[J]. Metallurgical and Materials Transactions A,2001,32(9):2199-2206
    [150]Wolf D. Read-Shockley model for high-angle grain boundaries[J]. Scripta Metallurgica,1989, 23(10):1713-1718
    [151]Wilson A D, Gross J H, Stout R D, et al. Development of an improved HPS-100W Steel for bridge applicationa[C]//ASM International, Microalloyed Steels 2002.Columbus, OH:ASM International,2002:32-42
    [152]Wilson A D. Properties of recent producting of A709 HPS-70W bridge steels[C]//ASM International,International Symposium on Steel for Fabricated Structures, Cincinnati, OH:ASM International,1999:41-49
    [153]曹二转,孟献华,唐武峰.浅谈桥梁钢标准的发展[J].河南冶金,2008(2):26-29
    [154]姚昌荣,李亚东.中美国高性能桥梁钢的发展与应用[J].世界桥梁,2005(1):57-60
    [155]Yost L, Funderburk S. High-performance steel increasingly used for bridge building[J]. Welding Journal(Miami Fla),2001,80(9):46-48
    [156]周兰聚.控轧控冷与正火工艺对Q370qE钢板组织性能影响的研究[D].济南:山东大学博士学位论文,2006
    [157]Wasserman Edward P. Optimization of HPS 70W application[J]. Journal of Bridge Engineering, 2002,7(1):1-5
    [158]Baker M G, Schrage S D. High-performance steel bridge design and cost comparisons [J]. Transportation Research Record,2000,17(40):33-39
    [159]陈伯蠡.中国焊接钢桥的发展[J].电焊机,2007(3):1-5
    [160]Yu-ichi Komizo. Recent Development in Steel for Bridge and Line Pipe[C]//Asia Steel International Conference 2006. Fukuoka, Japan: ISIJ,2006:140-145
    [161]松井和幸,大森俊道,宫田志朗.桥梁用高机能钢材[J].NKK技报,1999,165(3):11-16
    [162]Akira U, Hiroshi K, Takashi K.3%-Ni Weathering steel plate for uncoated bridges at high airbomesalt environment[J]. Nippon Steel Technical Report,2003,87:21-23
    [163]竹村诚洋,藤田荣,铃木伸一.海岸耐候性钢[J].NKK技报,2000,171(9):9-13
    [164]Yost L, Funderburk S. High-performance steel increasingly used for bridge building[J].Welding Journal(Miami Fla),2001,80(9):46-48
    [165]王磊,高彩茹,王彦锋,等.我国桥梁钢的发展历程及展望[J].机械工程材料,2008(5):1-3
    [166]徐向军.高强度桥梁结构钢及其焊接技术[J].焊接,2007(6):40-42
    [167]曲占元,马健坡,徐科.Q420桥梁钢及其焊接接头的断裂抗力分析[J].机械强度,2008,30(4):668-672
    [168]吕炎.锻压工艺学[M].哈尔滨:哈尔滨工业大学出版社,1983
    [169]Zhan Meiyan, Chen Zhenhua, Zhang Hui, et al. Flow stress behavior of porous FVS0812 alminum alloy during hot-compression[J]. Mechanic Research Communications,2006,33(4):508-514
    [170]Lee B H, Reddy N S, Yeom J T, et al. Flow softening behavior during high temperature deformation of AZ31Mg alloy[J]. Journal of Mater Processing Technology,2007,187-188: 766-769
    [171]甘卫平,刘泓,杨伏良,等Al-Mg-Si-Cu合金在热压缩变形中的流变应力[J].中南大学学报:自然科学版,2006,37(5):841-845
    [172]张新明,肖蓉等.2345铝锂合金的稳压变形及动态再结晶行为[J].中南大学学报:自然科学版,2006,37(4):629-634
    [173]刘芳,单德彬,吕炎.热变形参数对LD7铝合金流动应力的影响[J].材料科学与工艺,2003,21(3):26-27,36
    [174]刘志义,叶成武,张坤,等.ZK31+0.3Yb镁合金的热力模拟[J].中南大学学报:自然科学版,2005,36(6):933-937
    [175]赵健.桥梁钢热压缩过程中动态再结晶的实验研究与有限元模拟[D].济南:山东大学硕士学位论文,2010
    [176]Cingara A, Mcqueen H J. New method for determining sinh constitutive constants for high temperature deformation of 300 austenitic steels[J]. Journal of Materials Processing Technology, 1992,36:17-30
    [177]Mcqueen H J, Ryan N D. Constitutive analysis in hot working[J]. Materials Science and Engineering A,2002,322:43-63
    [178]Slooff F A, Zhou J, Duszcayk J, et al. Constitutive analysis of wrought magnesium alloy Mg-A14-Znl [J]. Scripta Materialia,2007,57(8):759-762
    [179]Lin Y C, Chen M S, Zhang J. Constitutive modeling for elevated temperature flow behavior of 42CrMo steel [J]. Computational Materials Science,2008,42:470-477
    [180]Mandal S, Rakesh V, Sivaprasad P V, et al. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel[J]. Materials Science and Engineering A, 2009,500(1-2):114-121
    [181]韩振强,关小军,张继祥,等.一种构建和优化热变形本构关系模型的新方法[J].山东大学学报(工学版),2006,36(5):9-12
    [182]Medina S F, Hernadez C A. General Expression of Zener-Hollomon Parameter as a Function of Chemical Composition of Low Alloy and Microalloyed Steels[J]. Acta Materialia,1996,44(1): 137-146
    [183]刘站英,陈连生,周满春,等.变形条件对30MnSiV钢动态再结晶行为的影响[J].钢铁研究学报,2004,16(1):49-52
    [184]Sellar C M, Tegart W J M. Hot workability[J]. International Metallurgical Reviews,1972,17: 1-24
    [185]Wang Z X, Liu X F, Xie J X. Constitutive relationship of hot deformation of AZ91 magnesium alloy [J].Aata Metallurgica Sinica,2008,44(11):1378-1383
    [186]Tsuji N, MatsubaraY, SaitoY. Dynamic recrystallizaiton of ferrite in interstitial free steel [J]. Scripta Materialia,1997,37(4):477-484
    [187]Najafizadeh A, Jonas J J. Predicting the critical stress for initiation of dynamic recrystallization [J]. ISIJ Int,2006,46(11):1679-1684
    [188]Mirzadeh H, Najafizadeh A. Prediction of the critical conditions for initiation of dynamic recrystallization[J]. Materials and Design,2010,31(3):1174-1179
    [189]Cingara A, McQueen H J. New formula for calculating flow curves from high temperature constitutive data for 300 austenitic steels[J]. Journal of Materials Processing Technology,1992, 36(1):31-42
    [190]Poliak E I, Jonas J J. A one-parameter approach to determining the critical conditions for the initiation of dynamic recrystallization[J]. Acta Materialia,1996,44(1):127-136
    [191]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J].ISIJ International,2003,43(5):684-691
    [192]曹金荣,刘正东,程世长,等.应变速率和变形温度对耐热钢流变应力和临界动态再结晶行为的影响[J].金属学报,2007,43(1):35-40
    [193]余永宁.金属学原理[M].北京:冶金工业出版社,2000
    [194]Lin Y C, Chen M S, Zhong J. Numrical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process[J]. Computational Materials Science,2008,43(4):1117-1122
    [195]Yeom J T, Jung E J, Kim J H, et al. Modelling and simulation of dynamic recrystallization and grain growth during hot working of inconel 783 superalloy[J]. Surface Review and Letters, 2010,17(1):105-109
    [196]Lin Y C, Chen M S, Zhong J. Effects of deformation temperatures on stress/strain distribution and microstructural evolution of deformed 42CrMo steel[J]. Materials and Design,2009,30(3): 908-913
    [197]Yi Y P, Fu X, Cui J D, et al. Prediction of grain size for large-sized aluminium alloy 7050 forging during hot forming[J]. Journal of Central South University of Technology,2008,15(1):1-5
    [198]Karadeniz E. Influence of different initial microstructure on the process of spheroidization in cold forging[J]. Materials & Design,2008,29(1):251-256
    [199]邹菲菲,关小军,韩振强,等09CuPTiRE钢动态再结晶的热模拟实验与有限元模拟[J].山东大学学报(工学版),2006,36(5):17-24
    [200]陈火红,尹伟奇,薛小香,等MSC. Marc二次开发指南[M].北京:科学出版社,2004
    [201]关小军,赵健,王丽君,等.变形速率对HPS485wf钢动态再结晶影响的模拟,中国科技论文在线,No.201010-345, http://www.paper.edu.cn
    [202]Peczak P. A Monte Carlo study of influence of deformation temperature on dynamic recrystallization[J]. Acta Metallurgica et Materialia,1995,43(3):1279-1291
    [203]Hisakuni Y, Takaki T, Tomia Y. Phase-field simulations during dynamic recrystallization[J]. Proceedings of Third Asian-Pacific Congress on Computational Mechanics (CD-ROM), MS28-2-3, 2007,1-9
    [204]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J].Acta Materialia,2001,49(16):3163-3175
    [205]Montheillet F, Lurdos O, Damamme G. A grain scale approach for modeling steady-state discontinuous dynamic recrystallization[J]. Acta Materialia,2009,57(5):1602-1612
    [206]Jonas J J, Quelennec, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J].Acta Materialia,57(9):2748-2756
    [207]Mecking H, Kocks U F. Kinetics of flow and strain-hardening[J]. Acta Metallurgica,1981, 29(11):1865-1875
    [208]Humphreys F J, Hatherly M. Recrystallization and Related Annealing Phenomena (Second Edition) [M]. Oxford:Elsevier Ltd,2004
    [209]Roberts W, Ahlblom B. A nucleation criterion for dynamic recrystallization during hot working[J]. Acta Metallurgica,1978,26(5):801-813
    [210]Xiao H, Xie H B, Yan Y H, et al. Simulation of dynamic recrystallization using cellular automaton method[J]. Journal of Iron and Steel Research, International,2004,11(2):42-45
    [211]王丽君,关小军,赵健,等HPS485wf桥梁钢奥氏体动态再结晶规律及其本构关系模型[J].材料热处理学报,2010,31(10):154-158
    [212]Jin Z Y, Cui Z S. Investigation on strain dependence of dynamic recrystallization behavior using an inverse analysis method[J]. Materials Science and Engineering A,2010,527(13-14): 3111-3119
    [213]Blazl, Sakai, Jonas J J. Effect of initial grain size on dynamic recrystallization of copper[J]. Metal Science,1983,17(12):609-616,618
    [214]Derby B. Dynamic recrystallization:the steady state grain size[J]. Scripta Metallurgica et Materialia,1992,27(11):1581-1586

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700