用户名: 密码: 验证码:
茶多酚对前列腺癌PC-3M系细胞作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前列腺癌是男性中仅次于肺癌、直接导致死亡的第二大癌症,而在中国、日本等长期具有饮茶习惯的亚洲国家,前列腺癌的发病率要远远低于欧美等西方国家,这是否与这两区域不同的饮茶习惯有关呢?
     另外,前列腺癌组织包含两种癌细胞类型:激素依赖性和激素非依赖性,这导致中晚期前列腺癌治疗的短期效果与中长期效果差距甚大。
     茶叶中的主要成分:茶多酚(TPs)具有多种生物活性,因此尝试用TPs来抗治前列腺癌便在情理之中。
     本实验选用人雄激素非依赖性前列腺癌PC-3M细胞,设立对照组与实验组,倒置显微镜观察TPs处理后细胞数量与形态变化;采用MTT比色法检测TPs对雄激素非依赖性前列腺肿瘤PC-3M细胞增殖的影响;吖啶橙/溴化乙锭细胞染色法观察诱导细胞凋亡情况;流式细胞术分析细胞周期;划痕实验观察细胞迁移力;细胞侵袭实验观察细胞侵袭能力;RT-PCR和Western blot检测cyclin D1、Caspase-3、survivin、MMP-2、TIMP-2基因的转录与表达。
     结果表明,与对照组比较,加药组细胞增殖速度减慢,细胞状态变差。在镜下表现为数量减少,且细胞细瘦、皱缩,局部可见细丝状“伪足”形成,细胞透光性减弱,细胞质内灰黑色颗粒状物增多。MTT法示实验组对PC-3M细胞的增殖抑制作用增强;细胞染色法示实验组凋亡率增高;流式细胞术显示细胞阻滞于G1期,增殖指数降低;划痕实验示茶多酚使PC-3M细胞迁移力下降;细胞侵袭实验示PC-3M细胞侵袭力减弱;RT-PCR与Western blot示Caspase-3、TIMP-2基因转录与翻译上调,而cyclin D1、survivin、MMP-2基因转录与翻译下调,且上述结果在一定范围内呈时间、剂量依赖性。
     由此我们得出结论:茶多酚对人雄激素非依赖性前列腺癌PC-3M细胞具有阻滞细胞周期、抑制增殖、促进凋亡,减弱PC-3M细胞侵袭力的作用,上述作用与上调Caspase-3、TIMP-2基因,下调cyclin D1、survivin、MMP-2基因的转录与翻译有关。
Objective:
     Tea,as a traditional health drink in China, has lasted for over three thousand years,and it is one of the three world's favourest beverages for it's speciality on health care.Today it's still popular.It has became more and more scientists' concerns that the habit of drinking tea regularly has advantages of keeping human health.Prostate cancer is the second largest cancer that result of the death,only second to lung cancer in men in western countries.The prostate tumor incidence in China,Japan and other asiatic countries in which peoples have the long-term habits of drinking tea is far lower than the west.Whether this difference is relative with the habits of drinking tea in above-mentioned zones?Many findings of experiments in vivo and in vitro have indicated that the main ingredient of tea:tea polyphenols(TPs) is anticarcinogenic,so it is reasonable that more and more investigators try to cure the tumor with the TPs.Our experiment also try to investigate the regulatory effect of tea polyphenol on proliferation inhibition apoptosis and invasion force of human androgen-independent prostate cancer PC-3M cells.
     Methods:
     The androgen-independent prostate cancer cells PC-3M is cultured in Iscove's Modified Dulbecco's Medium(IMDM) containing 10% of fetal bovine serum,and is incubatored in incubation at 37℃, 5% CO2 and constant humidity.
     When cell fusion reachs about 80%,intervention treatment is conducted.The PC-3M cells are divided into treatment group and control group.
     At 24 hour and 48 hour after intervention,we observe the change about cell number,morphology and state by phase contrast microscope.Final concentrations of TPs are 0,20,40,60,80,100ug/ml.
     The inhibitions of cell proliferation at 24 hour,48 hour and 72 hour after intervention are detected by MTT assay.Final concentrations of TPs are same with above-mentioned.
     The change of cell cycle phase at 24 hour after intervention is analyzed by flow cytometry.Final concentrations of TPs are 0,40,60,80ug/ml.
     The changes of the apoptosis at 24 hour and 48 hour after intervention is inspected by acridine orange/ethidium bromide(AO/EB) fluorescent staining method.Final concentrations of TPs are also 0,40,60,80ug/ml.
     By scratche assay,we observe the change of cell migration at 0h,4h,8h,12h and 24h after intervention with different concentrations of TPs.Final concentrations of TPs are also 0,40,60,80ug/ml.
     We conduct the transwell assay.We know the change of cell invision force when PC-3M cell is intervented for 24h and 48h with different concentrations of TPs.Final concentrations of TPs are 0,40,60,80ug/ml.
     Besides,the transcription and translation of the genes of cyclin D1,caspase-3, survivin,MMP-2,TIMP-2 in carcinoma cells are observed by RT-PCR and western blot.Final concentrations of TPs are 0,40,60,80ug/ml.
     Data shown here are from representative experiments repeated at least three times with similar results.The data are shown asχ±s.With SPSS 17.0 statistical software,the data are analysised as t-test for independent samples and analysis of variance for the single factor and multiple sets(a=0.05).
     Results:
     After being treated with tea polyphenols solution,the number,morphology and state of human androgen-independent prostate cancer PC-3M cell are all changed appropriately.Compared with control group,dosing groups cell proliferation is slower,and cell is weak.Under the microscope,the cell number decreases and cell is slender and collapse.In some local visual fields,fine filamentous "pseudopodia" is visiable.Cell transmittance is weakened,and grey-black particles increase in cytoplasm.
     The results of MTT assay about cell inhibition incidence are shown in Talbe 1.1,from which we can see that as TPs’s concentrations being elevated and time being extended,proliferation inhibitory effect of TPs on the PC-3M cell has gradually enhanced.
     AO/EB staining reflects the apoptosis rate after PC-3M cell is treated with TPs at different concentrations as shown in Talbe 1.2,from which we can see that partial cells present the morphological change of apoptosis under the fluorescent microscope, and the apoptotic rates of the treatment groups increase respectively.
     Flow cytometry reflects cell cycle changes after prostate cancer PC-3M cell is treated with TPs for 24h,as shown in Talbe 1.3,from which we can see that the cells in S and G2/M phase increase, the cells in G0/G1 phase decrease.It demonstrates that the cell cycle of experimental group is blocked in the G1 phase,and proliferation index decrease.
     As shown in the scratch assay,as TPs concentration increasing, the lateral transfer distances of PC-3M cells decrease.And there is also change about cell morphology.Especially when the TPs concentrations is up to 80ug/ml,the cell on the edge of scratch creases and become round.It indicates that the TPs can attenuate the ablity of migration of prostate cancer PC-3M cell.
     It is shown in the photo of transwell assay and Talbe 1.4 that PC-3M cells which penetrated through the matrix and migrated to under-surface decrease after treatment with TPs.It explains that PC-3M cell invasion forces weaken.
     In part 1 of experiment,RT-PCR and Western blot result shows the transcription and translation of caspase-3 gene is up-rugulated,and the transcription and translation of cyclin D1 and survivin gene are down-rugulated.The above results in a certain range are time-dependent and dose-dependent,which to a certain extent explain and validate the phenomenons that TPs can cause prostate cancer PC-3M cell cycle arrest,proliferation depreciation and promotion of cell apoptosis.
     In part 2 of experiment,RT-PCR and Western blot result shows the transcription and translation of MMP-2 genes is down-rugulated,and the transcription and translation of TIMP-2 gene is up-rugulated.The above results in a certain range is time-dependent and(or) dose-dependent,which to a certain extent explain and validate the phenomenons that TPs can weaken prostate cancer PC-3M invasion.
     Conclusion:
     TPs can inhibit the proliferation of human androgen-independent prostate cancer PC-3M cell,induce the apoptosis and weaken PC-3M cell migration and invasion force.The transcription and translation of up-regulation of caspase-3 and TIMP-2 gene,and of down-regulation of cyclin D1,survivin and MMP-2 gene may one of its molecular mechanisms.
引文
[1]马森,李碧婵,游玉琼,游洪忠.武夷岩茶营养成分分析[J].武夷学院学报, 2008(05).
    [2]杨贤强,王岳飞,陈留记.茶多酚化学[M].上海:上海科学技术出版社,2003. 1-2200.
    [3]刘军海,李志洲.茶叶中有效成分应用及其提取工艺研究进展[J].食品研究与开发, 2007(03).
    [4] Qiao Y, Cao J, Xie L, et al. Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells[J]. Arch Pharm Res, 2009,32(9):1309-15.
    [5] Wang X, Hao MW, Dong K, et al. Apoptosis induction effects of EGCG in laryngeal squamous cell carcinoma cells through telomerase repression[J]. Arch Pharm Res, 2009,32(9):1263-9.
    [6] Boon N. Health potential for functional green teas?[J]. Int J Vitam Nutr Res, 2008,78(6):275-81.
    [7] Huang CH, Tsai SJ, Wang YJ, et al. EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells[J]. Mol Nutr Food Res, 2009,53(9):1156-65.
    [8] Ui J, Kondo K, Sawada T, et al. Survival of foodborne pathogens in grain products and the effect of catechins[J]. Shokuhin Eiseigaku Zasshi, 2009,50(3):126-30.
    [9] Lambert JD, Yang CS. Cancer chemopreventive activity and bioavailability of tea and tea polyphenols[J]. Mutat Res, 2003,523-524:201-8.
    [10] Hayatsu H, Inada N, Kakutani T, et al. Suppression of genotoxicity of carcinogens by (-)-epigallocatechin gallate[J]. Prev Med, 1992,21(3):370-6.
    [11] Filipovic I, von Figura K, Buddecke E. Studies of the (+)-catechin action on the metabolism of bovine arterial tissue[J]. Angiologica, 1972,9(3-6):204-12.
    [12]杨贤强,曹明富,沈生荣,方允中,刘明哲,朱善瑾,徐黻本.茶多酚生物学活性的研究[J].茶叶科学, 1993(01).
    [13] Eichenberger P, Colombani PC, Mettler S. Effects of 3-week consumption of green tea extracts on whole-body metabolism during cycling exercise in endurance-trained men[J]. Int J Vitam Nutr Res, 2009,79(1):24-33.
    [14]晏双利,杨贤强.茶多酚的功效[J].今日科苑, 2005(02).
    [15]徐平,王岳飞,杨贤强.天然抗氧化剂——茶多酚对老龄人常见多发病的作用[J].中华茶祖神农文化论坛, 2008.
    [16]李磊,王岳飞,梁燕,杨贤强.天然抗氧化物质的保健功能及抗氧化活性研究进展[J].茶叶, 2008(02).
    [17]胡秀芳,杨贤强,陈留记.茶多酚对皮肤的保护与治疗作用(续)[J].福建茶叶, 2000(03).
    [18]屠幼英.茶黄素抗癌作用机理[J].中国茶叶, 2008(02).
    [19] Sazuka M, Murakami S, Isemura M, et al. Inhibitory effects of green tea infusion on in vitro invasion and in vivo metastasis of mouse lung carcinoma cells[J]. Cancer Lett, 1995,98(1):27-31.
    [20]谢冰芬,冯公侃,朱孝峰,李志铭,刘宗潮.茶多酚对人癌细胞和人体细胞增殖及凋亡的实验研究[J].中草药, 2003(06): 63-66.
    [21]谢冰芬,公侃,朱孝峰,李志铭,刘宗潮.茶多酚对人癌细胞和人正常细胞生长抑制作用的差异[J]. 2000全国肿瘤学术大会, 2000: 1.
    [22]罗非君,胡智,赵晓荣,邓锡云,易薇,顾焕华,曹亚.茶多酚诱导鼻咽癌细胞cyclin D1表达下调[J].癌症, 2001(04): 358-362.
    [23] Hastak K,Gupta S,Ahmad N,Agarwal MK,AgarwalML,Mukhtar H. Role of p53 and NF-kappa B in epigallocatechin-3-gallate-induced apoptosis of LNCaP cells. ONCOGENE. 22(31), 2003. 4851-4859.
    [24] Yokoyama M, Noguchi M, Nakao Y, et al. The tea polyphenol, (-)-epigallocatechin gallate effects on growth, apoptosis, and telomerase activity in cervical cell lines[J]. Gynecol Oncol, 2004,92(1):197-204.
    [25] Albrecht DS,Clubbs EA,Ferruzzi M,Bomser JA. Epigallocatechin-3-gallate (EGCG) inhibits PC-3 prostate cancer cell proliferation via MEK-independent ERK1/2 activation. CHEMICO-BIOLOGICAL INTERACTIONS. 171(1), 2008. 89-95.
    [26]贾旭东,韩驰,陈君石.茶多酚与茶色素对大鼠肝癌前病变组织细胞周期调节因子的影响[J].中华预防医学杂志, 2002(04).
    [27]张星海,杨贤强.茶多酚及儿茶素对前列腺癌细胞生长的抑制作用[J].茶叶, 2003(03).
    [28]李立祥.茶叶深加工(二)茶多酚茶色素[J].茶业通报, 2004(03): 137-138.
    [29]易娟,邓慧君,曹进.绿茶和红茶多酚对大鼠脂肪分化相关基因表达影响的比较研究[J].营养学报, 2007(06): 582-586.
    [30] Imanishi H, Sasaki YF, Ohta T, et al. Tea tannin components modify the induction of sister-chromatid exchanges and chromosome aberrations in mutagen-treated cultured mammalian cells and mice[J]. Mutat Res, 1991,259(1):79-87.
    [31] Leung LK, Su Y, Chen R, et al. Theaflavins in black tea and catechins in green tea are equally effective antioxidants[J]. J Nutr, 2001,131(9):2248-51.
    [32] Apostolides Z, Balentine DA, Harbowy ME, et al. Inhibition of PhIP mutagenicity by catechins, and by theaflavins and gallate esters[J]. Mutat Res, 1997,389(2-3):167-72.
    [33] Weisburger JH, Rivenson A, Reinhardt J, et al. Effect of black tea on azoxymethane-induced colon cancer[J]. Carcinogenesis, 1998,19(1):229-32.
    [34] Lin YL, Lin JK. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB[J]. Mol Pharmacol, 1997,52(3):465-72.
    [35] Chung JY, Huang C, Meng X, et al. Inhibition of activator protein 1 activity and cell growth by purified green tea and black tea polyphenols in H-ras-transformed cells: structure-activity relationship and mechanisms involved[J]. Cancer Res, 1999,59(18):4610-7.
    [36] Zhong S, Quealy JA, Bode AM, et al. Organ-specific activation of activator protein-1 in transgenic mice by 12-o-tetradecanoylphorbol-13-acetate with different administrationmethods[J]. Cancer Res, 2001,61(10):4084-91.
    [37] Nomura M, Ma WY, Huang C, et al. Inhibition of ultraviolet B-induced AP-1 activation by theaflavins from black tea[J]. Mol Carcinog, 2000,28(3):148-55.
    [38] Liang YC, Tsai DC, Lin-Shiau SY, et al. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced inflammatory skin edema and ornithine decarboxylase activity by theaflavin-3,3'-digallate in mouse[J]. Nutr Cancer, 2002,42(2):217-23.
    [39] Chen YC, Liang YC, Lin-Shiau SY, et al. Inhibition of TPA-induced protein kinase C and transcription activator protein-1 binding activities by theaflavin-3,3'-digallate from black tea in NIH3T3 cells[J]. J Agric Food Chem, 1999,47(4):1416-21.
    [40] Sun L, Tran N, Liang C, et al. Identification of substituted 3-[(4,5,6, 7-tetrahydro-1H-indol-2-yl)methylene]-1,3-dihydroindol-2-ones as growth factor receptor inhibitors for VEGF-R2 (Flk-1/KDR), FGF-R1, and PDGF-Rbeta tyrosine kinases[J]. J Med Chem, 2000,43(14):2655-63.
    [41] Liang YC, Chen YC, Lin YL, et al. Suppression of extracellular signals and cell proliferation by the black tea polyphenol, theaflavin-3,3'-digallate[J]. Carcinogenesis, 1999,20(4):733-6.
    [42] Liang YC, Lin-shiau SY, Chen CF, et al. Suppression of extracellular signals and cell proliferation through EGF receptor binding by (-)-epigallocatechin gallate in human A431 epidermoid carcinoma cells[J]. J Cell Biochem, 1997,67(1):55-65.
    [43]潘宏铭,郑树,吴金民.茶叶和茶多酚与肿瘤的化学预防作用[J].肿瘤, 1996(01).
    [44] Yang CS,Lambert JD,Ju J,et al. Tea and cancer prevention: Molecular mechanisms and human relevance. TOXICOLOGY AND APPLIED PHARMACOLOGY. 224(3): ACADEMIC PRESS INC ELSEVIER SCIENCE, 2007. 265-273.
    [45] Del Rio D, Stewart AJ, Mullen W, et al. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea[J]. J Agric Food Chem, 2004,52(10):2807-15.
    [46] Kar K, Mohanta PK, Popli SP, et al. Inhibition of Passive Cutaneous Anaphylaxis byCompounds of Camellia sinensis1[J]. Planta Med, 1981,42(5):75-8.
    [47] Iso H, Date C, Wakai K, et al. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults[J]. Ann Intern Med, 2006,144(8):554-62.
    [48] Zhou X, Wang D, Sun P, et al. Effects of soluble tea polysaccharides on hyperglycemia in alloxan-diabetic mice[J]. J Agric Food Chem, 2007,55(14):5523-8.
    [49]陈建国,来伟旗,江月仙,梅松,刘冬英,傅颖.茶多糖对糖尿病小鼠糖代谢、组织形态学及胰岛β细胞超微结构的影响[J].营养学报, 2010(01): 64-67+71.
    [50] Anderson RA,Polansky MM. Tea enhances insulin activity[J]. J Agric Food Chem, 2002,50(24):7182-6.
    [51]王丁刚,陈国华,王淑如.茶叶多糖的降血糖、抗炎及碳粒廓清作用[J].茶叶科学, 1991(02): 173-174.
    [52]王丁刚,王淑如.茶叶多糖的分离、纯化、分析及降血脂作用[J].中国药科大学学报, 1991(04): 225-228.
    [53]王丁刚,王淑如.茶叶多糖心血管系统的部分药理作用[J].茶叶, 1991(02): 4-5.
    [54]马森.茶多酚、茶多糖对兔动脉血压的影响[J].畜牧兽医杂志, 2009(01): 3-4.
    [55] Lim TS, Na K, Choi EM, et al. Immunomodulating activities of polysaccharides isolated from Panax ginseng[J]. J Med Food, 2004,7(1):1-6.
    [56]沈健,陈增良,沈香娣,余禹达,冯磊.茶多糖抗肿瘤及其增强免疫作用的研究[J].浙江预防医学, 2007(08): 10-12.
    [57] Pickle LW, Hao Y, Jemal A, et al. A new method of estimating United States and state-level cancer incidence counts for the current calendar year[J]. CA Cancer J Clin, 2007,57(1):30-42.
    [58] Kurahashi N,Sasazuki S,Iwasaki M,Inoue M,Tsugane S. Green tea consumption and prostate cancer risk in Japanese men: A prospective study. AMERICAN JOURNAL OF EPIDEMIOLOGY. 167(1), 2008. 71-77.
    [59] Magoha GA. Overview of prostate cancer in indigenous black Africans and blacks ofAfrican ancestry in diaspora 1935-2007[J]. East Afr Med J, 2007,84(9 Suppl):S3-11.
    [60] Dale W, Vijayakumar S, Lawlor EF, et al. Prostate cancer, race, and socioeconomic status: inadequate adjustment for social factors in assessing racial differences[J]. Prostate, 1996,29(5):271-81.
    [61] Pfitzenmaier J, Altwein JE. Hormonal therapy in the elderly prostate cancer patient[J]. Dtsch Arztebl Int, 2009,106(14):242-7.
    [62] Day JM, Purohit A, Tutill HJ, et al. The development of steroid sulfatase inhibitors for hormone-dependent cancer therapy[J]. Ann N Y Acad Sci, 2009,1155:80-7.
    [63] Khan N,Mukhtar H. Multitargeted therapy of cancer by green tea polyphenols. CANCER LETTERS. 269(2), 2008. 269-280.
    [64] Dou Q. P,Landis-Piwowar K. R,Chen D,Huo C,Wan S. B,Chan T. H. Green tea polyphenols as a natural tumour cell proteasome inhibitor. Inflammopharmacology. 16(5), 2008. 208-212.
    [65] Siddiqui IA,Shukla Y,Adhami VM,Sarfaraz S,Asim M,Bin Hafeez B,Mukhtar H. Suppression of NF kappa B and its Regulated Gene Products by Oral Administration of Green Tea Polyphenols in an Autochthonous Mouse Prostate Cancer Model. PHARMACEUTICAL RESEARCH. 25(9), 2008. 2135-2142.
    [66] Yang CS,Ju J,Lu G,Xiao H,Hao X,Sang S,Lambert JD. Cancer prevention by tea and tea polyphenols. ASIA PACIFIC JOURNAL OF CLINICAL NUTRITION. 17, 2008. 245-248.
    [67] Khan N,Afaq F,Mukhtar H. Cancer chemoprevention through dietary antioxidants: Progress and promise. ANTIOXIDANTS & REDOX SIGNALING. 10(3), 2008. 475-510.
    [68]凌诒萍,主编.细胞生物学[M]. 1版.北京:人民卫生出版社,2001.
    [69] Alm K, Oredsson S. Cells and polyamines do it cyclically[J]. Essays Biochem, 2009,46:63-76.
    [70] D.L.斯佩克特,R.D.戈德曼,L.A.莱因万德.细胞实验指南[M].北京:科学出版社,2001. 105.
    [71] Johansson M, Persson JL. Cancer therapy: targeting cell cycle regulators[J]. AnticancerAgents Med Chem, 2008,8(7):723-31.
    [72] Simmons Kovacs LA, Orlando DA, Haase SB. Transcription networks and cyclin/CDKs: the yin and yang of cell cycle oscillators[J]. Cell Cycle, 2008,7(17):2626-9.
    [73] Malumbres M, Barbacid M. Cell cycle, CDKs and cancer: a changing paradigm[J]. Nat Rev Cancer, 2009,9(3):153-66.
    [74] Satyanarayana A, Kaldis P. Mammalian cell-cycle regulation: several Cdks, numerous cyclins and diverse compensatory mechanisms[J]. Oncogene, 2009,28(33):2925-39.
    [75] Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors[J]. Annu Rev Cell Dev Biol, 1997,13:261-91.
    [76] Echalier A, Endicott JA, Noble ME. Recent developments in cyclin-dependent kinase biochemical and structural studies[J]. Biochim Biophys Acta, 2010,1804(3):511-9.
    [77]胥健敏,步宏,杨光华. cyclin D1与人类肿瘤[J].中华病理学杂志, 1999(03).
    [78] Evans T. The discovery of cyclin (II)[J]. Cell, 2004,116(2 Suppl):S65, 1 p following S65.
    [79] Evans T, Rosenthal ET, Youngblom J, et al. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division[J]. Cell, 1983,33(2):389-96.
    [80] Hunt T. The discovery of cyclin (I)[J]. Cell, 2004,116(2 Suppl):S63-4, 1 p following S65.
    [81] Baumli S, Lolli G, Lowe ED, et al. The structure of P-TEFb (CDK9/cyclin T1), its complex with flavopiridol and regulation by phosphorylation[J]. EMBO J, 2008,27(13):1907-18.
    [82] Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and CDK inhibitors come of age[J]. Cell, 1994,79(4):573-82.
    [83] Kim JK, Diehl JA. Nuclear cyclin D1: an oncogenic driver in human cancer[J]. J Cell Physiol, 2009,220(2):292-6.
    [84] Zhou W, Zhong R, Tan S. Overexpression of cyclin D1 in laryngeal carcinomas[J]. Lin Chuang Er Bi Yan Hou Ke Za Zhi, 1998,12(5):198-201.
    [85] Motokura T, Bloom T, Kim HG, et al. A novel cyclin encoded by a bcl1-linked candidate oncogene[J]. Nature, 1991,350(6318):512-5.
    [86] Forsberg L, Bjorck E, Hashemi J, et al. Distinction in gene expression profilesdemonstrated in parathyroid adenomas by high-density oligoarray technology[J]. Eur J Endocrinol, 2005,152(3):459-70.
    [87] Haven CJ, van Puijenbroek M, Karperien M, et al. Differential expression of the calcium sensing receptor and combined loss of chromosomes 1q and 11q in parathyroid carcinoma[J]. J Pathol, 2004,202(1):86-94.
    [88] Hemmer S, Wasenius VM, Haglund C, et al. Deletion of 11q23 and cyclin D1 overexpression are frequent aberrations in parathyroid adenomas[J]. Am J Pathol, 2001,158(4):1355-62.
    [89] Gladden AB, Diehl JA. Location, location, location: the role of cyclin D1 nuclear localization in cancer[J]. J Cell Biochem, 2005,96(5):906-13.
    [90] Takebayashi T, Higashi H, Sudo H, et al. NF-kappa B-dependent induction of cyclin D1 by retinoblastoma protein (pRB) family proteins and tumor-derived pRB mutants[J]. J Biol Chem, 2003,278(17):14897-905.
    [91] Park DS, Morris EJ, Bremner R, et al. Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage[J]. J Neurosci, 2000,20(9):3104-14.
    [92] Kato J, Matsushime H, Hiebert SW, et al. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D-dependent kinase CDK4[J]. Genes Dev, 1993,7(3):331-42.
    [93] Kerr JF. History of the events leading to the formulation of the apoptosis concept[J]. Toxicology, 2002,181-182:471-4.
    [94] Walker NI, Harmon BV, Gobe GC, et al. Patterns of cell death[J]. Methods Achiev Exp Pathol, 1988,13:18-54.
    [95] Kerr JF. Neglected opportunities in apoptosis research[J]. Trends Cell Biol, 1995,5(2):55-7.
    [96] Kerr JF, Winterford CM, Harmon BV. Apoptosis. Its significance in cancer and cancer therapy[J]. Cancer, 1994,73(8):2013-26.
    [97] Tamm I, Wang Y, Sausville E, et al. IAP-family protein survivin inhibits caspase activityand apoptosis induced by Fas (CD95), Bax, caspases, and anticancer drugs[J]. Cancer Res, 1998,58(23):5315-20.
    [98]李美玲,高美华,宋云峰,郑雪梅,宋华. Survivin和Caspase-3在乳癌组织的表达及相关性[J].齐鲁医学杂志, 2009(05): 377-379+382.
    [99] Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD[J]. Nature, 1998,391(6662):43-50.
    [100] Pop C, Salvesen GS. Human caspases: activation, specificity, and regulation[J]. J Biol Chem, 2009,284(33):21777-81.
    [101] Fernandes-Alnemri T, Litwack G, Alnemri ES. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme[J]. J Biol Chem, 1994,269(49):30761-4.
    [102] Kangas A, Nicholson DW, Holtta E. Involvement of CPP32/Caspase-3 in c-Myc-induced apoptosis[J]. Oncogene, 1998,16(3):387-98.
    [103] Garcia-Calvo M, Peterson EP, Rasper DM, et al. Purification and catalytic properties of human caspase family members[J]. Cell Death Differ, 1999,6(4):362-9.
    [104] Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif[J]. J Virol, 1993,67(4):2168-74.
    [105] Cao L, Wang Z, Yang X, et al. The evolution of BIR domain and its containing proteins[J]. FEBS Lett, 2008,582(27):3817-22.
    [106] Verhagen AM, Coulson EJ, Vaux DL. Inhibitor of apoptosis proteins and their relatives: IAPs and other BIRPs[J]. Genome Biol, 2001,2(7):REVIEWS3009.
    [107] Srinivasula SM, Ashwell JD. IAPs: what's in a name?[J]. Mol Cell, 2008,30(2):123-35.
    [108] Ambrosini G, Adida C, Sirugo G, et al. Induction of apoptosis and inhibition of cell proliferation by survivin gene targeting[J]. J Biol Chem, 1998,273(18):11177-82.
    [109] Wesierska-Gadek J, Bednarek J, Kilianska ZM. New face of antiapoptotic proteins. II. Survivin[J]. Postepy Biochem, 2007,53(3):239-53.
    [110] Li F, Ling X. Survivin study: an update of "what is the next wave"?[J]. J Cell Physiol, 2006,208(3):476-86.
    [111] Li F. Role of survivin and its splice variants in tumorigenesis[J]. Br J Cancer, 2005,92(2):212-6.
    [112] Rohayem J, Diestelkoetter P, Weigle B, et al. Antibody response to the tumor-associated inhibitor of apoptosis protein survivin in cancer patients[J]. Cancer Res, 2000,60(7):1815-7.
    [113] Duffy MJ, O'Donovan N, Brennan DJ, et al. Survivin: a promising tumor biomarker[J]. Cancer Lett, 2007,249(1):49-60.
    [114] Ryan BM, O'Donovan N, Duffy MJ. Survivin: a new target for anti-cancer therapy[J]. Cancer Treat Rev, 2009,35(7):553-62.
    [115] Davidson B, Reich R, Risberg B, et al. The biological role and regulation of matrix metalloproteinases (MMP) in cancer[J]. Arkh Patol, 2002,64(3):47-53.
    [116] Khasigov PZ, Podobed OV, Gracheva TS, et al. Role of matrix metalloproteinases and their inhibitors in tumor invasion and metastasis[J]. Biochemistry (Mosc), 2003,68(7):711-7.
    [117] Rydlova M, Holubec L Jr, Ludvikova M Jr, et al. Biological activity and clinical implications of the matrix metalloproteinases[J]. Anticancer Res, 2008,28(2B):1389-97.
    [118]唐渊,陈礼刚. MMPs和TIMPs在脑创伤的研究进展[J].泸州医学院学报, 2009(06): 661-663.
    [119]闫训友,薛冲,刘志敏,张惟广.基质金属蛋白酶及其组织抑制剂研究进展[J].生物技术通讯, 2004(03): 302-305.
    [120]高东梅.基质金属蛋白酶及抑制剂的研究进展[J].实用肿瘤杂志, 2004(01): 83-87.
    [121] Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry[J]. Circ Res, 2003,92(8):827-39.
    [122]肖大凯.Ⅳ型胶原酶的研究进展[J].国外医学.临床生物化学与检验学分册, 2001(05): 225-226+231.
    [123] Nakahara H, Howard L, Thompson EW, et al. Transmembrane/cytoplasmicdomain-mediated membrane type 1-matrix metalloprotease docking to invadopodia is required for cell invasion[J]. Proc Natl Acad Sci U S A, 1997,94(15):7959-64.
    [124]李秉慧,韩梅,温进坤.基质金属蛋白酶对肿瘤细胞生物学行为调节[J].细胞生物学杂志, 2004(03): 276-280.
    [125] Hernandez-Barrantes S, Toth M, Bernardo MM, et al. Binding of active (57 kDa) membrane type 1-matrix metalloproteinase (MT1-MMP) to tissue inhibitor of metalloproteinase (TIMP)-2 regulates MT1-MMP processing and pro-MMP-2 activation[J]. J Biol Chem, 2000,275(16):12080-9.
    [126] Caterina JJ, Yamada S, Caterina NC, et al. Inactivating mutation of the mouse tissue inhibitor of metalloproteinases-2(Timp-2) gene alters proMMP-2 activation[J]. J Biol Chem, 2000,275(34):26416-22.
    [127] Seo DW, Li H, Guedez L, et al. TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism[J]. Cell, 2003,114(2):171-80.
    [128] Kanoh Y, Akahoshi T, Ohara T, et al. Expression of matrix metalloproteinase-2 and prostate-specific antigen in localized and metastatic prostate cancer[J]. Anticancer Res, 2002,22(3):1813-7.
    [129] Verheijen JH, Nieuwenbroek NM, Beekman B, et al. Modified proenzymes as artificial substrates for proteolytic enzymes: colorimetric assay of bacterial collagenase and matrix metalloproteinase activity using modified pro-urokinase[J]. Biochem J, 1997,323 ( Pt 3):603-9.
    [130] Stearns ME, Wang M. Type IV collagenase (M(r) 72,000) expression in human prostate: benign and malignant tissue[J]. Cancer Res, 1993,53(4):878-83.
    [131] Kawamata H, Kawai K, Kameyama S, et al. Over-expression of tissue inhibitor of matrix metalloproteinases (TIMP1 and TIMP2) suppresses extravasation of pulmonary metastasis of a rat bladder carcinoma[J]. Int J Cancer, 1995,63(5):680-7.
    [132] Demeule M, Brossard M, Page M, et al. Matrix metalloproteinase inhibition by green tea catechins[J]. Biochim Biophys Acta, 2000,1478(1):51-60.
    [133] Vayalil PK, Katiyar SK. Treatment of epigallocatechin-3-gallate inhibits matrix metalloproteinases-2 and -9 via inhibition of activation of mitogen-activated protein kinases, c-jun and NF-kappaB in human prostate carcinoma DU-145 cells[J]. Prostate, 2004,59(1):33-42.
    [134] Pezzato E, Sartor L, Dell'Aica I, et al. Prostate carcinoma and green tea: PSA-triggered basement membrane degradation and MMP-2 activation are inhibited by (-)epigallocatechin-3-gallate[J]. Int J Cancer, 2004,112(5):787-92.
    [135] Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity[J]. Semin Cancer Biol, 2005,15(5):378-86.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700