用户名: 密码: 验证码:
Hoxc9在维甲酸诱导神经母细胞瘤细胞分化中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分维甲酸诱导神经母细胞瘤细胞分化的分子机制
     目的研究维甲酸诱导神经母细胞瘤细胞分化的分子机制。
     方法用维甲酸体外诱导神经母细胞瘤细胞BE(2)-C分化后,在普通光学显微镜下观察细胞形态变化,采用流式细胞仪检测细胞周期变化,分别采用实时定量PCR(Real-time PCR)和免疫印迹法(Western blotting)观察各种细胞周期素(cyclinA、cyclinB1、cyclinD1、cyclinE1和cyclinE2)和细胞周期素依赖性激酶(CDK1、CDK2、CDK4和CDK6)的mRNA水平和蛋白水平变化。用放线菌酮(Cycloheximide, CHX)抑制细胞蛋白质的合成后,使用免疫印迹法及Image J软件分析细胞周期素(cyclinA、cyclinB1和cyclinE2)半衰期的变化。
     结果维甲酸体外诱导神经母细胞瘤细胞12天后细胞长出长的突起,出现神经元样分化,细胞周期检测结果显示维甲酸诱导组G0/G1期细胞占总细胞的78.2%,较对照组的50.9%增加了27.3%,提示细胞周期阻滞,增殖减少。实时定量PCR和免疫印迹结果显示,细胞周期素cyclinA、cyclinB1和cyclinE2及细胞周期素依赖性激酶CDK1的mRNA水平和蛋白水平均随维甲酸诱导时间的延长而逐渐降低,而蛋白半衰期检测发现这些蛋白的半衰期并没有明显变化,这说明维甲酸处理后,cyclinA、cyclinB1、cyclinE2和CDK1蛋白水平的降低发生在转录水平。cyclinD1的mRNA水平和蛋白水平有增高的趋势,而cyclinE1和其他CDKs (CDK2、CDK4和CDK6)的mRNA水平和蛋白水平均没有明显变化。
     结论维甲酸能够诱导神经母细胞瘤细胞分化,并且在转录水平上抑制cyclinA、cyclinB1、cyclinE2和CDK1的表达,从而导致细胞周期阻滞。
     第二部分Hoxc9在维甲酸诱导神经母细胞瘤细胞分化中的作用
     第一节维甲酸诱导神经母细胞瘤细胞Hoxc9表达增高
     目的观察维甲酸诱导神经母细胞瘤细胞分化后基因表达谱的变化,寻找维甲酸诱导细胞分化的关键分子。
     方法采用基因芯片技术观察维甲酸诱导神经母细胞瘤细胞分化后基因表达谱的变化。通过实时定量PCR和免疫印迹法进一步验证基因芯片检查结果。
     结果基因芯片检查发现维甲酸诱导神经母细胞瘤细胞分化后,一些Hox基因水平上调。通过实时定量PCR和免疫印迹法进一步验证,发现Hoxc9的mRNA水平和蛋白水平随着维甲酸诱导时间的延长明显增高。
     结论Hoxc9可能与维甲酸诱导的神经母细胞瘤细胞分化有关。
     第二节Hoxc9过表达抑制神经母细胞瘤细胞生长
     目的观察Hoxc9过表达对神经母细胞瘤细胞生长的影响。
     方法采用逆转录病毒转染法及四环素诱导表达系统使神经母细胞瘤细胞系(BE(2)-C、SK-N-AS、SK-N-DZ和SK-N-F1)过表达Hoxc9,用MTT法、Ki67染色、流式细胞术和细胞衰老实验检测Hoxc9对神经母细胞瘤细胞生长的影响,采用软琼脂实验及裸鼠成瘤实验观察Hoxc9对神经母细胞瘤细胞致瘤性的影响。采用实时定量PCR和免疫印迹法检测神经母细胞瘤细胞过表达Hoxc9后,细胞周期素cyclinA、cyclinB1、cyclinD1、cyclinE1、cyclinE2和细胞周期素依赖性激酶CDK1、CDK2、CDK4和CDK6表达水平的变化。
     结果过表达Hoxc9的神经母细胞瘤细胞生长明显减慢,细胞增殖标志物Ki67阳性细胞数减少,流式细胞术发现细胞发生G1期阻滞,细胞衰老实验提示细胞衰老加快。软琼脂实验中过表达Hoxc9的细胞较对照组细胞集落形成能力下降,裸鼠成瘤实验发现过表达Hoxc9的细胞致瘤性降低。细胞周期调控因子检测发现Hoxc9能够抑制cyclinA、cyclinB1、cyclinE2和CDK1 mRNA水平和蛋白水平的表达。
     结论Hoxc9过表达抑制神经母细胞瘤细胞的生长。
     第三节Hoxc9是维甲酸诱导神经母细胞瘤细胞分化的关键因子
     目的观察Hoxc9在维甲酸诱导神经母细胞瘤细胞分化中的作用。
     方法采用慢病毒感染法下调神经母细胞瘤细胞中Hoxc9后,用维甲酸诱导对照组和Hoxc9下调组细胞,在普通光学显微镜下观察细胞形态变化,用台盼蓝染色法和Ki67染色法观察细胞的增殖情况,用免疫印迹法观察细胞周期素cyclinA、cyclinB1、cyclinD1和cyclinE2表达水平的变化。
     结果抑制Hoxc9的表达能够阻止维甲酸诱导的神经母细胞瘤细胞分化,抑制维甲酸诱导的细胞周期素cyclinA、cyclinB1和cyclinE2表达水平的下调,而对细胞周期素cyclinD1表达水平无明显影响。
     结论Hoxc9是维甲酸诱导神经母细胞瘤细胞分化的关键因子。
     第三部分Hoxc9在神经母细胞瘤细胞周期调控中的作用
     目的观察Hoxc9在神经母细胞瘤细胞周期调控中的作用。
     方法采用慢病毒感染法下调神经母细胞瘤细胞中Hoxc9和/或cyclinB1的表达,在普通光学显微镜下观察细胞形态的变化,采用流式细胞术及免疫荧光法检测细胞周期的变化,采用免疫印迹法观察pHH3、Hoxc9、cyclinA、cyclinB1蛋白水平的变化。
     结果Hoxc9下调至基础水平的10%时,贴壁的神经母细胞瘤细胞逐渐变圆、脱离培养皿底,最后死亡。流式细胞仪及免疫荧光法检测细胞周期的变化发现随着Hoxc9表达水平的下调,细胞出现M期阻滞,细胞分裂障碍,cyclinB1表达水平增高,而下调cyclinB1的表达能够逆转细胞M期阻滞。
     结论Hoxc9通过调节cyclin B1的水平调控神经母细胞瘤细胞周期。
PART 1 The molecular mechanisms of retinoic acid-induced differentiation of neuroblastoma cells
     Objective To investigate the molecular mechanisms of retinoic acid-induced differentiation of neuroblastoma cells
     Methods Retinoic acid was used to induce the differentiation of neuroblastoma cells. The cell cycle of cells was measured by flow cytometry after PI staining. Real time-PCR and western blotting were used to detect the expression of cyclins (cyclinA, cyclinB1, cyclinD1, cyclinE1, and cyclinE2) and CDKs (CDK1, CDK2, CDK4, and CDK6). The half-life of cyclins was assessed by western blotting and Image J software after the biosynthesis of cyclins was inhibited by protein synthesis inhibitor cycloheximide.
     Results RA induced differentiation and G1 arrest of neuroblastoma BE (2)-C cells. The levels of cyclinA, cyclinB1, cyclinE2 and CDK1 declined substantially with time following RA treatment. The half-life of cyclins (cyclinA, cyclinB1, and cyclinE2) was not apparently affected by RA treatment.
     Conclusions Retinoic acid induces growth arrest and differentiation of neuroblastoma BE (2)-C cells by downregulating the expression of cyclins (cyclinA, cyclinB1, and cyclinE2) and CDK1.
     PART 2 The role of Hoxc9 in retinoic acid-induced differentiation of neuroblastoma cells
     Section 1 Upregulation of Hoxc9 expression in RA-induced differentiation of neuroblastoma cells
     Objective To investigate the effect of RA on genes expression of neuroblastoma cells.
     Methods Microarray was used to detect the changes of cDNA level in BE (2)-C cells treated with RA. Real time PCR and Western blotting were used to confirm the result of microarray.
     Results Microarray showed that the expression of certain Hox genes were upregulated in BE (2)-C cells after exposure to RA. Real time PCR and Western blotting showed the mRNA and protein level of Hoxc9 increased substantially with time.
     Conclusions Hoxc9 may have a role in RA-induced differentiation of neuroblastoma cells.
     Section 2 Ectopic expression of Hoxc9 inhibites growth of neuroblastoma cells
     Objective To investigate the effect of Hoxc9 overexpression in neuroblastoma cells.
     Methods After generating BE (2)-C-derived cells with inducible expression of Hoxc9 in the absence of doxycycline with the Retro-X Tet-Off advanced inducible gene expression system, MTT assay, Ki67 staining, flow cytometry, senescence assay, soft agar and xenograft assay were used to investigate the functional consequence of Hoxc9 upregulation in neuroblastoma cells. Real time PCR and western blotting were used to detect the molecular basis of Hoxc9 upregulation in neuroblastoma.
     Results Ectopic expression of Hoxc9 markedly inhibited the growth of neuroblastoma cells in culture, soft agar and immunodeficient mice. Hoxc9 overexpression also resulted in a marked reduction in levels of cyclinA, B1, E2 and CDK1 in BE (2)-C cells.
     Conclusions Ectopic expression of Hoxc9 inhibited the growth of neuroblastoma cells.
     Section 3 Hoxc9 is the key mediator of RA-induced differentiation of neuroblastoma cells
     Objective To investigate the effect of Hoxc9 in RA-induced differentiation of neuroblastoma cells.
     Methods After downregulation of Hoxc9 in neuroblastoma cells with lentiviruses, we detected the changes of neuroblastoma cells treated with RA by trypan blue exclusion assay and Ki67 staining. The expression of cyclins (cyclinA, cyclinB1, cyclinD1, and cyclinE2) were assessed by Western blotting.
     Results Abrogation of Hoxc9 attenuated the RA-induced differentiation of neuroblastoma cells. RA-induced downregulation of cyclinA, cyclinB1, and cyclinE2 was also attenuated after inhibiting the downregulation of Hoxc9. Conclusions Hoxc9 is required for RA-induced G1 arrest and differentiation of NB cells.
     PART 3 The role of Hoxc9 in neuroblastoma cell cycle control
     Objective To investigate the role of Hoxc9 in neuroblastoma cell cycle control.
     Methods After elimination of Hoxc9 and/or cyclin B1 expression by RNA interference, we investigated the morphologic changes of NB cell lines with microscope. Flow cytometry and immunofluorescence were used to detect cell cycle. The changes of the protein levels were detected by western blotting.
     Results Downregulation of Hoxc9 resulted in a dramatic increase in the number of cells that appeared round and refractile. These cells apparently arrested in M phase as indicated by FACS analysis and by their expression of pHH3, a marker for mitotic cells. The expression of cyclinB increased in Hoxc9 knockdown cells. RNAi-mediated downregulation of cyclin B1 was able to rescue the phenotype of Hoxc9 knockdown in NB cells.
     Conclusions Hoxc9 control the divition of NB cells by regulating cyclinB1 transcription.
引文
1. Brodeur GM. Neuroblastoma:biological insights into a clinical enigma. Nat Rev Cancer 2003,3(3):203-216.
    2. Maris JM, Matthay KK. Molecular biology of neuroblastoma. J Clin Oncol 1999,17(7): 2264-2279.
    3. Anderson DJ. Cellular and molecular biology of neural crest cell lineage determination. Trends Genet 1997,13(7):276-280.
    4. Takeuchi LA, Hachitanda Y, Woods WG, et al. Screening for neuroblastoma in North America. Preliminary results of a pathology review from the Quebek project. Cancer 1995,76(11):2363-2371.
    5. Nishi M, Miyake H, Takeda T, et al.A trial to discriminate spontaneous regression from non-regression cases during mass screening for neuroblastoma. Jpn J Clin Oncol 1994, 24(5):247-251.
    6. Brodeur GM, Nakagawara A. Molecular basis of clinical heterogeneity in neuroblastoma. Am J Pediatr Hematol Oncol 1992,14(2):111-116.
    7. Ho PT, Estroff JA, Kozakewich H, et al. Prenatal detection of neuroblastoma:a ten-year experience from the Dana Farber Center Institute and Children's Hospital. Pediatrics 1993,92(3):358-364.
    8. Woods WG, Lemiux B, Tuchman M. Neuroblastoma represents distinct clinical-biologic entities:a review and perspective from the Quebek neuroblastoma mass screening project. Pediatrics 1992,89(1):114-118.
    9. Tubergen DG, Heyn RM. In situ neuroblastoma associated with an adrenal cyst. J Pediatr 1970,76(3):451-453.
    10. Hansford LM, Thomas WD, Keating JM, et al. Mechanisms of embryonal tumor initiation:distinct roles for MycN expression and MYCN amplification. Proc Natl Acad Sci U S A 2004,101(34):12664-12669.
    11. Maris JM, Kyemba SM, Rebbeck TR, et al. Familial predisposition to neuroblastoma does not map to chromosome band 1p36. Cancer Res 1996,56(15):3421-3425.
    12. Negroni A, Scarpa S, Romeo A, et al. Decrease of proliferation rate and induction of differentiation by a MYCN antisense DNA oligomer in a human neuroblastoma cell line. Cell Growth Diff 1991,2(10):511-518.
    13.Napoli JL. Biochemical pathways of retinoid transport, metabolism, and signal transduction. Clin I mMunol I mMunopathol 1996,80(3 Pt 2):S52-62.
    14. Armstrong JL, Redfern CP, Veal GJ.13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success? Biochem Pharmacol 2005,69(9): 1299-1306.
    15. Nau H. Teratogenicity of isotretinoin revisited:species variation and the role of all-trans-retinoic acid. J Am Acad Dermatol 2001,45(5):S183-187.
    16. Chambon P. A decade of molecular biology of retinoic acid receptors. FASEB J 1996, 10(9):940-954.
    17. Sidell N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 1982,68(4):589-596.
    18. Reynolds CP, Matthay KK, Villablanca JG, et al. Retinoid therapy of high-risk neuroblastoma. Cancer Lett 2003,197(1-2):185-192.
    19. Duboule D. The vertebrate limb:a model system to study the Hox/HOM gene network during development and evolution. Bioessays 1992,14(6):375-384.
    20. Kru mlauf R. Hox genes in vertebrate development. Cell 1994,78(2):191-201.
    21. Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005,6(12):893-904.
    22. Levine M, Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell 1988,55(4):537-540.
    23. Bridges CB, Morgan TH. The third-chromosome group of mutant characters of Drosophila elanogaster. Publ Carnegie Inst 1923,327:1-251.
    24. Perez-Cabrera A, Kofman-Alfaro S, Zenteno JC. Mutational analysis of HoxD13 and HoxA13 genes in the triphalangeal thumb-brachyectrodactyly syndrome. J Orthop Res 2002,20(5):899-901.
    25. Mortlock DP, Innis JW. Mutation of HoxA13 in hand-foot-genital syndrome. Nat Genet 1997,15(2):179-180.
    26. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010,10(5):361-371.
    27. Abate-Shen C. Deregulated homeobox gene expression in cancer:cause or consequence? Nature Rev. Cancer 2002,2(10):777-785.
    28. Manohar CF, Salwen HR., Furtado MR, et al. Up-regulation of HOXC6, HOXD1, and HOXD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumour Biol 1996,17(1):34-47.
    29. Zhang X, Hamada J, Nishimoto A, et al. HOXC6 and HOXC11 increase transcription of S100beta gene in BrdU-induced in vitro differentiation of GOTO neuroblastoma cells into Schwannian cells. J Cell Mol Med 2007,11(2):299-306.
    1. Sidell N, Wada R, Han G, et al. Phenylacetate synergizes with retinoic acid in inducing the differentiation of human neuroblastoma cells. Int J Cancer 1995,60(4):507-514.
    2. Giguere V. Retinoic acid receptors and cellular retinoid binding proteins:complex interplay in retinoid signaling. Endocr Rev 1994,15(1):61-79.
    3. Di Martino D, Ponzoni M, Cornaglia-Ferraris P, et al. Different regulation of mid-size neurofilament and N-myc mRNA expression during neuroblastoma cell differentiation induced by retinoic acid. Cell Mol Neurobiol 1990,10(3):459-470.
    4. Matsuo T, Thiele CJ. p27Kip1:a key mediator of retinoic acid induced growth arrest in the SMS-KCNR human neuroblastoma cell line. Oncogene 1998,16(25):3337-3343.
    5. Matsumoto K, Wada RK, Yamashiro JM, et al. Expression of brain-derived neurotrophic factor and p145TrkB affects survival, differentiation, and invasiveness of human neuroblastoma cells. Cancer Res 1995,55(8):1798-1806.
    6. Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol 1993,11(8):
    1466-1477.
    7. Takeuchi LA, Hachitanda Y, Woods WG, et al. Screening for neuroblastoma in North America:preliminary results of a pathology review from the Quebek project. Cancer 1995,76(11):2363-2371.
    8. Look AT, Hayes FA, Shuster JJ, et al. Clinical relevance of tumor cell ploidy and N-myc gene amplification in childhood neuroblastoma. A Pediatric Oncology Group Study. J Clin Oncol 1991,9(4),581-591.
    9. Armstrong JL, Redfern CP, Veal GJ.13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success? Biochem Pharmacol 2005, 69(9):1299-1306.
    10. Bradfield SM, Douglas JG, Hawkins DS, et al. Fractionated low-dose radiotherapy after myeloablative stem cell transplantation for local control in patients with high-risk neuroblastoma. Cancer 2004,100(6):1268-1275.
    11. Huang S, Laoukili J, Epping MT, et al. ZNF423 is critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma outcome. Cancer Cell 2009,15(4):328-340.
    12. Kaplan DR, Matsumoto K, Lucarelli E, et al. Induction of TrkB by retinoic acid mediates biologic responsiveness to BDNF and differentiation of human neuroblastoma cells. Eukaryotic Signal Transduction Group. Neuron 1993,11(2): 321-331.
    13. Masia S, Alvarez S, de Lera AR, et al. Rapid nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Mol Endocrinol 2007,21(10):2391-2402.
    14. Oppenheimer O, Cheung NK, Gerald WL. The RET oncogene is a critical component of transcriptional programs associated with retinoic acid-induced differentiation in neuroblastoma. Mol Cancer Ther 2007,6(4):1300-1309.
    15. Borriello A, Cucciolla V, Criscuolo M, et al. Retinoic acid induces p27Kipl nuclear
    accumulation by modulating its phosphorylation. Cancer Res 2006,66(8):4240-4248.
    16. Jiang M, Zhu K, Grenet J, et al. Retinoic acid induces caspase-8 transcription via phospho-CREB and increases apoptotic responses to death stimuli in neuroblastoma cells. Biochim Biophys Acta 2008,1783(6):1055-1067.
    17. Ross RA, Biedler JL, Spengler BA. A role for distinct cell types in determining malignancy in human neuroblastoma cell lines and tumors. Cancer Lett 2003,197(1-2): 35-39.
    18. Cui H, Ma J, Ding J, et al. Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 2006,281(45):34696-34704.
    19. van den Heuvel S. Cell-cycle regulation.WormBook 2005,21:1-16.
    20. Donjerkovic D, Scott DW. Regulation of the G1 phase of the ma mMalian cell cycle. Cell Res 2000,10(1):1-16.
    21. Takuwa N, Takuwa Y. Regulation of cell cycle molecules by the Ras effector system. Mol Cell Endocrinol 2001,177(1-2):25-33.
    22. Yan S, Wenner CE. Modulation of cyclin Dl and its signaling components by the phorbol ester TPA and the tyrosine phosphatase inhibitor vanadate. J Cell Physiol 2001, 186(3):338-349.
    23. Szekely L, Uzvolgyi E, Jiang WQ, et al. Subcellular localization of the retinoblastoma protein. Cell Growth Differ 1991,2(6):287-295.
    24. Murray AW. Recycling the cell cycle:cyclins revisited. Cell 2004,116(2):221-234.
    25. Satyanarayana A, Kaldis P. Ma mMalian cell-cycle regulation:several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene 2009,28(33):2925-2939.
    1. Reynolds CP. Differentiating agents in pediatric malignancies:retinoids in neuroblastoma. Curr Oncol Rep 2000,2(6):511-518.
    2. Nishi K, Inoue H, Schnier JB, et al. cyclin D1 downregulation is important for permanent cell cycle exit and initiation of differentiation induced by anchorage-deprivation in human keratinocytes. J Cell Biochem 2009,106(1):63-72.
    3. Gu ZD, Shen LY, Wang H, et al. HoxA13 promotes cancer cell growth and predicts poor survival of patients with esophageal squamous cell carcinoma. Cancer Res 2009, 69(12):4969-4973.
    4. Dickson GJ, Kwasniewska A, Mills KI, et al. Hoxa6 potentiates short-term hemopoietic cell proliferation and extended self-renewal. Exp Hematol 2009,37(3): 322-333.
    5. Armstrong JL, Redfern CP, Veal GJ.13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success? Biochem Pharmacol 2005,69(9): 1299-1306.
    6. Sidell N. Retinoic acid-induced growth inhibition and morphologic differentiation of human neuroblastoma cells in vitro. J Natl Cancer Inst 1982,68(4):589-596.
    7. Langston AW, Gudas LJ. Retinoic acid and homeobox gene regulation. Curr Opin Genet Dev 1994,4(4):550-555.
    8. Mavilio F, Simeone A, Boncinelli E, et al. Activation of four homeobox gene clusters in human embryonal carcinoma cells induced to differentiate by retinoic acid. Differentiation 1988,37(1):73-79.
    9. Simeone A, Acampora D, Arcioni L, et al. Sequential activation of Hox2 homeobox genes by retinoic acid in human embryonal carcinoma cells. Nature 1990,346(6286): 763-766.
    10. Sawhney N, Hall PA. Ki67-structure, function, and new antibodies. J Pathol 1992, 168(2):161-162.
    11. Talluri S, Isaac CE, Ahmad M, et al. A Gl checkpoint mediated by the retinoblastoma protein that is dispensable in terminal differentiation but essential for senescence. Mol Cell Biol 2010,30(4):948-960.
    12. Cui H, Ma J, Ding J, et al. Bmi-1 regulates the differentiation and clonogenic self-renewal of Ⅰ-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 2006,281(45):34696-34704.
    13. Duboule D. The vertebrate limb:a model system to study the Hox/HOM gene network during development and evolution. Bioessays 1992,14(6):375-384.
    14. Levine M, Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell 1988,55(4):537-540.
    15. Abate-Shen C. Deregulated homeobox gene expression in cancer:cause or consequence? Nature Rev. Cancer 2002,2(10),777-785.
    1. Brodeur GM. Neuroblastoma:biological insights into a clinical enigma. Nat Rev Cancer 2003 3(3):203-216.
    2. Takeuchi LA, Hachitanda Y, Woods WG, et al. Screening for neuroblastoma in North America:preliminary results of a pathology review from the Quebek project. Cancer 1995,76(11):2363-2371.
    3. Nishi M, Miyake H, Takeda T, et al. Cases of spontaneous regression and true patients detected in mass screening for neuroblastoma. Int J Pediatr Hematol Oncol 1995,1: 557-563.
    4. Armstrong JL, Redfern CP, Veal GJ.13-cis retinoic acid and isomerisation in paediatric oncology--is changing shape the key to success? Biochem Pharmacol 2005,1; 69(9):1299-1306.
    5. Nau H. Teratogenicity of isotretinoin revisited:species variation and the role of all-trans-retinoic acid. J Am Acad Dermatol 2001,45(5):S183-187.
    6. Malumbres M, Barbacid M. Cell cycle, CDKs and cancer:a changing paradigm. Nat Rev Cancer 2009,9(3):153-166.
    7. Malumbres M. cyclins and related kinases in cancer cells. J BUON 2007,12 Suppl 1: S45-52.
    8. Golias CH, Charalabopoulos A, Charalabopoulos K. Cell proliferation and cell cycle control:a mini review. Int J Clin Pract 2004,58(12):1134-1141.
    9. Vermeulen K, Van Bockstaele DR, Berneman ZN. The cell cycle:a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif 2003,36(3): 131-149.
    10. Schwartz GK.CDK inhibitors:cell cycle arrest versus apoptosis. Cell Cycle 2002,1(2): 122-123.
    11. Gavet O, Pines J. Activation of cyclin Bl-Cdkl synchronizes events in the nucleus and the cytoplasm at mitosis. J Cell Biol 2010,189(2):247-259.
    12. van Zon W, Wolthuis RM. cyclin A and Nek2A:APC/C-Cdc20 substrates invisible to the mitotic spindle checkpoint. Biochem Soc Trans 2010,38(Pt 1):72-77.
    13. Park M, Chae HD, Yun J, et al. Constitutive activation of cyclin B1-associated cdc2 kinase overrides p53-mediated G2-M arrest. Cancer Res 2000,60(3):542-545.
    14. Gallant P, Nigg EA. cyclin B2 undergoes cell cycle-dependent nuclear translocation and, when expressed as a non-destructible mutant, causes mitotic arrest in HeLa cells. J Cell Biol 1992,117(1):213-224.
    15. Foronda D, de Navas LF, Garaulet DL, et al. Function and specificity of Hox genes. Int J Dev Biol 2009,53(8-10):1404-1419.
    16. Duboule D. The rise and fall of Hox gene clusters. Development 2007,134(14): 2549-2560.
    17. Lemons D, McGinnis W.Genomic evolution of Hox gene clusters. Science 2006, 313(5795):1918-1922.
    1. Lewis EB. A gene complex controlling segmentation in Drosophila. Nature 1978, 276(5688):565-570.
    2. Grier DG, Thompson A, Kwasniewska A, et al. The pathophysiology of Hox genes and their role in cancer. J Pathol 2005,205(2):154-171.
    3. Wakimoto BT, Turner FR, Kaufman TC. Defects in embryogenesis in mutants associated with the antennapedia gene complex of Drosophila melanogaster. Dev Biol 1984,102(1):147-172.
    4. Tiong SY, Girton JR, Hayes PH, et al. Effect of regeneration on compartment specificity of the bithorax mutant of Drosophila melanogaster. Nature 1977,268(5619): 435-436.
    5. Manak JR, Scott MP. A class act:conservation of homeodomain protein functions. Dev Suppl 1994,61-77
    6. Duboule D. The vertebrate limb:a model system to study the Hox/HOM gene network during development and evolution. Bioessays 1992,14(6):375-384.
    7. Pearson JC, Lemons D, McGinnis W. Modulating Hox gene functions during animal body patterning. Nat Rev Genet 2005,6(12):893-904.
    8. Apiou F, Flagiello D, Cillo C, et al. Fine mapping of human Hox gene clusters. Cytogenet Cell Genet 1996,73(1-2):114-115.
    9. Levine M, Hoey T. Homeobox proteins as sequence-specific transcription factors. Cell 1988,55(4):537-540.
    10. McGinnis W, Kru mlauf R. Homeobox genes and axial patterning. Cell 1992,68(2): 283-302.
    11. Svingen T, Tonissen KF. Hox transcription factors and their elusive ma mMalian gene targets. Heredity 2006,97(2):88-96.
    12. Kissinger CR, Liu B, Martin-Blanco E, et al. Crystal structure of an engrailed homeodomain-DNA complex at 2.8A resolution:a framework for understanding homeodomain-DNA interactions. Cell 1990,63(3):579-590.
    13. Otting G, Qian YQ, Billeter M, et al. Protein-DNA contacts in the structure of a homeodomain-DNA complex determined by nuclear magnetic resonance pectroscopy in solution. EMBO J 1990,9(10):3085-3092.
    14. Diez del Corral R, Storey KG. Opposing FGF and retinoid pathways:a signalling switch that controls differentiation and patterning onset in the extending vertebrate body axis. Bioessays 2004,26(8):857-869.
    15. Pinsonneault J, Florence B, Vaessin H, et al. A model for extradenticle function as a switch that changes Hox proteins from repressors to activators. EMBO J 1997,16(8): 2032-2042.
    16. Zhang X, Zhu T, Chen Y, et al. Human growth hormone-regulated HoxAl is a human mammary epithelial oncogene. J Biol Chem 2003,278(9):7580-7590.
    17. Chang CP, Shen WF, Rozenfeld S, et al. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev 1995,9(6): 663-674.
    18. Phelan ml, Rambaldi I, Featherstone MS. Cooperative interactions between Hox and PBX proteins mediated by a conserved peptide motif. Mol Cell Biol 1995,15(8): 3989-3997.
    19. Taylor HS, Arici A, Olive D, et al. HoxA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest 1998, 101(7):1379-1384.
    20. Muragaki Y, Mundlos S, Upton J, et al. Altered growth and branching patterns in synpolydactyly caused by mutations in HoxD13. Science 1996,272(5261):548-551.
    21. Mortlock DP, Innis JW. Mutation of HoxA13 in hand-foot-genital syndrome. Nat Genet 1997,15(2):179-180.
    22. Zweier C, Albrecht B, Mitulla B, et al. "Mowat-Wilson" syndrome with and wit hout Hirschsprung disease is a distinct, recognizable multiple congenital anomali es-mental retardation syndrome caused by mutations in the zinc finger homeo -box 1B gene. Am J Med Genet 2002,108(3):177-181.
    23. Shah N, Sukumar S. The Hox genes and their roles in oncogenesis. Nat Rev Cancer 2010,10(5):361-371.
    24. Abate-Shen C. Deregulated homeobox gene expression in cancer:cause or consequence? Nature Rev. Cancer 2002,2(10):777-785.
    25. Park JR, Eggert A, Caron H. Neuroblastoma:biology, prognosis, and treatment. Pediatr Clin North Am 2008,55(1):97-120.
    26. Abbracchio MP, Cattabeni F, Clementi F. Adenosine receptors linked to adenylate cyclase activity in human neuroblastoma cells:modulation during cell differentiation. Neuroscience 1989,30(3):819-825.
    27. Horii Y, Sugimoto T, Sawada T, et al. Differential expression of N-myc and c-src proto-oncogenes during neuronal and schwannian differentiation of human neuroblastoma cells. Int J Cancer 1989,43(2):305-309.
    28. Manohar CF, Salwen HR., Furtado MR, et al. Up-regulation of HoxC6, HoxD1, and HoxD8 homeobox gene expression in human neuroblastoma cells following chemical induction of differentiation. Tumour Biol 1996,17(1):34-47.
    29. Zhang X, Hamada J, Nishimoto A, et al. HoxC6 and HoxC11 increase transcription of S100beta gene in BrdU-induced in vitro differentiation of GOTO neuroblastoma cells into Schwannian cells. J Cell Mol Med 2007,11(2):299-306.
    30. Economides KD, Capecchi MR. Hoxbl3 is required for normal differentiation and secretory function of the ventral prostate. Development 2003,130(10):2061-2069.
    31. Jung C, Kim RS, Zhang HJ, et al. HoxB13 induces growth suppression of prostate cancer cells as a repressor of hormoneactivated androgen receptor signaling. Cancer Res 2004,64(24):9185-9192.
    32. Miller GJ, Miller HL, van Bokhoven A, et al. Aberrant HoxC expression accompanies the malignant phenotype in human prostate. Cancer Res 2003,63(18):5879-5888.
    33. Waltregny D, Alami Y, Clausse N, et al. Overexpression of the homeobox gene HoxC8 in human prostate cancer correlates with loss of tumor differentiation. Prostate 2002,50(3):162-169.
    34. Kikugawa T, Kinugasa Y, Shiraishi K, et al. PLZF regulates Pbxl transcription and Pbxl-HoxC8 complex leads to androgenindependent prostate cancer proliferation. Prostate 2006,66(10):1092-1099.
    35. Lawrence HJ, Sauvageau G, Humphries RK, et al. The role of Hox homeobox genes in normal and leukemic hematopoiesis. Stem Cells 1996,14(3):281-291.
    36. Bijl J, van Oostveen JW, Kreike M, et al. Expression of HoxC4, HoxC5, and HoxC6 in human lymphoid cell lines, leukemias, and benign and malignant lymphoid tissue. Blood 1996,87(5):1737-1745
    37. Lawrence HJ, Largman C. Homeobox genes in normal hematopoiesis and leukemia. Blood 1992,80(10):2445-2453.
    38. Calvo KR, Sykes DB, Pasillas MP, et al. Nup98-HoxA9 i mMortalizes myeloid progenitors, enforces expression of Hoxa9, Hoxa7 and Meisl, and alters cytokine-specific responses in a manner similar to that induced by retroviral co-expression of Hoxa9 and Meisl. Oncogene 2002,21(27):4247-4256.
    39. Grier DG, Thompson A, Kwasniewska A, et al. The pathophysiology of Hox genes and their role in cancer. J Pathol 2005,205(2):154-171.
    40. Carrio M, Arderiu G, Myers C, et al. Homeobox D10 induces phenotypic reversion of breast tumor cells in a threedimensional culture model. Cancer Res 2005,65(16): 7177-7185.
    41. Jung C, Kim RS, Zhang H, et al. HoxB13 is downregulated in colorectal cancer to confer TCF4-mediated transactivation. Br J Cancer 2005,92(12):2233-2239.
    42. Plowright L, Harrington KJ, Pandha HS, et al. Hox transcription factors are potential therapeutic targets in non-small-cell lung cancer (targeting Hox genes in lung cancer). Br J Cancer 2009,100(3):470-475.
    43. Raman V, Martensen SA, Reisman D, et al. Compromised HoxA5 function can limit p53 expression in human breast tumours. Nature 2000,405(6789):974-978.
    44. Chen H, Chung S, Sukumar S. HoxA5-induced apoptosis in breast cancer cells is mediated by caspases 2 and 8. Mol Cell Biol 2004,24(2):924-935.
    45. Kasibhatla S, Brunner T, Genestier L, et al. DNA damaging agents induce expression of Fas ligand and subsequent apoptosis in T lymphocytes via the activation of NF-κB and AP-1. Mol Cell 1998,1(4):543-551.
    46. Wu X, Chen H, Parker B, et al. HoxB7, a homeodomain protein, is overexpressed in breast cancer and confers epithelialmesenchymal transition. Cancer Res 2006,66(19): 9527-9534.
    47. Ma XJ, Wang Z, Ryan PD, et al. A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 2004,5(6):607-616.
    48. Jerevall PL, Bro mMesson S, Strand C, et al. Exploring the two-gene ratio in breast cancer—independent roles for HoxB13 and IL17BR in prediction of clinical outcome. Breast Cancer Res Treat 2008,107(2):225-234.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700