用户名: 密码: 验证码:
胶州湾沉积物细菌多样性及菌群时空分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用了变性梯度凝胶电泳(DGGE)和16S rRNA基因文库分析相结合的方法,对胶州湾海域沉积物样品细菌多样性及细菌群落的组成、空间分布和季节演替规律进行了研究,结果表明胶州湾沉积物细菌具有高度多样性。系统进化分析表明,共包含17个门类,其中较优势的菌群包括变形菌门(Proteobacteria)、酸杆菌门(Acidobacteria)、拟杆菌门(Bacteroidetes)、浮霉菌门(Planctomycetes)、放线菌门(Actinobacteria)(高G+C革兰氏阳性菌)、疣微菌门(Verrucomicrobia)、绿弯菌门(Chloroflexi)和硝化螺旋菌门(Nitrospirae),同时还包括少量厚壁菌门(Firmicutes)、梭杆菌门(Fusobacteria)、蓝细菌门(Cyanobacteria)、芽单胞菌门(Gemmatimonadetes)、螺旋体门(Spirochaetes)、Elusimicrobia、脱铁杆菌门(Deferribacteres)、黏胶球形菌门(Lentisphaerae)、异常球菌-栖热菌门(Deinococcus-Thermus)等类群的存在,以及0.9%的尚不确定分类地位的类群(unclassified),胶州湾沉积物中蕴藏着巨大的微生物资源。
     从胶州湾10个不同站位采集4个季度的沉积物样品,直接提取样品细菌总基因组DNA,利用细菌16Sr DNA V3区特异引物扩增后进行变性梯度凝胶电泳(DGGE),研究胶州湾沉积物细菌群落结构及时空演替规律。发现细菌群落结构存在较明显时空变化,对于整个胶州湾范围而言,菌群结构在不同季节的变化比空间的不同所形成的差异更为显著。根据分析结果可将10个不同站位分为3种类型,A3、A5和B2三个站位归为一种类型;C3, D3, D6和D7站位代表第二种类型;而C1, C4和D1站位代表第三类特殊的类型,这类站位沉积物菌群结构在各季节都较为特殊,且彼此互不相同。尤其是D1站位,其菌群时空变化规律在10个站位中最为特殊,几乎不受季节影响。将DGGE结果与沉积物中总碳、总氮等理化因子相结合进行多元统计分析,结果再一次显示对于整个胶州湾而言,沉积物菌群结构受季节变化影响较大,同时,沉积物理化因子的变化对菌群结构也有一定影响,尤其是靠近广阔外海站位的沉积物,其菌群结构更易受某些沉积物理化因子影响。
     根据DGGE结果与环境条件相结合,应用PCR-RFLP构建细菌16S rDNA克隆文库方法,系统全面的比较研究四个季度中四个典型站位细菌多样性及群落结构演替。建立四个站位、四个季节共16个细菌16S rDNA全长克隆文库。2560个阳性克隆共得到5120个RFLP结果,包含1231个不同的RFLP分型,根据97%的相似度标准归类后,获得746种操作分类单元(OTUs)。
     文库分析结果也表明四个典型站位的细菌群落结构时空差异明显。UniFrac分析表明由空间上不同区域所形成的菌群结构的差异大于季节变化的影响,其结果也反映了环境相似站位菌群结构相似性高,同时证明了根据DGGE结果选择四个站位的合理性;而不同季节对四个站位的菌群结构影响并无明显规律,这也从侧面证明了胶州湾复杂的空间环境、季节、沉积学等因素的差异共同造成沉积物菌群复杂的分布规律特征。多样性指数(H′)和物种丰富度指数(Schaol)等结果也表明,胶州湾沉积物细菌多样性非常高。
     此外,对数据库中与本研究所获得序列具最近亲缘关系序列的来源环境进行分析表明,胶州湾中细菌群落受航运活动、水产养殖、重金属污染等人类活动的明显影响,同时这些活动表现出一定的空间特异性。
The composition, distribution and the dynamics of bacterial community in the sediment of Jiaozhou Bay China) were examined using both the 16S rDNA PCR-denaturing gradient gel electrophoresis (DGGE) and the 16S rRNA gene clone library analyses. The benthic bacterial communities in the sediment of Jiaozhou Bay displayed a highly diversified composition including members from 17 bacterial phylum and some unclassified sequences (0.9%). Proteobacteria, Acidobacteria, Bacteroidetes, Planctomycetes, Actinobacteria, Verrucomicrobia, Chloroflexi and Nitrospirae were the rather dominant groups and members of Firmicutes, Fusobacteria, Cyanobacteri, Gemmatimonadete, Spirochaetes, Elusimicrobia, Deferribacteres, Lentisphaerae and Deinococcus-Thermus were also found in sediment of Jiaozhou Bay.
     Sediment samples were collected at 10 stations in four seasons from Jiaozhou Bay. Total genomic DNA was extracted from each sample and used as template to amplify 16S rRNA V3 region gene with universal V3 specific primers. PCR-denaturing gradient gel electrophoresis (DGGE) was then performed to study the spatial and temporal variations of bacteria communities. Considering all the ten stations of Jiaozhou Bay as a whole, variations in bacterial community composition were obvious and particularly evident temporally. Less pronounced changes were also detected spatially. The analysis of bacterial communities was used to divide the 10 sampling stations into three types: stations A3, A5, and B2 were relatively in similar situations and were classified as one type; stations C3, D3, D6, and D7 represented another type. Stations C1, C4, and D1 formed the third peculiar type and they were different each other. The dynamics of bacterial communities at station D1 were the most irregular and were not temporally driven at all. Multivariate statistical analysis was used combing the DGGE bands with the sediment physico-chemical properties such as total nitrogen and total carbon content. It revealed again the strong and obvious variation of bacterial communities in temporal. Besides, changes in bacterial communities driven by environmental factors also occurred, especially in some outer bay stations.
     Four stations were selected according to DGGE result and the geographical factors. The construction of 16S rDNA clone libraries and Restriction Fragment Length Polymorphism (RFLP) analysis were applied not only to give a comprehensive view of the diversity and composition of bacterial communities in these stations but also to investigate a detail spatial-temporal variability of bacterial communities. For each of the 16 samples collected from the four stations and four seasons, comprehensive full-length 16S rDNA clone libraries were built. In total, 2560 positive clones were retained, and 1231 different RFLP patterns occurred in all the 5120 RFLP patterns. The number of distinct operational taxonomic units (OTUs) was 746 based on a taxa cutoff set at 97% similarity.
     It also revealed a high diversity and temporal-spatial difference in bacterial communities of each sample by the construction of clone libraries. UniFrac analyses showed that bacterial community shifted more obviously in spatial than in temporal when in this relatively small scale. It also indicated that similar environmental features selecting for similar bacterial communities, and the validity of the station selection by DGGE result was tested and proved here. The influence of seasons on bacterial communities in the four stations was quite irregular and this result reflects from another perspective that the bacterial community variations in Jiaozhou Bay result from a combination of many factors such as spatial, temporal and sedimentological factors. The high diversity Shannon-Wiener index and species richness (Schaol) estimates indicated that our sampling stations might have a higher bacterial diversity.
     Moreover, comparative phylogenetic analysis of the closest relatives of the sequences obtained in Jiaozhou Bay implied the presence of influences of human activities such as the influence of harbor, aquaculture and heavy metal contamination, which exhibited spatial and temporal specificities.
引文
[1] BROCK T. The study of microorganisms in situ: Progress and problems, F, 1987 [C].
    [2] AMANN R, LUDWIG W, SCHLEIFER K. Phylogenetic identification and in situ detection of individual microbial cells without cultivation [J]. Microbiology and Molecular Biology Reviews, 1995, 59(1): 143.
    [3] HOBBIE J, DALEY R, JASPER S. Use of nuclepore filters for counting bacteria by fluorescence microscopy [J]. Applied and Environmental Microbiology, 1977, 33(5): 1225.
    [4] AZAM F. Microbial control of oceanic carbon flux: the plot thickens [J]. SCIENCE-NEW YORK THEN WASHINGTON-, 1998, 694-5.
    [5] VANUCCI S, DELL'ANNO A, PUSCEDDU A, et al. Microbial assemblages associated with sinking particles in the Porcupine Abyssal Plain (NE Atlantic Ocean) [J]. Progress in Oceanography, 2001, 50(1-4): 105-21.
    [6] PAERL H, STEPPE T. Scaling up: the next challenge in environmental microbiology [J]. Environmental Microbiology, 2003, 5(11): 1025-38.
    [7] ISTOCK C, BELL J, FERGUSON N, et al. Bacterial species and evolution: theoretical and practical perspectives [J]. Journal of Industrial Microbiology and Biotechnology, 1996, 17(3): 137-50.
    [8] WATVE M, GANGAL R. Problems in measuring bacterial diversity and a possible solution [J]. Applied and Environmental Microbiology, 1996, 62(11): 4299.
    [9] PACE N. A molecular view of microbial diversity and the biosphere [J]. Science, 1997, 276(5313): 734.
    [10] MUYZER G, DE WAAL E, UITTERLINDEN A. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Applied and Environmental Microbiology, 1993, 59(3): 695.
    [11] MARTINEZ N. 5: Defining and measuring functional aspects of biodiversity [J]. Biodiversity: a biology of numbers and difference, 1996, 114.
    [12] ANDREWS J. Comparative ecology of microorganisms and macroorganisms [M]. Springer-Verlag, 1991.
    [13] BAKKEN L. Separation and purification of bacteria from soil [J]. Applied and Environmental Microbiology, 1985, 49(6): 1482.
    [14] F GRI A, TORSVIK V, GOKS YR J. Bacterial and fungal activities in soil: separation of bacteria and fungi by a rapid fractionated centrifugation technique [J]. Soil Biology and Biochemistry, 1977, 9(2): 105-12.
    [15] TSUJI T, KAWASAKI Y, TAKESHIMA S, et al. A new fluorescence staining assay for visualizing living microorganisms in soil [J]. Applied and Environmental Microbiology, 1995, 61(9): 3415.
    [16] HAWKSWORTH D. The fungal dimension of biodiversity: magnitude, significance, and conservation [J]. Mycological Research, 1991, 95(6): 641-55.
    [17]阎章才,东秀珠.微生物多样性性及应用前景.微生物通报, 2001, 28 (1): 96-102
    [18]占新华,蒋延惠,徐阳春等.微生物制剂促进植物生长的研究进展.植物营养与肥料, 1999, 5(2): 97-105
    [19] TORSVIK V, GOKSOYR J, DAAE F. High diversity in DNA of soil bacteria [J]. Applied and Environmental Microbiology, 1990, 56(3): 782.
    [20] TORSVIK V, SALTE K, SORHEIM R, et al. Comparison of phenotypic diversity and DNA heterogeneity in a population of soil bacteria [J]. Applied and Environmental Microbiology, 1990, 56(3): 776.
    [21] KENNEDY A. Bacterial diversity in agroecosystems [J]. Agriculture, Ecosystems & Environment, 1999, 74(1-3): 65-76.
    [22]张薇.维海雷,高洪文,胡跃高.土壤微生物多样性及其环境影响因子研究进展.生态学杂志, 2005, 24(1): 48-52
    [23]李顺鹏.环境生物学.北京:中国农业出版社, 2002: 78-86
    [24]东秀珠,洪俊华,原核微生物的多样性.生物多样性, 2001, 9(1): 18-24
    [25]郑华,欧阳志云,方治国等. Biolog在土壤微生物群落功能多样性研究中的应用.土壤学报, 2004, 4(3): 456-461
    [26]屈建航,李宝珍,袁红莉.沉积物中微生物资源的研究方法及其进展.生态学报, 2007, 27 (6): 2636 - 2641
    [27]陈秀兰,张玉忠,高培基.深海微生物研究进展.海洋科学, 2004, 28(1): 61-66.
    [28]宋金明.海洋沉积物中的生物种群在生源物质循环中的功能.海洋科学, 2000, 24(4): 22-26
    [29]吕晓霞,宋金明,袁华茂等.南黄海表层沉积物中氮的潜在生态学功能.生态学报, 2004, 24(8): 1635-1643
    [30]戴欣,周惠,蔡创华等.海洋沉积物中特有细菌类群的初步探讨.中山大学学报(自然科学版), 2001, 40(6): 51-54
    [31]苏玉环.北极太平洋扇区表层沉积物中微生物群落的分子生物学分析.青岛:中国海洋大学, 2006
    [32]武汉大学,复旦大学生物系微生物学教研室.微生物学.北京:高等教育出版社, 1987
    [33] COSCHIGANO P, HAGGBLOM M, YOUNG L. Metabolism of both 4-chlorobenzoate and toluene under denitrifying conditions by a constructed bacterial strain [J]. Applied and Environmental Microbiology, 1994, 60(3): 989.
    [34] PHILIPPOT L. Denitrifying genes in bacterial and archaeal genomes [J]. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2002, 1577(3): 355-76.
    [35] JORGENSEN B, POSTGATE J. Ecology of the Bacteria of the Sulphur Cycle with Special Reference to Anoxic-Oxic Interface Environments [and Discussion] [J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1982, 298(1093): 543-61.
    [36]孙昌魁,冯静,马桂荣.海洋微生物多样性的研究进展.生命科学, 2001, 13(3): 97-99
    [37]谢华,薛燕芬,赵爱民等.太平洋帕里西维拉海盆细菌多样性的非培养的初步分析.微生物学报, 2005, 45(1): 1-5
    [38]李涛,王鹏,汪品先.南海西沙海槽表层沉积物微生物多样性.生态学报, 2008, 28(3): 1166-1173
    [39] DUNLAP P. New Insights on Marine Bacterial Diversity [J]. OCEANUS-WOODS HOLE MASS-, 1995, 38(16-9.
    [40]陈皓文,孙修勤.发展分子生物学技术,开发未知海洋细菌.自然杂志, 2000, 3:129-134
    [41] PACE N, STAHL D, LANE D, et al. Analyzing natural microbial populations by rRNA sequences [J]. ASM American Society for Microbiology News, 1985, 51(1): 4-12.
    [42] HUGENHOLTZ P. Exploring prokaryotic diversity in the genomic era [J]. Genome Biol, 2002, 3(2): 1¨C0003.8.
    [43] HUGENHOLTZ P, GOEBEL B, PACE N. Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity [J]. Journal of Bacteriology, 1998, 180(18): 4765.
    [44] WOESE C. Bacterial evolution [J]. Microbiology and Molecular Biology Reviews, 1987, 51(2): 221.
    [45] GARLAND J. Analysis and interpretation of community-level physiological profiles in microbial ecology [J]. FEMS Microbiology Ecology, 1997, 24(4): 289-300.
    [46] JELLETT J, LI W, DICKIE P, et al. Metabolic activity of bacterioplankton communities assessed by flow cytometry and single carbon substrate utilization [J]. Marine ecology progress series Oldendorf, 1996, 136(1): 213-25.
    [47]章家恩,刘文高,胡刚.不同土地利用方式下土壤微生物数量与土壤肥力的关系.土壤与环境,2002, 11(2): 140-143
    [48] SEGHERS D, WITTEBOLLE L, TOP E, et al. Impact of agricultural practices on the Zea mays L. endophytic community [J]. Applied and Environmental Microbiology, 2004, 70(3): 1475.
    [49] LORENZ P, SCHLEPER C. Metagenome--a challenging source of enzyme discovery [J]. Journal of Molecular Catalysis B: Enzymatic, 2002, 19(13-9.
    [50] RONDON M, AUGUST P, BETTERMANN A, et al. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms [J]. Applied and Environmental Microbiology, 2000, 66(6): 2541.
    [51] VOGET S, LEGGEWIE C, UESBECK A, et al. Prospecting for novel biocatalysts in a soil metagenome [J]. Applied and Environmental Microbiology, 2003, 69(10): 6235.
    [52] NAVARRO E, SIMONET P, NORMAND P, et al. Characterization of natural populations of Nitrobacter spp. using PCR/RFLP analysis of the ribosomal intergenic spacer [J]. Archives of microbiology, 1992, 157(2): 107-15.
    [53] WANG E, VAN BERKUM P, SUI X, et al. Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov [J]. International Journal of Systematic and Evolutionary Microbiology, 1999, 49(1): 51.
    [54] CLAPP J, MANSUR I, DODD J, et al. Ribotyping of rhizobia nodulating Acacia mangium and Paraserianthes falcataria from different geographical areas in Indonesia using PCR-RFLP-SSCP (PRS) and sequencing [J]. Environmental Microbiology, 2001, 3(4): 273-80.
    [55] ZHANG X, NICK G, KAIJALAINEN S, et al. Phylogeny and diversity of Bradyrhizobium strains isolated from the root nodules of peanut (Arachis hypogaea) in Sichuan, China [J]. Systematic andapplied microbiology, 1999, 22(3): 378.
    [56] ZENG Y, LI H, JIAO N. Phylogenetic diversity of planktonic archaea in the estuarine region of East China Sea [J]. Microbiological research, 2007, 162(1): 26-36.
    [57] LIU W, MARSH T, CHENG H, et al. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA [J]. Applied and Environmental Microbiology, 1997, 63(11): 4516.
    [58] OSBORN A, MOORE E, TIMMIS K. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics [J]. Environmental Microbiology, 2001, 2(1): 39-50.
    [59] OCHSENREITER T, SELEZI D, QUAISER A, et al. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR [J]. Environmental Microbiology, 2003, 5(9): 787-97.
    [60] LABRENZ M, BRETTAR I, CHRISTEN R, et al. Development and application of a real-time PCR approach for quantification of uncultured bacteria in the central Baltic Sea [J]. Applied and Environmental Microbiology, 2004, 70(8): 4971.
    [61]孙松,张永山,吴玉霖,张光涛,张芳,蒲新明.胶州湾初级生产力周年变化.海洋与湖沼, 2005, 36(6): 481-486
    [62] Z.C.Pang, K.C.Sun, A.H.Zhang. [Study on the contamination of Ruditapes philippinarum by HAV in Jiaozhou Bay and its counter-measures].Zhonghua liu xing bing xue za zhi=Zhonghua liuxingbingxue zazhi, 1995(16):137-139
    [63] HECTOR A, SCHMID B, BEIERKUHNLEIN C, et al. Plant diversity and productivity experiments in European grasslands [J]. Science, 1999, 286(5442): 1123.
    [64] D.Liu,J.Sun,L.Zhang.[Structural characteristics of phytoplankton community during harmful algae bloom in Jiaozhou Bay].Ying yong sheng tai xue bao=The journal of applied ecology/Zhongguo sheng tai xue xue hui,Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2003(14):1963-1966
    [65] J.Sun,J.Dawson,D.Liu.Microzooplankton grazing on phytoplankton in summer in the Jiaozhou Bay,China.Ying yong sheng tai xue bao=The journal of applied ecology/Zhongguo sheng tai xue xue hui,Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban,2004(15):1245-1252
    [66] X.R.Chen, H.D.Gong, B.T.Shan, C.Y.Liu. [Copper complexing capacities of seawater in surface microlayer in Jiaozhou Bay]. Huan jing ke xue. Huanjing kexue/[bian ji,Zhongguo ke xue yuan huan jing ke xue wei yuan hui"Huan jing ke xue"bian ji wei yuan hui,2006(27):885-891
    [67] Y.Li, Z.Yu, X.Song, Q.Mu.Trace metal concentrations in suspended particles,sediments and clams(Ruditapes philippinarum)from Jiaozhou Bay of China.Environmental monitoring and assessment,2006(121):491-501
    [68] M.Fu, Z.Li, H.Gao. Distribution characteristics of nonylphenol in Jiaozhou Bay of Qingdao and its adjacent rivers.Chemosphere, 2007(69):1009-1016
    [69] W.Yuan, Z.N.Zhang, Z.S.Yu.[Secondary productivity of macrobenthos in Jiaozhou Bay].Ying yong sheng tai xue bao. The journal of applied ecology. Zhongguo sheng tai xue xue hui, Zhongguo ke xue yuan Shenyang ying yong sheng tai yan jiu suo zhu ban, 2007(18):145-150
    [70] P.Q.Zhang, W.Q. Wang, X.L.Lu, C.Y.Chen, J.H.Dong.Study of environmental biomonitoring of the Jiaozhou Bay.Biological trace element research,1999(71-72):317-323
    [71] J.Dai,J.Song,X.Li,H.Yuan,N.Li,G.Zheng.Environmental changes reflected by sedimentary geochemistry in recent hundred years of Jiaozhou Bay,North China.Environ Pollut,2007(145): 656-667
    [72] J.C.Dai,J.M.Song,G.X.Zheng,X.G.Li,H.M.Yuan,N.Li.[Environmental biogeochemical significance of nitrogen in Jiaozhou Bay sediments].Huan jing ke xue bian ji, Zhongguo ke xue yuan huan jing ke xue wei yuan hui"Huan jing ke xue"bian ji wei yuan hui, 2007(28):1924-1928
    [73] D.Gu, Y.Zhang, J.Fu, X.Zhang. The landscape pattern characteristics of coastal wetlands in Jiaozhou Bay under the impact of human activities.Environmental monitoring and assessment, 2007(124):361-370
    [74] N.Y.Ji,W.H.Zhao,J.T.Wang,X.Cui,H.Miao.[Fluorescence characteristics of dissolved organic matter during algal bloom in Jiaozhou Bay].Huan jing ke xue=Huanjing kexue/[bian ji,Zhongguo ke xue yuan huan jing ke xue wei yuan hui"Huan jing ke xue"bian ji wei yuan hui,2006(27):257-262
    [75] DANG H, REN J, SONG L, et al. Dominant chloramphenicol-resistant bacteria and resistance genes in coastal marine waters of Jiaozhou Bay, China [J]. World Journal of Microbiology andBiotechnology, 2008, 24(2): 209-17.
    [76]李玉,俞志明,曹西华,宋秀贤.重金属在胶州湾表层沉积物中的分布与富集.海洋与湖沼, 2005, 36(6): 580-589
    [77]张继红,方建光,孙松,赵俊梅.胶州湾养殖菲律宾蛤仔的清滤率、摄食率、吸收效率的研究.海洋与湖沼, 2005, 36(6):,
    [78] MUYZER G, HOTTENTR GER S, TESKE A, et al. Denaturing gradient gel electrophoresis of PCR-amplified 16S rDNA, a new molecular approach to analyse the genetic diversity of mixed microbial communities [J]. Molecular microbial ecology manual, 1996, 3(4): 1¨C23.
    [79] SCH FER H, MUYZER G. Denaturing gradient gel electrophoresis in marine microbial ecology [J]. Methods in microbiology, 2001, 425-68.
    [80] LANE D. 16S/23S rRNA sequencing [J]. Nucleic acid techniques in bacterial systematics, 1991, 1(115¨C76.
    [81] ZHOU J, BRUNS M, TIEDJE J. DNA recovery from soils of diverse composition [J]. Applied and Environmental Microbiology, 1996, 62(2): 316.
    [82] FORTIN N, BEAUMIER D, LEE K, et al. Soil washing improves the recovery of total community DNA from polluted and high organic content sediments [J]. Journal of microbiological methods, 2004, 56(2): 181-91.
    [83] SMALLA K, CRESSWELL N, MENDONCA-HAGLER L, et al. Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification [J]. Journal of applied bacteriology Oxford, 1993, 74(1): 78-85.
    [84] DON R, COX P, WAINWRIGHT B, et al. 'Touchdown' PCR to circumvent spurious priming during gene amplification [J]. Nucleic Acids Research, 1991, 19(14): 4008.
    [85] EICHNER C, ERB R, TIMMIS K, et al. Thermal gradient gel electrophoresis analysis of bioprotection from pollutant shocks in the activated sludge microbial community [J]. Applied and environmental microbiology, 1999, 65(1): 102.
    [86] ROHLF F. NTSYS-pc: Microcomputer programs for numerical taxonomy and multivariate analysis [J]. American Statistician, 1987, 41(4): 330-.
    [87] BRAAK C, VERDONSCHOT P. Canonical correspondence analysis and related multivariate methods in aquatic ecology [J]. Aquatic Sciences-Research Across Boundaries, 1995, 57(3): 255-89.
    [88] THOMPSON J, HIGGINS D, GIBSON T. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice [J]. Nucleic Acids Research, 1994, 22(22): 4673.
    [89] KUMAR S, NEI M, DUDLEY J, et al. MEGA: a biologist-centric software for evolutionary analysis of DNA and protein sequences [J]. Briefings in bioinformatics, 2008,
    [90] SAITOU N, NEI M. The neighbor-joining method: a new method for reconstructing phylogenetic trees [J]. Molecular biology and evolution, 1987, 4(4): 406.
    [91] GAUCH H. Multivariate analysis in community ecology [M]. Cambridge Univ Pr, 1982.
    [92] LEFF L, DANA J, MCARTHUR J, et al. Comparison of methods of DNA extraction from stream sediments [J]. Applied and Environmental Microbiology, 1995, 61(3): 1141.
    [93] TEBBE C, VAHJEN W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast [J]. Applied and Environmental Microbiology, 1993, 59(8): 2657.
    [94]魏中青,刘丛强,梁小兵,等.贵州红枫湖沉积物中有机质的降解与微生物作用.科学通报, 2005, 50(14): 1486-1489
    [95] ZENG J, YANG L, LI J, et al. Vertical distribution of bacterial community structure in the sediments of two eutrophic lakes revealed by denaturing gradient gel electrophoresis (DGGE) and multivariate analysis techniques [J]. World Journal of Microbiology and Biotechnology, 2009, 25(2): 225-33.
    [96] ZHANG W, KI J, QIAN P. Microbial diversity in polluted harbor sediments I: bacterial community assessment based on four clone libraries of 16S rDNA [J]. Estuarine, Coastal and Shelf Science, 2008, 76(3): 668-81.
    [97] HEWSON I, FUHRMAN J. Richness and diversity of bacterioplankton species along an estuarine gradient in Moreton Bay, Australia [J]. Applied and environmental microbiology, 2004, 70(6): 3425.
    [98] GUPTA A, RANGREZ A, VERMA P, et al. Phylogenetic profiling of bacterial community from two intimately located sites in Balramgari, North-East coast of India [J]. Indian Journal of Microbiology, 2009, 49(2): 169-87.
    [99] EILER A, BERTILSSON S. Composition of freshwater bacterial communities associated with cyanobacterial blooms in four Swedish lakes [J]. Environmental microbiology, 2004, 6(12): 1228-43.
    [100] FUJIOKA R. Monitoring coastal marine waters for spore-forming bacteria of faecal and soilorigin to determine point from non-point source pollution [J]. Water Science & Technology, 2001, 44(7): 181-8.
    [101] RAJENDRAN N, MATSUDA O, URUSHIGAWA Y, et al. Characterization of microbial community structure in the surface sediment of Osaka Bay, Japan, by phospholipid fatty acid analysis [J]. Applied and environmental microbiology, 1994, 60(1): 248.
    [102] URAKAWA H, KITA-TSUKAMOTO K, OHWADA K. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis [J]. Microbiology, 1999, 145(11): 3305.
    [103] BOWMAN J, MCCUAIG R. Biodiversity, community structural shifts, and biogeography of prokaryotes within Antarctic continental shelf sediment [J]. Applied and environmental microbiology, 2003, 69(5): 2463.
    [104] DANG H, WANG C, LI J, et al. Diversity and Distribution of Sediment NirS-Encoding Bacterial Assemblages in Response to Environmental Gradients in the Eutrophied Jiaozhou Bay, China [J]. Microbial ecology, 2009, 58(1): 161-9.
    [105] BARNS S, CAIN E, SOMMERVILLE L, et al. Acidobacteria phylum sequences in uranium contaminated subsurface sediments greatly expand the known diversity within the phylum [J]. Applied and environmental microbiology, 2007,
    [106] TORSVIK V, S RHEIM R, GOKS YR J. Total bacterial diversity in soil and sediment communities?aa review [J]. Journal of Industrial Microbiology and Biotechnology, 1996, 17(3): 170-8.
    [107] BISSETT A, BURKE C, COOK P, et al. Bacterial community shifts in organically perturbed sediments [J]. Environmental microbiology, 2006, 9(1): 46-60.
    [108]屈建航,袁红莉,黄淮曾,汪恩涛.官厅水库沉积物中细菌群落纵向分布特征.中国科学: D辑, 2005, 35(增刊Ⅰ): 233-240
    [109] THOMPSON J, MARCELINO L, POLZ M. Heteroduplexes in mixed-template amplifications: formation, consequence and elimination by'reconditioning PCR' [J]. Nucleic Acids Research, 2002, 30(9): 2083.
    [110] MCCAIG A, GLOVER L, PROSSER J. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures [J]. Applied and Environmental Microbiology, 1999, 65(4): 1721.
    [111] HUBER T, FAULKNER G, HUGENHOLTZ P. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments [J]. Bioinformatics, 2004, 20(14): 2317.
    [112] THOMPSON J, GIBSON T, PLEWNIAK F, et al. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 25(24): 4876.
    [113] HALL T. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, F, 1999 [C].
    [114] KUMAR S, TAMURA K, NEI M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment [J]. Briefings in bioinformatics, 2004, 5(2): 150.
    [115] GOOD I. The population frequencies of species and the estimation of population parameters [J]. Biometrika, 1953, 40(3-4): 237.
    [116] KREBS C. Ecological methodology [M]. Harper & Row New York, 1989.
    [117] CHAO A. Estimating population size for sparse data in capture-recapture experiments [J]. Biometrics, 1989, 45(2): 427-38.
    [118] COLWELL R. EstimateS: Statistical estimation of species richness and shared species from samples [M]. Version. 2005.
    [119] GILLAN D, PERNET P. Adherent bacteria in heavy metal contaminated marine sediments [J]. Biofouling, 2007, 23(1): 1-13.
    [120] LI H, YU Y, LUO W, et al. Bacterial diversity in surface sediments from the Pacific Arctic Ocean [J]. Extremophiles, 2009, 13(2): 233-46.
    [121] HUBER J, JOHNSON H, BUTTERFIELD D, et al. Microbial life in ridge flank crustal fluids [J]. Environmental Microbiology, 2005, 8(1): 88-99.
    [122] ACINAS S, KLEPAC-CERAJ V, HUNT D, et al. Fine-scale phylogenetic architecture of a complex bacterial community [J]. Nature, 2004, 430(6999): 551-4.
    [123] MUSAT N, WERNER U, KNITTEL K, et al. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-R m Basin, Wadden Sea [J]. Systematic and applied microbiology, 2006, 29(4): 333-48.
    [124] SANTELLI C, ORCUTT B, BANNING E, et al. Abundance and diversity of microbial life in ocean crust [J]. Nature, 2008, 453(7195): 653-6.
    [125] MIYAZAKI M, NOGI Y, FUJIWARA Y, et al. Neptunomonas japonica sp. nov., an Osedax japonicus symbiont-like bacterium isolated from sediment adjacent to sperm whale carcasses offKagoshima, Japan [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(4): 866.
    [126] NIEMANN H, FISCHER D, GRAFFE D, et al. Biogeochemistry of a low-activity cold seep in the Lasen B area, western Weddell Sea, Antarctica [J]. Biogeosciences, 2009, 6(2383-95.
    [127] BEAL E, HOUSE C, ORPHAN V. Manganese-and iron-dependent marine methane oxidation [J]. Science, 2009, 325(5937): 184.
    [128] SCHMIDTOVA J, HALLAM S, BALDWIN S. Phylogenetic diversity of transition and anoxic zone bacterial communities within a near-shore anoxic basin: Nitinat Lake [J]. Environmental Microbiology, 2009, 11(12): 3233-51.
    [129] MU MANN M, ISHII K, RABUS R, et al. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea [J]. Environmental Microbiology, 2005, 7(3): 405-18.
    [130] SCHAUER R, BIENHOLD C, RAMETTE A, et al. Bacterial diversity and biogeography in deep-sea surface sediments of the South Atlantic Ocean [J]. The ISME Journal, 2009, 4(2): 159-70.
    [131] HARRISON B, ZHANG H, BERELSON W, et al. Variations in archaeal and bacterial diversity associated with the sulfate-methane transition zone in continental margin sediments (Santa Barbara Basin, California) [J]. Applied and Environmental Microbiology, 2009, 75(6): 1487.
    [132] IIZUKA T, JOJIMA Y, FUDOU R, et al. Enhygromyxa salina gen. nov., sp. nov., a slightly halophilic myxobacterium isolated from the coastal areas of Japan [J]. Systematic and applied microbiology, 2003, 26(2): 189-96.
    [133] RAVENSCHLAG K, SAHM K, PERNTHALER J, et al. High bacterial diversity in permanently cold marine sediments [J]. Applied and Environmental Microbiology, 1999, 65(9): 3982.
    [134] L¨?PEZ-GARC¨aA P, DUPERRON S, PHILIPPOT P, et al. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge [J]. Environmental Microbiology, 2003, 5(10): 961-76.
    [135] LLOYD K, ALBERT D, BIDDLE J, et al. Spatial Structure and Activity of Sedimentary Microbial Communities Underlying a Beggiatoa spp. Mat in a Gulf of Mexico Hydrocarbon Seep [J]. 2010,
    [136] ASAMI H, AIDA M, WATANABE K. Accelerated sulfur cycle in coastal marine sediment beneath areas of intensive shellfish aquaculture [J]. Applied and Environmental Microbiology, 2005, 71(6): 2925.
    [137] PAGE A, JUNIPER S, OLAGNON M, et al. Microbial diversity associated with a Paralvinella sulfincola tube and the adjacent substratum on an active deep-sea vent chimney [J]. Geobiology, 2004, 2(4): 225-38.
    [138] BISSETT A, BOWMAN J, BURKE C. Bacterial diversity in organically-enriched fish farm sediments [J]. FEMS Microbiology Ecology, 2005, 55(1): 48-56.
    [139] ALAIN K, INTERTAGLIA L, CATALA P, et al. Eudoraea adriatica gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae [J]. International Journal of Systematic and Evolutionary Microbiology, 2008, 58(10): 2275.
    [140] BALAKIREV E, PAVLYUCHKOV V, AYALA F. DNA variation and symbiotic associations in phenotypically diverse sea urchin Strongylocentrotus intermedius [J]. Proceedings of the National Academy of Sciences, 2008, 105(42): 16218.
    [141] POLYMENAKOU P, LAMPADARIOU N, MANDALAKIS M, et al. Phylogenetic diversity of sediment bacteria from the southern Cretan margin, Eastern Mediterranean Sea [J]. Systematic and applied microbiology, 2009, 32(1): 17-26.
    [142] G¨?MEZ-PEREIRA P, FUCHS B, ALONSO C, et al. Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean [J]. The ISME Journal, 2010,
    [143] MILLS H, HUNTER E, HUMPHRYS M, et al. Characterization of nitrifying, denitrifying, and overall bacterial communities in permeable marine sediments of the northeastern Gulf of Mexico [J]. Applied and Environmental Microbiology, 2008, 74(14): 4440.
    [144] BRINKMEYER R, KNITTEL K, JURGENS J, et al. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice [J]. Applied and Environmental Microbiology, 2003, 69(11): 6610.
    [145] INNEREBNER G, INSAM H, FRANKE-WHITTLE I, et al. Identification of anammox bacteria in a full-scale deammonification plant making use of anaerobic ammonia oxidation [J]. Systematic and applied microbiology, 2007, 30(5): 408-12.
    [146] ELSHAHED M, YOUSSEF N, LUO Q, et al. Phylogenetic and metabolic diversity of Planctomycetes from anaerobic, sulfide-and sulfur-rich Zodletone Spring, Oklahoma [J]. Applied and Environmental Microbiology, 2007, 73(15): 4707.
    [147] PRABAGARAN S, MANORAMA R, DELILLE D, et al. Predominance of Roseobacter, Sul?étobacter, Glaciecola and Psychrobacter in seawater collected o Ushuaia, Argentina [J]. 2006,
    [148] GRIGIONI S, BOUCHER-RODONI R, DEMARTA A, et al. Phylogenetic characterisation of bacterial symbionts in the accessory nidamental glands of the sepioid Sepia officinalis (Cephalopoda: Decapoda) [J]. Marine Biology, 2000, 136(2): 217-22.
    [149] PICHON D, GAIA V, NORMAN M, et al. Phylogenetic diversity of epibiotic bacteria in the accessory nidamental glands of squids (Cephalopoda: Loliginidae and Idiosepiidae) [J]. Marine Biology, 2005, 147(6): 1323-32.
    [150] PORTILLO M, SAIZ-JIMENEZ C, GONZALEZ J. Molecular characterization of total and metabolically active bacterial communities of [J]. Research in Microbiology, 2009, 160(1): 41-7.
    [151] WINTZINGERODE F. Go <    [152] NOCKER A, BURR M, CAMPER A. Genotypic microbial community profiling: a critical technical review [J]. Microbial Ecology, 2007, 54(2): 276-89.
    [153] LI Y, LI F, ZHANG X, et al. Vertical distribution of bacterial and archaeal communities along discrete layers of a deep-sea cold sediment sample at the East Pacific Rise ( 13°N) [J]. Extremophiles, 2008, 12(4): 573-85.
    [154] DANG H, LI J, CHEN M, et al. Fine-scale vertical distribution of bacteria in the East Pacific deep-sea sediments determined via 16S rRNA gene T-RFLP and clone library analyses [J]. World Journal of Microbiology and Biotechnology, 2009, 25(2): 179-88.
    [155] ZENG R, ZHAO J, ZHANG R, et al. Bacterial community in sediment from the Western Pacific ?°Warm Pool?±and its relationship to environment [J]. Science in China Series D: Earth Sciences, 2005, 48(2): 282-90.
    [156] RAVENSCHLAG K, SAHM K, AMANN R. Quantitative molecular analysis of the microbial community in marine Arctic sediments (Svalbard) [J]. Applied and Environmental Microbiology, 2001, 67: 387-395
    [157] INAGAKI F, SUZUKI M, TAKAI K, et al. Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk [J]. Applied and Environmental Microbiology, 2003, 69(12): 7224.
    [158] POLYMENAKOU P, BERTILSSON S, TSELEPIDES A, et al. Bacterial community composition in different sediments from the Eastern Mediterranean Sea: a comparison of four 16S ribosomal DNA clone libraries [J]. Microbial Ecology, 2005, 50(3): 447-62.
    [159] GRAY J, HERWIG R. Phylogenetic analysis of the bacterial communities in marine sediments [J]. Applied and Environmental Microbiology, 1996, 62(11): 4049.
    [160] LLOBET-BROSSA E, ROSSELLO-MORA R, AMANN R. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization [J]. Applied and Environmental Microbiology, 1998, 64(7): 2691.
    [161] GIOVANNONI S, RAPP¨| M. Evolution, diversity, and molecular ecology of marine prokaryotes [J]. 2000,
    [162] LIAO L, XU X, WANG C, et al. Bacterial and archaeal communities in the surface sediment from the northern slope of the South China Sea [J]. Journal of Zhejiang University-Science B, 2009, 10(12): 890-901.
    [163] INAGAKI F, NUNOURA T, NAKAGAWA S, et al. Biogeographical distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on the Pacific Ocean Margin [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8): 2815.
    [164] JING Z, ZENG R. Bacterial community in deep subseafloor sediments from the western Pacific ?°warm pool?±[J]. Science in China Series D: Earth Sciences, 2008, 51(4): 618-24.
    [165] NOLD S, ZHOU J, DEVOL A, et al. Pacific Northwest marine sediments contain ammonia-oxidizing bacteria in the |? subdivision of the Proteobacteria [J]. Applied and Environmental Microbiology, 2000, 66(10): 4532.
    [166] GANS J, WOLINSKY M, DUNBAR J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil [J]. Science, 2005, 309(5739): 1387.
    [167] SCHLOSS P, HANDELSMAN J. Toward a census of bacteria in soil [J]. PLoS Comput Biol, 2006, 2(7): 786-93.
    [168] ROESCH L, FULTHORPE R, RIVA A, et al. Pyrosequencing enumerates and contrasts soil microbial diversity [J]. The ISME Journal, 2007, 1(4): 283-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700