用户名: 密码: 验证码:
植物净化槽处理城市黑臭河水的效果、机理及工程示范
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在城市污染河道治理与生态修复中,生物-生态法已越来越受到人们的高度重视。其中,水生植物技术以其良好的净化效果、独特的经济效益、能耗低、简单易行以及有利于重建和恢复良好的水生生态系统等特点,正日益受到人们的关注。本论文以复合型严重污染的黑臭河水为对象,构建植物净化槽(栽植两种不同植株密度的水生植物:挺水植物梭鱼草Pontederia cordataL.;浮叶植物睡莲Nymphaea tetragona),开展水生植物净化黑臭河水的试验及工程示范研究,分析植物净化黑臭河水的效果、植物-微生物协同作用机制以及多级原位组合生物技术治理黑臭河道的工程示范效益,探讨黑臭河道水质生物净化的机理,旨为治理工程的技术设计、系统集成及运行调控提供科学依据。
     测定了8个水培有睡莲(N.tetragona)、梭鱼草(P.cordata)的净化槽(栽植密度:k1/4=5、k1/2=10、k1/1=20;曝气、非曝气)的植物根组织过氧化物酶POD、过氧化氢酶CAT活性与叶片可溶性蛋白(SP)、叶绿素(Chl)含量及对应水质的日变化,测定了不同净化槽中植物的形态大小、分蘖数、根密度、生物量、氮磷积累量,探讨了植物生理状况日变化与黑臭河水水质的相关性及植物栽植密度对其生理特性及河水净化效果的影响,研究了长期连续曝气下两种植物的生理响应及净化效果,比较了两种植物的生理特性及脱氮除磷效果,运用ERIC-PCR分子标记技术分析了植物根区微生物的群落结构动态与根区泌氧及河水净化效果三者之间的内在关联,另设空白槽对照(CK)。通过工程示范,长期跟踪考察了人工曝气与植物浮床及填料挂膜三者复合的治理技术对城市黑臭河水的净化效果。结果表明:植物根组织POD、CAT活性、叶片Chla、Chlb、SP含量与净化槽中溶P、NH_4~+-N去除率间呈正相关;植物栽植密度较高的净化槽,植物的根、茎、叶较长,分蘖数、根密度较大,植株生物量、氮磷积累量较高,叶片Chla、Chlb、SP含量与净化槽的溶解性P、NH_4~+-N去除率较高,而根组织POD、CAT活性较弱;随着光照增强,植物根组织POD、CAT活性增强,叶片SP、Chla、Chlb含量及净化槽中溶解性P、NH_4~+-N去除率升高;夏季,由于光合午休影响,植物叶片SP含量及净化槽中DO浓度日变化呈双峰型,峰值约在12:00pm与14:00pm左右,在13:00pm左右,植物叶片SP含量及净化槽中DO浓度下降;在10:00am-14:00pm时段,植物根组织CAT、POD活性、叶片Chla、Chlb、SP含量及净化槽中溶解性P、NH_4~+-N去除率高于其他时段。
     长期曝气影响植物的生理特性及黑臭河水的净化效果;梭鱼草对曝气影响的耐性比睡莲强;曝气槽中植物的根、茎、叶长度比非曝气槽中植物短,叶片Chla、Chlb、SP含量比非曝气槽中植物低,而根组织POD、CAT活性比非曝气槽中植物高;曝气槽中植株的氮磷积累量、生物量比非曝气槽中植物低;曝气槽中梭鱼草的分蘖数、根密度高于非曝气槽中梭鱼草,而睡莲则相反;梭鱼草曝气槽中BOD_5、COD、NH_4~+-N去除效率比梭鱼草非曝气槽高(如夏季,分别高5.97%、7.12%、6.29%),而TP、溶解性P去除率比非曝气槽明显低(如夏季,分别低38.18%、43.79%);春、夏季,睡莲曝气槽中BOD_5、COD、NH_4~+-N去除率比睡莲非曝气槽高,而TP、溶解性P去除率比睡莲非曝气槽低,但是,秋季睡莲曝气槽中BOD_5、COD、NH_4~+-N、TP、溶解性P去除率分别比睡莲非曝气槽低5.71%、5.99%、6.06%、12.36%、9.95%。
     梭鱼草的除磷效果比睡莲明显,但两者的脱氮效果差异不明显;梭鱼草的耐污性较睡莲强,但睡莲在黑臭河水胁迫下的生命期比梭鱼草长;两种植物根组织的POD活性、叶片Chla、SP含量差异显著,而根组织Chlb、CAT活性差异不显著;睡莲根组织POD、CAT活性比梭鱼草高(如春季,分别高0.0961 U/(g·min)、1.4206 mg/(g·min)),而叶片Chla、Chlb、SP含量比梭鱼草低(如春季,分别低0.0010 mg/g、0.0231 mg/g、24.91 mg/g);睡莲的根比梭鱼草长,而茎、叶略短;睡莲的分蘖数、根密度、生物量、氮磷积累量比梭鱼草低;睡莲槽中TP、溶解性P去除率比梭鱼草槽低,而两净化槽中NH_4~+-N去除效果差异不明显。
     睡莲、梭鱼草的根区泌氧与黑臭河水的净化效果及植物根区微生物种群结构动态三者之间存在关联性。在10:00am-14:00pm时段,由于光照较强,植物根区泌氧量升高,根区微生物的种群丰度较高,导致较好的净水效果;随着植物栽植密度递增,根区泌氧量升高,使河水DO浓度升高,导致根区微生物的种群丰度升高,有较明显的净水效果;随着植物生长状况的季节性变化(春季,生长初期;夏季,生长旺盛期;秋季,衰老期),植物根区泌氧增氧出现相应变化,导致植物根区微生物的种群丰度及河水的净化效果发生相应变化。
     示范工程区的水质跟踪监测结果表明,植物浮床与人工曝气及填料挂膜三者结合的治理技术,能够有效净化城区黑臭河水;人工曝气影响黑臭河水的TP、溶解性P去除效果。
     论文取得的创新成果:(1)从生理生化角度对水生植物净化黑臭河水的机理进行研究,探讨了河水的处理效果与植物生理状况的关联性,并对两者之间的内在联系进行了定量分析;(2)对植物根区微生物种群结构动态进行研究,探讨了植物的生理状况变化引起根区微生物生境的改变进而影响根区微生物种群结构的机理;(3)通过现场试验发现具有较高观赏价值的睡莲在黑臭河水中生长良好,生命期比梭鱼草长,且具有较好的除氮效果,在实践城区重污染河道的治理与生态修复工程中有较好的应用前景;(4)初步探讨了长期曝气对水生植物生理状况的影响,发现不同植物对曝气影响的耐受性不同,且这种耐受性与植物生长状况的季节性变化相关,此为在实践污染河道生态修复工程中,针对植物种类不同及植物生长状况的季节性变化而进行植物优化布局和曝气方式调节提供了理论依据;(5)综合净化槽中黑臭河水的处理效果、植物生理状况及植物根区微生物种群结构动态三方面的内在联系,为今后植物净化装置应用于污染河水的修复提供了的理论依据,具有较高的理论意义与应用价值。
In the restoration and treatment of polluted city rivers, the biological and ecological treatment became more and more important. Particularly, the technique with aquatic plants was gradually used widely, owing to its good purifying efficiencies, special economic benefits, low energy consumption and simple operation. Further, the technique was helpful to restruct and restore the aquatic ecosystem. In this paper, purifying-tanks were constructed (with various planting densities, two aquatic plants of Pontederia cordata L. and Nymphaea tetragona were cultivated). Engineering demonstration and the investigation on aquatic plants' physiological characteristics during treatment for compound heavily polluted water were performed. Plants' purifying efficiencies for polluted water, the synergy mechanism between plants and microbes in the treatment, the effect of the engineering demonstration of the treatment for polluted water with the situ combined biological technique, all those were analyzed. The mechanism of the biological purifying efficiencies of polluted water was studied. All above aimed to provide scientific basis for the technical design of the practical engineering, system integration and operation regulation.
     N. tetragona and P. cordata were hydroponic cultivated in 8 purifying-tanks with various planting densities (densities: k1/4=5, k1/2=10, k1/1=20; aeration and no aeration) to investigate diurnal variation of physiological characteristics of plants including peroxidase (POD) and catalase (CAT) activities of roots tissues, soluble proteins (SP), chlorophyll (Chl) contents of leaves and main physical and chemical characteristics of polluted water. Morphology, tillers, roots densities, biomass and nitrogen (N) and phosphorus (P) accumulations of plants were measured. Correlation between diurnal variation of physiological characteristics of plants and N and P removals of polluted water was analyzed, and effects of planting densities on physiological characteristics of the plants and purifying effects of polluted water were studied. Effects of long-term aeration on physiological characteristics of the plants and purifying efficiencies of the purifying-tanks during treatment for heavily polluted water were analyzed, physiological characteristics and N and P removals between two plants were comparatively analyzed. ERIC-PCR was used to analyze correlation between microbial communities on the plants roots, DO secretion from the plants and purifying efficiencies of the heavily polluted water. A tank without plant was for control (CK). With engineering demonstration, purifying effects of the compound technique of artificial aeration, floating-beds and biological films were analyzed. Results showed POD and CAT activities of the roots tissues, Chla, Chb and SP contents of the leaves had positive correlations with NH_4~+-N and soluble P removals of polluted water. In purifying-tanks with higher planting densities, the plants had longer roots, stems and leaves, more tillers, roots densities, biomass and N and P accumulation, higher Chla, Chb and SP contents of the leaves and NH_4~+-N and soluble P removals of polluted water, while POD and CAT activities of the roots tissues declined. With stronger sunlight, POD and CAT activities of the roots tissues, Chla, Chb and SP contents of the leaves, NH_4~+-N and soluble P removals of polluted water all increased. In summer, with effects of photosynthesis midday depression, SP contents of the leaves and DO concentrations of polluted water showed double-peak styles at about 12:00 pm and 14:00 pm, and the bottom between two peaks appeared about 13:00 pm. In 10:00 am-14:00 pm, CAT and POD activities of the roots tissues, Chla, Chlb and SP contents of the leaves, NH_4~+-N and soluble P removals of polluted water all exceeded the other times at the day.
     Long-term aeration affected physiological characteristics of the plants and the purifying efficiencies of polluted water. Effects of artificial aeration on N. tetragona were heavier than P. cordata. Roots, stems and leaves lengths of the plants at the aeration were shorter than the no aeration, respectively. Chla, Chlb and SP contents of the leaves were lower than the no aeration. While POD and CAT activities of roots tissues at the aeration exceeded the no aeration. N and P accumulations of plants tissues were higher at the no aeration than the aeration. While plants biomass at the aeration were lower than the no aeration. For P. cordata, tillers and roots densities in aeration purifying-tanks were more than the no aeration, while they changed contrarily for N. tetragona For P. cordata, BOD_5, COD and NH_4~+-N removals of polluted water at the aeration exceeded the no aeration by 5.97%,7.12%,6.29% in summer, whereas TP and soluble P removals were significantly lower by declining 38.18% and 43.79%. For N. tetragona, BOD_5, COD and NH_4~+-N removals of polluted water at the aeration exceeded the no aeration in spring and summer, while TP and soluble P removals were significantly lower. But in autumn, BOD_5, COD, NH_4~+-N, TP and soluble P removals of the effluents at the aeration were lower than the no aeration by decreasing 5.71%, 5.99%, 6.06%, 12.36%, 9.95%.
     P removals by P. cordata were better than N. tetragona, while N removals between two plants did not differ significantly. Effects of heavily polluted river water on N. tetragona were heavier than P. cordata. Living-term of N. tetragona was longer than P. cordata under the stress of heavily polluted water. POD activities of roots tissues, Chla and SP contents of leaves between two plants all differed significantly, while Chlb contents of leaves and CAT activities of roots tissues did not. POD and CAT activities of roots tissues of N. tetragona exceeded P. cordata by 0.0961 U/(g·min) and 1.4206 mg/(g·min) in spring, while Chla, Chlb and SP contents of leaves of P. cordata exceeded N. tetragona by 0.0010 mg/g,0.0231 mg/g and 24.91 mg/g. Roots lengths of N. tetragona were longer than P. cordata, while stems and leaves lengths were shorter, and tillers, roots densities, biomass and N and P accumulations were lower than P. cordata, respectively. TP and soluble P removals of the purifying-tanks were lower than tanks with P. cordata, while NH_4~+-N removals did not differ significantly.
     Microbial communities on the plants roots, DO secretion from the plants and purifying effects of polluted river water were correlated. 10:00am-14:00pm, with stronger sunlight, the more O_2 secretion from the plants and the more microbial diversities on the plants roots resulted in the better purifying efficiencies. In the purifying-tanks with higher planting densities, the more sum O_2 secretion from the plants resulted in the higher DO concentrations of heavily polluted water, the more microbial diversities on the plants roots, which resulted in the better purifying efficiencies. With seasonal change of the plants' growing (spring, initial growing stage; summer, fast growing stage, autumn, last growing stage), the corresponding change of the O_2 secretion from the plants directed to the corresponding change of the microbial diversities on the plants roots and the purifying efficiencies of polluted water.
     Water qualities analysis of engineering demonstration showed, the compound technique of artificial aeration, floating-beds and biological films effectively treated polluted water. Artificial aeration affected the effects of TP and soluble P removals of polluted water.
     Innovation productions of this paper were as follow. (1) Physiological analysis of the mechanism of the treatment for polluted water with aquatic plants was conducted. Quantized analysis of the relationship between purifying efficiencies and physiological characteristics of plants was performed. (2) Microbial communities variation on the plants roots were analyzed. Variation of the environment for microbes resulted from the change of physiological characteristics of plants, which resulted in the variation of microbial communities on plants roots. (3) It was found that N. tetragona had good growth in heavily polluted water, and its living-term was longer than P. cordata, and its N removals were higher than P. cordata. So, N. tetragona had a good application prospect in the ecological restoration engineering of polluted city rivers. (4) Effects of long-term aeration on physiological characteristics of plants during treatment for heavily polluted water were analyzed, which indicated aeration tolerance varied with plant species and plant's seasonal growth. This work provided theoretical evidence for optimizing plants allocation and regulating aeration technique in the ecological restoration engineering of polluted rivers. (5) Relationships between purifying efficiencies of polluted water, physiological characteristics of plants and microbial communities variation on plants roots were analyzed. It provided theoretical evidence for purifying-tanks' future application for the restoration of polluted water. This work was of profound theoretical and practical significance.
引文
[1] 杨鲁豫,王琳,王宝贞.我国水资源污染治理的技术策略.给水排水,2001,27(1):94-101.
    [2] 卢智灵.上海市河道水质修复方法研究与探索[A].汪松年.上海水生态修复调查与研究[C].上海:上海科学技术出版社,2005:29-34.
    [3] 邱东茹,吴振斌,刘保元,等.武汉东湖水生植被的恢复试验研究[J].湖泊科学,1997,9(2):169-174.
    [4] National Research Council, Committee on Restoration of Aquatic Ecosystems. Restoration of aquatic ecosystems [M]. Washington D. C. National Academy Press,1992:552.
    [5] 任海,彭少麟.恢复生态学导论[M],北京:科学出版社,2001:59.
    [6] 盛学良,彭补拙,王华,等.生态城市指标体系研究[J].环境导报,2000,5:5-8.
    [7] 赵福山,李杰.科学发展观与绿色GDP[J].理论探讨,2007,2:83-84.
    [8] Holmes N T H. The river restoration project and its demonstration sites [A]. De Waal L C,Large A R G, Wade P M(eds). Rehabilitation of rivers: principles and implementation [C]. John Wiley: Chichester, 1998:133-148.
    [9] Gore J A, Shields F D. Can large rivers be restored [J].Bioscience,1995(45):142-152.
    [10] Pedroli B, Blust G D, Looy K V, et al. Setting targets in strategies for river restoration [J].Landscape Ecology, 2002,17 (Suppl. 1):5-18.
    [11] Clarke S J, Bruce-Burgess C L, Wharton G. Linking form and function: towards an ecohydromorphic approach to sustainable river restoration [J]. Aquatic Conservation: Marine and Freshwater Ecosystems, 2003(13):439-450.
    [12] Bohn B A, Kershner J L. Establishing aquatic restoration priorities using a watershed approach [J]. Journal of Environmental Management, 2002,4(6):355-363.
    [13] Arthington A H, Pusey B J. Flow restoration and protection in Australian rivers [J]. River Research and Applications, 2003 (19):377-395.
    [14] Lusk S, Halacka K, Luskova V. Rehabilitation the floodplain in the lower river dye for fish [J]. River Research and Application, 2003 (19):281-288.
    [15] 朱国平,王秀茹,王敏.城市河流的近自然综合治理研究进展[J].中国水士保持科学,2006,4(1):92-97.
    [16] 苏冬艳,崔俊华,晁聪,等.污染河流治理与修复技术现状及展望[J].河北工程大学学报(自然科学版),2008,25(4):56-60.
    [17] 王炳坤,秦红梅,张欣荣.大凌河朝阳市区段滨水景观带规划设计探析[J].天津大学学报(社会科学版),2008,10(2):155-157.
    [18] 李桂媛,陈池,郑江英.滨水景观设计生态理念的探讨[J].中国水土保持,2006,(11):53-54.
    [19] 万敏,雷颖,王司章.基于河流保护的设计--老河口五龙公园案例研究[J].华中建筑,2007,25(10):139-142.
    [20] 皮晓宇.滨水景观规划建设构想[J].城市道桥与防洪,2005,(6):11-14.
    [21] 高甲荣.近自然治理:以景观生态学为基础的治理工程[J].北京林业大学学报,1999,21(1):78-82.
    [22] 高阳,高甲荣,陈子珊,等.河溪近自然治理评价指标体系探讨以及应用[J].水土保持研究2007,14(6):404-407.
    [23] 江红梅,王正中,王东刚,等.城市河流综合治理与生态建设探讨[J].西北农林科技大学 学报(自然科学版),2008,36(1):224-228.
    [24] Nilsson C, Ekblad A, Gardfjell M, et al. Long-term effects of river regulation on river margin vegetation [J]. Journal of Applied Ecology, 1991,28:963-987.
    [25] Seifert A. Naturnaeherer wasserbau [J]. Deutsche Wasser-wirtschaft, 1983,33(12): 361-366.
    [26] Seifert A. Ministerium fuer umwelt Baden-wuettenberg [J]. Stuttgart: Hoch Wassers Chutz and Oekologie, 1988, 21(10): 241-245.
    [27] 刘沛林,孙则昕.风水的有机自然观对新的建筑和城市规划的启示[J].城市规划汇刊,1994,27(5):54-58.
    [28] 高晓琴,姜姜,张金池.生态河道研究进展及发展趋势[J].南京林业大学学报(自然科学版),2008,32(1):103-106.
    [29] 王兆印,田世民,易雨君.论河流治理的方向[J].中国水利,2008,(13):1-3.
    [30] 朱雷,刘琴,陈威.城市化进程中小流域河流综合治理的研究[J].市政技术,2000,16(1):5-12.
    [31] 张颂军.浅谈城市河流治理与健康对城市生态环境的影响[J].水科学与工程技术,2007,(3):52-54.
    [32] 徐亚同,徐祖信,李小平,等.河流污染状况及治理效果评价的指标体系[J].净水技术,2007,26(4):1-3.
    [33] 林启才.河流生态工程学及生态水工学的发展与趋势[J].灾害与防治工程,2003,34(1):14-17.
    [34] 张秋禹,侯振宇,袁定重,等.绿色水处理剂的研究与应用[J].安徽大学学报(自然科学版),2006,30(1):89-93.
    [35] RassKa L, Alakomi H L. Antagonistic activiy of slaphytococcus siderophores and chemical biocides against Bacillus subtilis [J]. J. Ind. Microbiol. Biotechnol., 1999,22(1): 27-32.
    [36] Kennish, M J. Anthropogenic impacts and the national estuary program. In: Kennish, M.J.(Ed.), Estuary restoration and maintenance [M].Washington DC:The National Estuary Program.CRC Press, 2000: 359.
    [37] Naiman R J, Magnuson J J, Mcknight D M, et al. Freshwater ecosystems and their management: A national initiative [J]. Science,1995,270:584-585.
    [38] 丁爱中,陈繁忠.光合细菌调控水产养殖水质的研究[J].农业环境保护,2000,19(6):339-341,344.
    [39] 吴伟.应用复合微生物制剂控制养殖水体水质因子初探[J].湛江海洋大学学报1997,17(1):16-20.
    [40] 唐玉斌,郝永胜,陆柱,等.景观水体的生物激活剂修复[J].城市环境与城市生态,2003,16(4):37-39.
    [41] Arnlg Melzer. Aquatic macrophytes as tools for lake management [J]. Hydrobiologia,1999, 395/396:181-190.
    [42] 吴玉树.根生沉水植物沮草对滇池水体的净化作用[J].环境科学学报,1991,11(4):411-416.
    [43] 唐述虞,史建文,陈建国,等.凤眼莲生态工程在炼油废水深度处理中的应用研究[J].环境科学学报,1994,15(1):98-104.
    [44] 童昌华,杨肖娥,濮培民.低温季节水生植物对污染水体的净化效果研究[J].水土保持学报,2003,17(2):159-163.
    [45] 吴振斌,邱东茹,贺锋,等.水生植物对富营养水体水质净化作用研究[J].武汉植物学研究,2001,19(4):299-303.
    [46] 吴振斌,邱东茹,贺锋,等.沉水植物重建对富营养水体氮磷营养水平的影响[J].应用生态学报,2003,14(8):1351-1353.
    [47] 刘弋潞,何宗健.水生植物净化富营养化水质的的机理探讨和研究进展[J].江西化工,2006,(1):27-30.
    [48] 林艳,张智,杨骏骅.植物净化床去除营养物规律研究[J].水处理技术,2008,34(9):19-22.
    [49] 王剑虹,麻密.植物修复的生物学机制[J].植物学通报,2000,17(6):504-512.
    [50] 王英彦,熊易,铁锋.用凤眼莲根内金属硫肽检测重金属污染的研究[J].环境科学学报,1994,14(4):421-438.
    [51] 种云霄.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与设备,2003,4(2):36-40.
    [52] 杨联京.风眼莲污水处理工艺研究[J].湖南大学学报,1994,21(4):109-114.
    [53] 张奎,曹文平,朱伟萍.人工湿地污水处理技术的研究[J].工业水处理,2007,27(8):16-21.
    [54] 宋海亮,吕锡武.利用植物控制水体富营养化的研究与实践[J].安全与环境工程,2004,11(3):35-39.
    [55] 胡秀琳,许志兰,廖日红,等.控制北京城市河湖面源污染的工程技术[J].城市环境与城市生态,2008,21(2):6-9.
    [56] 李宏昌,瞿春艳,于佳欢,等.工业废水处理技术及发展趋势[J].煤炭技术,2008,27(6):138-139.
    [57] Gumbricht T. Nutrient removal processes in freshwater submersed macrophyte systems [J].Ecological Engineering, 1993,2:1-30.
    [58] 杨集辉,周守标,谢传俊,等.菖蒲和石菖蒲的生长特性及其对生活污水净化功能的比较研究[J].激光生物学报,2008,17(3):417-421.
    [59] 俞永梅,徐展强,高文安.河道整治中的水污染治理方法探讨[J].上海水务,2007,23(2):26-30.
    [60] 张智,张显忠,杨骏骅.植物净化床对双龙湖水体有机污染物的去除效果分析[J].生态环境,2006,15(4):708-713.
    [61] 刘斌,章北平,程伟,等.人工景观生态湖滨净化带植物的遴选[J].城市环境与城市生态,2006,19(2):17-19.
    [62] 刘松岩,何涛,周本翔.水生植物净化受污染水体研究进展[J].安徽农业科学,2006,34(19):5019-5021.
    [63] 孙远军,李小平,黄廷林,等.受污染沉积物原位修复技术研究进展[J].水处理技术,2008,34(1):14-18.
    [64] 李红霞,赵新华,马伟芳,等.玉米对受污染河道复合沉积物的修复[J].环境科学,2008,29(3):709-713.
    [65] 李红霞,赵新华,马伟芳,等.河道污染沉积物中Pb,Cd-有机物的植物修复作用[J].华北农学报,2008,23(1):186-188.
    [66] 曹式芳,庞金钊,杨宗政,等.生物技术治理富营养化景观水体的研究[J].天津轻工业学院学报,2002,(4):1-3.
    [67] 纪荣平,吕锡武,李先宁,等.三种人工介质对太湖水质的改善效果[J].中国给水排水,2005,21(6):64-71.
    [68] 井艳文,胡秀琳,许志兰,等.利用生物浮床技术进行水体修复研究与示范[J].水利科学研究,2003,(6):18-19.
    [69]马立珊,骆永明,吴龙华,等.浮床香根草对富营养化水体氮磷去除动态及效率的初步研究[J].土壤,2000,(2):99-101.
    [70] 邵林广.水浮莲净化富营养化湖泊试验研究[J].环境与开发,2001,16(2):28.
    [71] 宋碧玉,王建,曹明,等.利用人工围隔研究沉水植被恢复的生态效应[J].生态学杂志,1999,18(5):21-24.
    [72] 李先宁,宋海亮,朱光灿,等.组合型浮床生态系统的构建及其改善湖泊水源地水质的效果[J].湖泊科学,2007,19(4):367-372.
    [73] 张保安,李晖,钱公望,等.多级曝气-微生物制剂强化固定生物膜处理度假村综合废水[J].环境科学与管理,2008,33(1):83-85.
    [74] Karamanev D G and Samson R. High-rate biodegradation of pentachlorophenol by biofilm developed in the immobilized soil bioreactor [J]. Environ. Sci. Technol.,1998,32 (7): 994-999.
    [75] Schorer M and Eicele M. Accumulation of inorganic and organic pollutants by biofilm in the aquatic environment [J]. Water, Air and Soil Pollution, 1997, 99: 651-659.
    [76] 田伟君,翟金波.生物膜技术在污染河道治理中的应用[J].环境保护,2003(8):19-21.
    [77] 黄瑞敏,吴宏海,胡勇有,等.珠江微污染源水脱氮除氨生物处理研究[J].华南理工大学学报(自然科学版),2001,29(12):84-88.
    [78] 孙跃平,小仓宪治.城市小型河流水质直接净化的方法[J].环境导报,1999,(6):37-38.
    [79] 黄民生,徐亚同,戚仁海.苏州河污染支流-绥宁河生物修复试验研究[J].上海环境科学,2003,22(60):384-389.
    [80] 陈秀荣,周琪.生物-生态组合工艺处理城市污水的启动研究[J].环境污染与防治,2006,28(1):4-7.
    [81] 王学江,夏四清,张全兴.悬浮填料移动床处理苏州河支流河水试验研究[J].环境污染治理技术与设备,2002,3(1):27-30.
    [82] 岑慧贤,王树功.生态修复与重建[J].环境科学进展,1999,7(6):110-115.
    [83] 林家森.城市河流淤泥污染的治理对策[J].中国给水排水,2004,20(12):21-23.
    [84] 王沛芳,王超,侯俊.城市河流生态系统建设模式研究及应用[J].河海大学学报,2005,33(1):68-71.
    [85] 王月仪.水资源及水生态的现状及治理[J].福建建设科技,2007,(3):61-62.
    [86] 彭静,李翀,徐天宝.论河流保护与修复的生态目标[J].长江流域资源与环境,2007,16(1):66-71.
    [87] 高永胜,叶碎高,郑加才.河流修复技术研究[J].水利学报,2007,(增刊):592-596.
    [88] 孙东亚,赵进勇,董哲仁.流域尺度的河流生态修复[J].水利水电技术,2005,36(5):11-14.
    [89] 卫明,王为人,刘晓涛,等.自然生态型河道建设的理念及其应用[A].汪松年.上海水生态修复调查与研究[C].上海:上海科学技术出版社,2005:23-28.
    [90] 娄敏,廖柏寒,刘红玉,等.3种水生漂浮植物处理富营养化水体的研究[J].中国生态农业学报,2005,13(3):194-195.
    [91] Nyakang O J B, van Bruggen J J A. Combination of a well functioning constructed wetland with a pleasing landscape design in Nairobi, Kenya [J]. Wat. Sci. Tech., 1999,40(3): 249-256.
    [92] 屠清瑛,章永泰,杨贤智.北京什刹海生态修复试验工程[J].湖泊科学,2004,16(1):61-66.
    [93] 李睿华,管运涛,何苗,等.河岸芦苇、茭白和香蒲植物带处理受污染河水中试研究[J]. 环境科学,2006,27(3):493-497.
    [94] 周守标,王春景,杨海军,等.菰和菖蒲在污水中的生长特性及其净化效果比较[J].应用与环境生物学报,2007,13(4):454-457.
    [95] 王天阳,王国祥.玄武湖菹草种群空间格局分析及其环境效应[J].生态环境,2007,16(6):1660-1664.
    [96] 刘春光,王春生,李贺,等.几种大型水生植物对富营养水体中氮和磷的去除效果[J].农业环境科学学报,2006,25(增刊):635-638.
    [97] 李磊,侯文华.荷花和睡莲种植水对铜绿微囊藻生长的抑制作用研究[J].环境科学,2007,28(10):2180-2186.
    [98] 付春平,唐运平,闫玉荣,等.水葱对高盐再生水的净化效果研究[J].中国给水排水,2006,22(5):40-42.
    [99] 付春平,唐运平,李江华.水葱湿地对泰达景观河道水质净化特性研究[J].环境科学与技术,2006,29(7):6-8.
    [100] 周厚高.水体植物景观[M].贵阳:贵州科技出版社,2006:12-18,98-103.
    [101] 李宗辉,唐文浩,宋志文.人工湿地处理污水时水生植物形态和生理特性对污水长期浸泡的响应[J].环境科学学报,2007,27(1):75-79.
    [102] 陈国祥,刘双,王娜,等.磷对水生植物菱及睡莲叶生理活性的影响[J].南京师大学报(自然科学版),2002,25(1):71-77.
    [103] 国家环境保护总局.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.
    [104] Heged A, Erdei S, Horvath G. Comparative studies of H_2O_2 detoxifying enzymes in green and greening barley seedling under cadmium stress [J]. Plant Sci., 2001, 160:1085-1093.
    [105] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal. Biochem., 1976,72:248-254.
    [106] 张志良.植物生理学实验指导[M].北京:高等教育出版社,990:154-155.
    [107] Rao M V, Paliyath G, Ormrod D P. Ultraviolet-B radiation and ozone-induced biochemical changes in the antioxidant enzymes of Arabidopsisthaliana [J]. Plant Physiol., 1996, 110:125-136.
    [108] 董鸣,王义凤,孔繁志,等.陆地生物群落调查与分析[M],北京:中国标准出版社,1996:256-257.
    [109] 张吉祥.黑琥珀李光合特性的研究[J].果树学报,2005,22(1):84-86.
    [110] 林琼影,陈建新,杨淑贞,等.毛竹气体交换特征[J].浙江林学院学报,2008,25(4):522-526.
    [111] 陈桂芳,蔡孔瑜,娄利华,等.中华蚊母树光合作用日变化初步研究[J].西南林学院学 报,2008,28(3):1-3.
    [112] Jabs T. Reactive oxygen intermediates as mediators of programmed cell death in plants and animals [J]. Biochem. Pharmacol., 1999, (57) :231-245.
    [113] Bartosz G. Oxidative stress in plants [J]. Acta Physiol. Plant, 1997, (19): 47-64.
    [114] Frinovich. The biology of oxygen radical [J]. Science, 1978, 201:875-880.
    [115] Pallitt K E, Young A J, Alscher R G. Antioxidant in higher plants [M]. Raton: CRC Press, 1992:59-60.
    [116] Moran J F, BecanaM, Iturbe-Ormaetxe I, et al. Drought induces oxidative stress in pea plant [J].Planta, 1994,194:346-352.
    [117] Kaufmann J A, Bickford P C. Free radical-dependent changes in constitutive nuclear factor kappa-B in the aged hippocampus [J]. Neuroreport, 2002,13 (15): 1917-1928.
    [118] 何和明,冯夏雨,曾学平.海南岛某些药用植物过氧化物酶同工酶的分析[J].海南大学学报(自然科学版),2000,18(2):12-16.
    [119] Li J, Zu Y G. Generation of activated oxygen and change of cell defense enzyme activity in leaves of Korean pine seedling under low temperature [J]. Acta Botanica Sinica,2000,42(2):148-152.
    [120] 王传海,李宽意,文明章,等.苦草对水中环境因子影响的日变化特征[J].农业环境科学学报,2007,26(2):798-800.
    [121] 雒维国,王世和,黄娟,等.植物光合及蒸腾特性对湿地脱氮效果的影响[J].中国环境科学,2006,26(1):30-33.
    [122] 宋克敏.植物的磷营养:磷酸盐运转系统及其调节[J].植物学通报,1999,16(3):251-256.
    [123] 郭沛涌,朱荫湄,宋祥甫,等.浮床黑麦草去除富营养化水体总氮的试验研究[J].华中科技大学学报(城市科学版),2007,24(2):33-40.
    [124] 杨婷婷,操家顺,周勇,等.原位围隔耐寒高羊茅浮床对苏州重污染河道水体的净化[J]湖泊科学,2007,19(5):618-621.
    [125] 温丽容,刘乙敏,刘国光,等.广东省跨市河流边界水质状况研究[J].生态环境,2004,13(2):177-179.
    [126] 徐亚同,史家樑,袁磊.上澳塘水体生物修复试验[J].上海环境科学,2000,19(3):480-484.
    [127] 周杰,章永泰,杨贤智.人工曝气复氧治理黑臭河流[J].中国给水排水,2001,17(4):47-49.
    [128] 陈伟,叶舜涛,张明旭.苏州河河道曝气复氧探讨[J].给水排水,2001,27(4)7-9.
    [129] Subhasis G,Walters J W. Epigenetic toxicity of a mixture of polycyclic aromatic hydrocarbons on gap junctional intercellular communication before and after biodegradation [J].Environment Science & Technology, 1999,33 (1):1044-1051.
    [130] 孙从军,张明旭.河道曝气技术在河流污染治理中的应用[J].环境保护,2001,4:12-14.
    [131] 徐续,操家顺.河道曝气技术在苏州地区河流污染治理中的应用[J].水资源保护,2006,22(1):30-33.
    [132] 刘延恺,陆苏,孟振全.河道曝气法-适合我国国情的环境污水处理工艺[J].环境污染与防治,1994,16(1):22-25.
    [133] 李伟,李先宁,曹大伟,等.组合生态浮床技术对富营养化水源水质的改善效果[J].中国给水排水,2008,24(3):34-38.
    [134] L i W, Friedrich R. In situ removal of dissolved phosphorus in irrigation drainage water by p lanted floats: preliminary results from growth chamber trial [J]. Agric Ecosyst Environ, 2002, 90(1):9-15.
    [135] Monnet F, Vaillant N, Hitmi A, et al. Treatment of domestic wastewater using the nutrient film technique (NFT) to produce horticultural roses [J]. Water Res.,2002,36 (4): 3489-3496.
    [136] 肖凯,尹振君,张荣铣.杂种小麦根系生理活性的研究[J].河北农业大学学报,1997,20(4):1-5.
    [137] 范国兰,李伟.穗花狐尾藻(Myriophyllum spicatum L.)在不同程度富营养化水体中的营养积累特点及营养分配对策[J].武汉植物学研究,2005,23(3):267-271.
    [138] 金成忠.根系对叶片生长和活力作用的物质基础[J].植物生理学通讯,1963,(1):1-16.
    [139] HOU Hong-Wei, Kalima-N'Koma MWANGE, WANG Ya-Qing, et al. Changes of soluble protein, peroxidase activity and distribution during regeneration after girdling in Eucommia ulmoides [J]. Acta Botanica Sinica,2004,46(2):216-223.
    [140] Liszkay A,Kenk B,Schopfer P. Evidence for the involvement of cell wall peroxidase in the generation of hydroxyl radicals mediating extension growth [J]. Planta,2003,217:658-667.
    [141] 李开明,刘军,江栋,等.古廖涌黑臭水体生物修复及维护试验[J].应用与环境生物学报,2005,11(6):742-746.
    [142] 辛福言,李秋芬,周玉霞,等.Simulated application of functional bacteria in bioremediation of shrimp culture environment.应用与环境生物学报,2002,8(1):75-79.
    [143] 李秋芬,曲克明,辛福言,等.Isolation and selection of functional bacteria for bioremediation ofshrimp culture environment.应用与环境生物学报,2001,7(3):281-285.
    [144] 靖元孝,杨丹菁,任延丽,等.水翁(Cleistocalyx operculatus)在人工湿地的生长特性及对污染物的去除效果[J].环境科学研究,2005,18(1):9-12.
    [145] 王庆海,段留生,李瑞华,等.几种水生植物净化能力比较[J].华北农学报,2008,23(2): 217-222.
    [146] 袁东海,任全进,高士祥,等.几种湿地植物净化生活污水COD、总氮效果比较[J].应用生态学报,2004,15(12):2337-2341
    [147] 童吕华,杨肖娥,濮培民.富营养化水体的水生植物净化试验研究[J].应用生态学报2004,15(8):1447-1450.
    [148] 王磊,任树梅,毕勇刚,等.土壤水分及有机肥料对番茄叶片光合特性及叶绿素含量影响的试验研究[J].灌溉排水学报,2004,23(2):66-80.
    [149] 王惠哲,庞金安,李淑菊,等.弱光对春季温室黄瓜生长发育的影响[J].华北农学报,2005,20(1):55-58.
    [150] 苍晶,王学东,崔琳,等.大豆豆荚与叶片的光合特性比较[J].中国农学通报,2005,21(2):85-87.
    [151] 朱延姝,高绍森,冯辉.弱光对不同基因型番茄品系苗期功能叶片光合速率和叶绿素含量的影响[J].辽宁农业科学,2005(1):17-18.
    [152] 江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [153] 胡筑兵,陈亚华,刘晓庆,等.4个二价金属氯化盐对玉米幼苗生理指标影响的比较研究[J].西北植物学报,2005,25(9):1778-1784.
    [154] 陈立松,刘星辉.果树重金属毒害及抗性机理[J].福建农业大学学报,2001,30(4):462-469.
    [155] FRANKLIN RB,TAYLOR D R. Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD) [J]. Journal of Microbiological Methods, 1999,35(3):225-235.
    [156] WIKSTROMP,ANDERSSON A C,FORSMANM. Biomonitoring complex microbial communities using random amplified polymorphic DNA and principal component analysis [J].FEMS Microbiology Ecology,1999,28(2):131-139.
    [157] 杨朝国,安乙敏.病原微生物分子生物学分型方法的选择[J].国外医学:病毒学分册,2000,7(2):48-51.
    [158] 高平平,赵义,赵立平.焦化废水处理系统微生物群落结构动态的ERIC-PCR指纹图谱分析[J].环境科学学报,2003,23(6):705-710.
    [159] 紫外与可见光光度分析法[M].化学工业出版社,1986.
    [160] DI GIOVANNI G D,WATRUD L S, SEIDLER R J, et al. Comparison of parental and transgenic alfalfa rhizosphere acterial communities using biolog GN metabolic fingerprinting and enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR) [J]. Microbial Ecology,1999,37(2):129-139.
    [161] DI GIOVANNI G D,WATRUD L S,SEIDLER R J, et al. Fingerprinting of mixed bacterial strains and biolog gram-negative (GN) substrate communities by enterobacterial repetitive intergenic consensus sequence-PCR (ERIC-PCR) [J]. Current Microbiology,1999,38(4):217-223.
    [162] SZCZUKA E,KAZNOWSKI A. Typing of clinical and environmental Aeromonas sp. strains by random amplified polymorphic DNA PCR, repetitive extragenic palindromic PCR, and enterobacterial repetitive intergenic consensus sequence-PCR [J]. Journal of Clinical Microbiology,2004,42(1):220-228.
    [163] VENTURAM,MEYLAN V,ZINKR. Identification and tracing of Bifidobacterium species by use of enterobacterial repetitive intergenic consensus sequences [J]. Applied and Environmental Microbiology,2003,69(7) :4296-4301.
    [164] 赵立平,肖虹,李艳琴,等.ERIC-PCR:一种快速鉴定环境细菌菌株的方法[J].应用与环境生物学报,1999,5(增刊):30-33.
    [165] Gonralez A, Hierro N, Poblet M, et al. Application of molecular methods to demonstrate species and strain evolution of acetic acid bacteria population during wine production [J]. Int J Food Microbiol, 2005,102(3):295-304.
    [166] 李秀琴,孙永艳,崔丽芳,等.ERIC-PCR在人工混合菌体系中的检出灵敏度[J].微生物学通报,2004,31(4):61-64.
    [167] 叶姜瑜,王图锦,罗固源,等.ERIC-PCR指纹图谱技术对低温下SUFR反应器中菌群结构分析[J].环境科学学报,2008,28(1):101-107.
    [168] 李华芝,李秀艳,刘军,等.生物栅净化系统生物膜微生物群落结构动态的ERIC-PCR指纹图谱分析[J].应用与环境生物学报,2007,13(2):248-252.
    [169] 陈敏,魏桂芳,高平平,等.用ERIC-PCR结合分子杂交监测焦化废水处理系统(A~2/O)中微生物群落结构的变化[J].生态学报,2004,24(7):1330-1334.
    [170] 郝纯,李旭东.用ERIC-PCR技术分析炼油废水生物强化处理菌剂及其抗负荷冲击能力[J].应用与环境生物学报,2007,13(5):717-721.
    [171] 高平平,王健,席玉英,等.代表活性污泥中苯酚降解菌群的ERIC-PCR产物片段的多态性[J].生态学报,2003,23(6):1095-1100.
    [172] 朱红惠,姚青,赵立平.用ERIC-PCR法研究番茄根际细菌群落结构变化[J].微生物学通报,2003,30(4):10-14.
    [173] 高平平,赵立平.微生物群落结构探针杂交评价不同培养基从活性污泥分离优势菌群的能力[J].微生物学报,2003,43(2):264-270.
    [174] 丁吉震.CBS水体修复技术[J].洁净煤技术,2000,6(4):36-38.
    [175] 田伟君,王超,李勇,等.城市污染水体强化净化技术研究进展[J].河海大学学报(自然科学版),2004,32(2):136-139.
    [176] 吴伟明,宋祥甫,金千瑜,等.鱼塘水面无土栽培美人蕉研究[J].应用与环境生物学报,2000,6(3):206-210.
    [177] 陈荷生,宋祥甫,邹国燕.利用生态浮床技术治理污染水体[J].中国水利,2005,(5),50-53.
    [178] 李英杰,年跃刚,胡社荣,等.生态浮床对河口水质的净化效果研究[J].中国给水排水,2008,24(11):60-67.
    [179] 孙连鹏,刘阳,冯晨,等.不同季节浮床美人蕉对水体氮素等污染物的去除[J].中山大学学报(自然科学版),2008,47(2):127-130.
    [180] 周晓红,王国祥,冯冰冰,等.3种景观植物对城市河道污染水体的净化效果[J].环境科学研究,2009,22(1):108-113.
    [181] LI M, WU Y J, YU Z L, et al. Nitrogen removal from eutrophic water by floating-bed grown water spinach (Ipomoea aquatica, Forsk. ) with ion implantation [J]. Water Research, 2007, 41:3152-3158.
    [182] FOM I C, CHEN J. Evaluation of the fern azolla for growth, nitrogen and phosphorus removal from wastewater [J]. Water Research, 2001,35 (6): 1592-1598.
    [183] 罗固源,肖华,韩金奎,等.人工浮床处理重污染河水的效能分析[J].重庆大学学报,2008,31(8):932-936.
    [184] 黄廷林,宋李桐,钟建红,等.人工浮床净化城市景观水体的试验研究[J].西安建筑科技大学学报(自然科学版),2007,39(1):30-33.
    [185] 周小平,徐晓峰,王建国,等.3种植物浮床对冬季富营养化水体氮磷的去除效果研究[J].中国生态农业学报,2007,15(4):102-104.
    [186] 吴伟,胡庚东,金兰仙,等.浮床植物系统对池塘水体微生物的动态影响[J].中国环境科学,2008,28(9):791-795.
    [187] 李先宁,宋海亮,朱光灿,等.组合型生态浮床的动态水质净化特性[J].环境科学,2007,28(11):2448-2452.
    [188] Wen L, Recknagel F. In situ removal of dissolved phosphorus in irrigation drainage water by planted floats: preliminary results from growth chamber experiment [J]. Agriculture, Ecosystems and Environment,2002,90 (1) :9-15.
    [189] 罗固源,韩金奎,肖华,等.美人蕉和风车草人工浮床治理临江河[J].水处理技术,2008,34(8):46-48.
    [190] 张运林,秦伯强,陈伟民,等.太湖水体中悬浮物研究[J].长江流域资源与环境,2004,13(3):266-271.
    [191] 杨顶田,陈伟民,张运林,等.太湖梅梁湾水体中悬浮质及光谱的分布特征[J].生态科学,2002,21(4):1-5.
    [192] 宋英伟,聂志丹,年跃刚,等.城市景观水体曝气与生物膜联合净化技术研究[J].环境科学,2008,29(1):58-62.
    [193] 朱广一,冯煜荣,詹根祥,等.人工曝气复氧整治污染河流[J].城市环境与城市生态,2004,17(3):30-32.
    [194] 王淑梅,王宝贞,金文标,等.城市污染河流水质原位综合净化技术[J].城市环境与城市生态,2008,21(4):1-4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700