用户名: 密码: 验证码:
扣件式钢管高大模板支撑体系的施工技术与管理对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城乡建设的高度发展,高大模板支撑体系在现浇混凝土结构施工中的应用越来越广泛,而扣件式钢管高大模板支撑体系是我国目前使用量最大、应用最普遍的一种模板支撑形式。但由于此类结构设计计算和实际搭设过程中存在着许多不确定、不安全的因素,导致了高大模板支撑体系倒塌事故时有发生,严重影响了施工安全和建筑物的使用性能。
     现行规范计算方法对扣件式模板支撑体系的设计计算存在着3项比较明显的缺陷,即:(1)荷载的计算没有考虑泵送混凝土的冲击荷载;(2)立杆的计算安全度不足;(3)模板支架的构造措施太宽松,使模板支架只能算是“非几何不可变杆件结构”,达不到计算模式“几何不变杆系结构”的要求。现有的研究成果也存在局限性,主要表现为2个方面:(1)主要侧重于立杆的稳定性的研究,对基础设计没有引起足够的重视;(2)主要是针对高大模板支撑架的计算模式进行研究,较少对实施过程管理中存在的问题进行系统深入的分析研究。
     本文通在典型工程中的实践,给出了一个完整的实施范例的设计方案;并在该工程中成立了QC小组,针对“确保预应力箱梁高大模板体系的安全”这一课题开展了PDCA循环,采用因果图法找出了导致预应力箱梁高大模板支撑体系失稳的13条末端因素,确定了在该工程条件下的7条要因,提出了相应的对策,通过对策的实施验证了对策的有效性,成功地完成了预应力箱梁的施工,为以后类似工程的施工起到了举一反三的作用。接着,作者根据典型工程分析得到的13条末端因素对广西50个高大模板工程进行了调查,统计出了这13条末端因素在广西建筑施工中的实际情况,发现了合格率低于60%的有2项,即“钢管壁厚不足”与“没有配备扭力板手”,且这两项合格率很低,分别只有0%与2%,需要政府部门、监理单位、施工单位重点关注,并采取相应的对策;合格率在60%~80%有2项,即“没有详细节点构造措”与“钢管弯曲”,这2项需要一般关注;其它9项合格率均在80%以上,需要适当关注即可。
     本文通过研究系统地总结了规范存在的3个缺陷并提出了修正措施,通过工程实践给出了完整的高大模板支撑体系的设计范例,起到了举一反三的作用;通过在工程中成立QC小组进行PDCA循环活动,首次发现了影响高大模板体系施工质量的13条末端因素并提出了相应的对策;通过对广西50个高大模板工程的调查,发现了影响高大模板工程施工质量的13条末端因素在广西的基本变化规律,提出了政府部门、监理单位、施工单位应采取的改进措施,为扣件式钢管高大模板支撑体系的安全、高效、经济的工作提供了科学依据,为建筑工程的安全施工提供有利的借鉴。
With the high development of the construction industry in urban and countryside area, high formwork supporting system is being applied more and more extensively to cast-in-place concrete structure. The high formwork supporting system with fastener-style steel pipe, a style of frame system, is used most widely and in the largest quantity. However, because of some uncertain and unsafe factors during designing calculation and construction, collapses of the high formwork supporting system are frequent, which is harmful to the safety of constructing and the performance of building.
     When it comes to the designing calculation of the high formwork supporting system with fastener-style steel pipe, there are three apparent bugs in present standard. First, the calculation of load does not take the impulsive force bringing by pumping concrete into account. Second, the calculation of vertical struts doesn’t have needed degree of safety. Third, the structures of the frame system were so loose that it could make the frame a stable no-geometric structure , in stead of a stable geometric structure. Furthermore, there are also two shortcomings in existing research achievements. Firstly, these researches always emphasize the stability of vertical struts and pay little attention to foundation’s design. Secondly, these researches focus on the calculation method and little make a deep and systematic analysis on the managing process.
     According to the experience getting from a typical project, this article tries to provide a solution. In the project, the author established a QC group and carried out a PDCA cycle which aimed at ensuring the safety of the preload-stressed concrete box beam high formwork system. By using the cause and effect system diagram, the QC group distinguishes 13 terminal elements which can cause the preload-stressed concrete box beam high formwork system to lose stability and defines seven of them as the key elements in the project and then raised the corresponding solutions. After being put into practice, these solutions are proved to be effective. The construction process of preload-stressed box beam’s is accomplished smoothly, which set a good example to other similar projects. Basing on the thirteen terminal elements analyzed from the project above, consequently, the author carries out a study on fifty high-formwork projects in Guangxi. The study shows that in the percent of pass, two items are lower than 60%, e.g. thicknessless of steel tube and no equipping moment tool, moreover, the percent of pass of these two items ranking from 0 to 2%, on which government departments, engineering supervision agencies and engineering companies need to concentrate more attention and take effective measures. 2 items have a percent of pass ranking from 60% to 80%, e.g. having no detailed joint structural measure and the curve of steel tube, which needed to be paying a common attention to. The other nine items’pass percent was better than 80%, to which a proper concentration was enough.
     After research, this article sums up three bugs existing in present standard and proposes amendments. By practical building, the author provides a whole case on how to design a high formwork supporting system, which set a good example to the other projects. By establishing the QC group and carrying out the PDCA cycle, the thirteen terminal elements that affect the quality of high formwork supporting system constructing are distinguished and corresponding solutions are brought up. By the survey of fifty engineering projects, the variability law of the thirteen terminal elements is found out; according which the author proposes the measures that government departments, engineering supervision agencies and engineering companies should take. This article, in a word, would provide scientific basis for the safety, high efficiency and economical work of the high formwork supporting system with fastener-style steel pipe. It also provides an available reference to the safe construction of civil building.
引文
[1] 赵挺生,蔡明桥,李树逊等.混凝土建筑结构施工设计[M].北京:中国建筑工业出版社,2004.3-6.
    [2] 钟志敏.浅谈模板支撑坍塌及安全对策[J].建筑安全,2003, 3:17.
    [3] 谢建民,肖备.脚手架与倒塌事故分析与预防措施[J].建筑结构,2002,32(4):71-72.
    [4] 赵如龙.加强建筑工程质量管理促进行业健康发展[J].浙江建筑,2003,3:1-5.
    [5] 杜荣军.混凝土工程模板与支架技术[M].北京:机械工业出版社,2004.422-423.
    [6] JGJ 130-2001. J84-2001. 2002,建筑施工扣件钢管脚手架安全技术规范[S].
    [7] Huang Dahai, Liu Guangting. Experimental Study on Surface Cracking of Early age Concrete[J]. Journal of basic science and engineering, 2002,10(4): 305-403.
    [8] Yuan Y Wan Z L. Prediction of cracking within early-age concrete due to thermal,drying and creep behavior[J]. Cement and Concrete Research, 2002, 32(7):1053-1059.
    [9] Mihashi Hirozo, Leite Joao Paulo De B. State of the art report on control of cracking in early age concrete[J]. Journal of Advanced Concrete Technology, 2004, 2(2):141-154.
    [10] Burrows R W, Kepler W F, Hurcomb D, et al.. Three simple tests for tests for selecting low-crack cement[J]. Cement and Concrete Composites, 2004, 26(5):509-519.
    [11] Ali H Chahrour, Khaled A, Soudki, et al.. RBS polymer encased concrete wall part experimental study and theoretical provisions for flexure and shear[J].Construction and Building Materials, 2005, 19(7): 550-563.
    [12] 王泽云,杨太和.万年场 14#综合楼地下室底板裂缝分析及处理[J].四川工业学院学报,1998, 17(2): 68-72.
    [13] 杨琦,张冬梅.现浇混凝土结构施工阶段塑性裂缝的产生和控制[J].河南城建高等专科学校学报,2001, 10(3): 60-61.
    [14] 王卉.混凝土施工阶段裂缝的探讨[J].四川建筑科学研究,2003, 29(2):113-115
    [15] 郭碧云.住宅工程混凝土楼板裂缝原因的分析与预防探讨[J].福建建设科技,2001(3): 31.-32.
    [16] 赵挺生,赵伟,顾祥林等.高层混凝土结构施工阶段安全性分析的简化模型明.建筑结构,2002, 32(3): 10-12.
    [17] 糜嘉平.建筑模板与脚手架研究及应用[M].北京:中国建筑工业出版社,2001.18-51.
    [18] Ayyub B M,Haldar A.Reliability of RC BC buildings during Construction[J].Specialty Conference on Probabilistic Mechanics 1984, Jan.l l-13: 355-358.
    [19] Hadipriono F C,Wang H K. Analysis of Causes of Formwork Failures in Concrete Structures[J].ASCE Journal of Construction Engineering and Management, 1986,112(1): 112-121.
    [20] Walker A C. Study and analysis of the first 120 failure cases, Structural failures in buildings[J]. Institution of Structural Engineers, 1981:15-40.
    [21] Lin P S. Study of the platform scaffolds and false works in the collapse of Chung-Shan Hall in Taichung City[J]. Modern Construction, 1982, 3(9):12-23.
    [22] Chan S L, Large deflection kinematics formulation for three dimensional framed structures[J]. Comp Meth Appl Mech Engng, 1992, 95:17-36.
    [23] Lee H M, Liu X L, Chen W F. Failure Probability of Time Dependent Reinforced Concrete Structures[R]. Structural Engineering Report, No CE-STR-90-12, School of Civil Engineering, Purdue University, West Lafayette, Ind., 1990.
    [24] Webster F A. Reliability of Multistory Slab Structures Against Progressive Collapse During Construction[J]. ACI ournal, Proceedings, 1980, 77: 449-457.
    [25] Ashraf M El-Shahhat, David V, Rosowsky, et al.. Construction Safety of Multistory Concrete Buildings[J]. ACI Structural Journal, 1993, 90(4): 335-341.
    [26] Peng JL, Pan A D, Rosowsky D V, et al. High-clearance scaffold systems during construction[J]. Engineering Structure, 1996, 18(3): 247-257.
    [27] 余宗明.从混凝土浇注工艺探讨模板荷载计算[J].建筑施工,2000, 22(6):16-19
    [28] 蒋开建.重视结构理论,确保工程质量和施工安全[J].株洲工学院学报,1999,13(4): 49-51.
    [29] 刘雁,钟文乐,邹晓静等.施工过程中框架结构模板支撑体系所受荷载的实测分析[J].建筑施工,2000, 22(2): 24.
    [30] Agarwal R K, Gardner N J. Form and shore Requirements for Multistory Flat Slab Type Buildings[J]. ACI ournal, 1974, 71(11):559-569.
    [31] Sbarounis J A. Multistory Flat Buildings: Construction Loads and Immediate Deflections[J]. Concrete International: Design and Construction, 1984, 6(2): 70-77.
    [32] Rosowsky D V, Huang Y L, Chen W F, Yen T. Modeling concrete placement loads during construction[J]. Structure Engng Rev, 1994, 6(2): 71-84.
    [33] Grundy P, Kabaila A. Construction Loads on Slabs with Shored Formwork in Multistory Buildings[J]. ACI Journal Proceedings, 1963,60(12): 1729-1738.
    [34] Liu X, Chen W F. Probability Distribution of Maximum Wooden Shore Loads in Multistory RC Buildings[J]. Structural Safety. 1987, 4: 197-215.
    [35] Liu X, Chen W F, Bowman M D. Construction Load Analysis for Concrete Structures[J]. ASCE Journal of Structural Engineering. 1985, 111(5): 1019-1036.
    [36] 赵挺生,龙奋杰,方东平等.钢筋混凝土建筑结构施工短暂状况设计分析[J].工程力学,2004, 21(4): 39-44.
    [37] 张传敏,耿川东.钢筋混凝土结构施工或荷载现场调查与统计分析[J].工程力学,2002, 19(5): 62-66. [38〕方东平,耿川东.施工期混凝土结构的安全分析与安全指标[J].土木工程学报,2002, 35(2): 1-7, 19.
    [39] Yue Lin Huang, Wei Fah Chen, How-Ji Chen, et al..A monitoring method for scaffold-frame shoring systems for elevated concrete formwork[J]. Computersand Structure, 2000, 78: 681-690..
    [40] K Nielsen. Load on Reinforced Concrete Floor Slabs and Their Deformation During Construction[R]. Bulletin No.15 Final Report, Swedish Cement and Concrete Research Institute, Royal Institute of Technology, Stockholm, 1952.
    [41] Grundy P, Kabaila A. Construction Loads on slabs with Shored Formwork in Multistory Buildings[J]. ACI Journal, 1963, 60(12): 1729-1738
    [42] Agarwal R K, Gardener N J. Form and Shore Requirements fore Multistory Buildings[J]. ACI Journal, 1974, 71(11): 559-569.
    [43] 余宗明.钢管脚手架铰接计算法[J]建筑技术开发,1997, 24(3): 25-28.
    [44] 杜荣军.脚手架结构的设计规定和计算方法[J].建筑技术,1999, 30(8): 532-535.
    [45] 刘宗仁,涂新华.扣件式钢管脚手架临界力下限计算方法[J].建筑技术,2001,32(8): 541-543.
    [46] 杜荣军.扣件式钢管模板高大模板支撑架的设计和使用安全[J].施工技术,2002,31(3): 3-8.
    [47] 刘家彬,郭正兴.扣件钢管架支模的安全性[J1.施工技术,2002, 31(3): 9-11.
    [48] 卓新,郑念中.对扣件式钢管脚手架规范部分内容的商榷[J].施工技术,2005,34(3): 78-80.
    [49] 余宗明,余始,扣件式钢管架安全技术规范应用初探[J].建筑机械化,2003(8):30-33.
    [50] 熊耀莹,谢宇帕,周金根.关于模板扣件钢管支撑系统诱发荷载讨论[J].中国建筑金属结构,2004 (1):35-36.
    [51] 孙作功.扣件式钢管脚手架应用及可靠度分析[D].同济大学硕士学位论文,2003,1.
    [52] 赵挺生,蔡明桥,李树逊等.混凝土建筑结构施工设计[M],北京:中国建筑工业出版社,2004.13-17.
    [53] 林璋璋,杨俊杰,多层模板支撑体系的实测分析[3].施工技术,2005,34(3):22-24.
    [54] 方东平,耿川东,祝宏毅,刘西拉,施工期钢筋混凝土结构特性的计算研究[J].土木工程学报,2000 33(6):57-62.
    [55] 孙训方,方孝淑,关来泰.材料力学[M].北京:高等教育出版社,1993.210-260
    [56] 天津大学建筑工程系地下建筑工程教研室.地下结构静力计算[M].中国建筑 工业出版社,1979.16-24.
    [57] 陈绍蕃.钢结构设计原理[M].北京:科学出版社,2001.1-35, 90-149.
    [58] 陈绍蕃.钢结构稳定设计指南[M].北京:中国建筑工业出版社,2004.1-77 264-280.
    [59] 王肇民,宗听聪,宜国梅等.钢结构设计原理[M].上海:同济大学出版社,1991.
    [60] 陈骥.钢结构稳定理论与设计[M].北京:科学出版社,2001.1-271, 422-437.
    [61] Timoshemko,S.P. and Gere,J.M..Theory of Elastic Stability, 2nd, Ed., McGraw-Hill,1961.中译本:弹性稳定理论[M].北京:科学出版社,1965.1-199, 227-269.
    [62] 周承惆.弹性稳定理论[M].四川:四川人民出版社,1981.1-86.
    [63] 罗才毅.不同掺合料混凝土早龄期力学性能试验研究[D].浙江大学硕士学位论文,2002. 5.
    [64] 车宏亚,颜德姬,程文壤,江见鲸.混凝土结构[M].北京:中国建筑工业出版社,1998.23-26.
    [65] 李佳梅.门式钢管脚手架的稳定承载力分析方法[D].哈尔滨工业大学硕士学位论文,2005.6.
    [66] 潘德恩,彭瑞麟.钢管脚手架支撑结构类型及破坏模式之探讨[J].建筑钢结构进展,2002, (4).
    [67] 黄玉麟,颜聪,林雍智,陈惠发.混凝土灌浆作业对钢管支撑架之荷重问题[J].中国土木水利工程学邢,1996,8(2):281-286.
    [68] 颜聪,黄玉麟,纪人超,林宜清.钢管鹰架之支撑能力[CJ].中国土木水利工程学刊,1996 ,8(1):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700