用户名: 密码: 验证码:
ALD-DNA诱导SLE的新机制:巨噬细胞极化及其作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活化淋巴细胞来源DNA (ALD-DNA)诱导系统性红斑狼疮(SLE)的新机制:巨噬细胞极化及其作用
     系统性红斑狼疮(systemic lupus erythematosus, SLE)是一个潜在的致死性疾病,以出现各种典型的自身免疫症状包括自身免疫反应、血管炎、关节炎和肾小球肾炎等为特征。在美国SLE病人总数已经超过二十五万,90%发生于育龄期妇女,严重影响人类健康。随着治疗手段的进步,狼疮性肾炎病人5年的生存率从二十世纪五十年代的44%提高到现在的82%,但是SLE病人的平均寿命只有44岁。SLE以其复杂多变的症状引起临床工作者的广泛关注,而SLE几乎累及免疫系统的各个成份,更是引起了免疫学工作者极大的兴趣,针对SLE的发病机制和SLE防治方法的研究一直是科学家关注的重大前沿课题。
     作为SLE病人血清学特征的抗双链DNA (double-stranded DNA, dsDNA)抗体,已经被证明是致病性的,可以引起免疫复合物沉积和组织损伤,与SLE疾病的严重程度密切相关。SLE病人遗传学的研究发现抗dsDNA自身抗体大多属于对dsDNA具有高亲和力的IgG亚类,不同于体细胞突变产生的抗体。研究显示自身DNA可以诱导抗dsDNA抗体产生。一般情况下,哺乳动物的DNA免疫原性较弱,不会引起免疫应答。寻找引起自身免疫反应和抗dsDNA抗体产生的驱动成份是免疫学家关注的热点。我们实验室在寻找SLE驱动原的过程中发现用活化淋巴细胞来源的DNA (activated lymphocyte-derived DNA, ALD-DNA)免疫同系的雌性BALB/c小鼠,可以产生一系列的SLE症状,包括高水平的抗dsDNA自身抗体、蛋白尿、免疫复合物沉积和肾小球肾炎,这些症状模拟病人体内由大量凋亡细胞来源的自身DNA引起的SLE症状,因此ALD-DNA免疫的小鼠可以被作为理想的小鼠狼疮模型进行探讨SLE疾病可能的细胞与分子免疫学机制。
     SLE通常被认为是由自身抗体介导的全身性炎症反应和由T/B细胞介导的适应性免疫应答所诱发的组织损伤,但是SLE发病和疾病进展的细胞与分子机制仍不清楚。有研究提示,在SLE小鼠中,显著激活的巨噬细胞和其它髓系细胞大量浸润到淋巴组织和肾脏中,启动和促进适应性免疫应答,从而导致SLE的发生。越来越多的证据显示F4/80+巨噬细胞是SLE肾炎中主要的浸润细胞,在SLE肾炎的发生过程中扮演重要角色,而浸润的巨噬细胞发挥保护性还是病理性作用有待阐明。功能上的可塑性和多样性是单核巨噬细胞的显著特点之一,巨噬细胞随着周围环境的变化,功能上会发生显著变化,这些功能上的变化,也称为功能上的巨噬细胞极化,可以产生有不同基因表达谱和不同功能的巨噬细胞亚群。目前认为M1和M2(包括M2a、M2b和M2c)是单核巨噬细胞功能上连续变化过程的两个极端。在SLE疾病过程中巨噬细胞是否发生极化、极化类型及其机制鲜有报道。
     本研究的目的在于:(1)探讨巨噬细胞在ALD-DNA诱导SLE发病中的作用;(2)通过表型分析和细胞因子表达谱鉴定,分析SLE模型鼠肾炎组织中巨噬细胞的活化和极化类型以及可能的分子机制;(3)研究导致自身DNA清除障碍和打破免疫耐受引起巨噬细胞产生免疫应答的机制;(4)设计体内外实验探索SLE疾病可能的防治方法。我们的研究分为以下四部分:
     1.巨噬细胞在ALD-DNA诱导SLE发病中的作用
     体内未被清除的凋亡细胞来源的自身DNA具有免疫原性,可以引发一系列的免疫应答,从而导致抗自身DNA的抗体产生和抗体介导的组织损伤,这在SLE病人体内非常普遍,但是巨噬细胞是否在SLE发病过程中发挥作用仍不清楚。在本课题中,我们在ALD-DNA免疫的SLE小鼠模型中,发现狼疮肾炎组织中有大量的活化巨噬细胞浸润。ALD-DNA可以在体内和体外诱导巨噬细胞分泌细胞因子TNF-α、IL-1β、IL-6和IL-10,并上调表达表面活化标志包括MHC class-Ⅱ、CD40、CD80和CD86,但是非活化淋巴细胞来源的DNA (unactivated lymphocyte-derived DNA, UnALD-DNA)并不能引起巨噬细胞的活化。我们进一步发现活化的巨噬细胞在体外可以促进T分泌IL-4和IL-10,促进B细胞产生抗dsDNA的自身抗体,从而参与ALD-DNA诱导的自身免疫反应。更重要的是去除SLE模型小鼠体内的巨噬细胞可以有效减轻尿蛋白水平、缓解狼疮性肾炎的症状。这些研究结果提示巨噬细胞在SLE发病过程中扮演重要角色,ALD-DNA通过诱导巨噬细胞活化进而启动针对自身抗原的固有免疫和适应性免疫应答,从而造成免疫复合物沉积和组织损伤。以上发现为SLE的发病机制提供了新视野,为临床SLE疾病的治疗提供了以控制巨噬细胞浸润和活化作为靶点的可能的新治疗策略。
     2. ALD-DNA诱导巨噬细胞极化的Notch途径
     在SLE病人体内存在固有免疫应答失调,包括异常巨噬细胞的活化。活化的巨噬细胞会发生功能上极化,但是在SLE疾病过程中活化巨噬细胞的极化类型和机制并不清楚。作为一个重要的决定细胞命运的局部细胞相互作用机制,Notch信号通路在调控各种免疫细胞的发育和分化过程中发挥关键作用,但是Notch通路是否在巨噬细胞极化过程中发挥作用并不清楚。本研究中,我们课题组用ALD-DNA免疫小鼠,建立了SLE模型。在SLE模型鼠中,我们发现狼疮肾炎组织中有M2b巨噬细胞的浸润。在体内M2b巨噬细胞以及体外ALD-DNA诱导的M2b巨噬细胞中,我们发现Notch1信号通路的活性增加。通过抑制Notch1信号通路以及高表达Notch1胞内活性片段的方法,我们发现ALD-DNA诱导的M2b极化依赖于Notch1信号通路的活化。Notch1信号通路活化后通过激活PI3K和MAPK信号通路促进NF-κB p50入核从而驱动ALD-DNA诱导的巨噬细胞M2b极化。进一步发现用Notch信号通路抑制剂Y-分泌酶抑制剂(γ-secretase inhibitor, GSI)处理小鼠,可以通过钝化巨噬细胞M2b极化从而缓解SLE症状。我们的研究结果显示Notch1途径依赖的巨噬细胞M2b极化可能在SLE疾病中发挥重要作用,提示阻断Notch1信号通路可以作为SLE的潜在治疗方法。
     3. Jagged1参与巨噬细胞M2极化的Notch途径
     巨噬细胞被微环境中不同的诱导因素活化后表现出不同的表型和功能特征,导致巨噬细胞极化为M1或者M2型巨噬细胞。虽然这些巨噬细胞亚群的分化和功能已经研究清楚,但是对于决定巨噬细胞极化事件的因素中除了可溶性的细胞因子(例如IFN-γ或者IL-4)之外的细胞表面受体的作用知之甚少。在本研究中我们提供直接证据表明Jagged1和巨噬细胞表面的受体Notch1相互作用后传导信号,促进巨噬细胞发生M2极化。Jagged1-Notch1信号通路的活化和效应细胞分化有剂量依赖关系,高水平的Jagged1刺激Notch1信号通路会导致巨噬细胞M2活化标志显著增加。我们的研究结果提示Jagged1活化的Notch1信号通路决定巨噬细胞M2极化而不发生M1极化,同时也提供一个巨噬细胞M2类型极化的可能机制。
     4.SAP通过诱导巨噬细胞极化类型转换缓解SLE发病
     作为正常存在的DNA结合蛋白,血清淀粉状蛋白P成份(Serum amyloid P component, SAP)可以激活巨噬细胞介导的细胞核成份包括dsDNA的吞噬。在我们前期研究中发现,ALD-DNA免疫小鼠可以诱导SLE的发生,有理由推测SAP在SLE疾病过程中发挥重要作用。在本课题中,我们发现ALD-DNA免疫的SLE小鼠血清中轻微升高的SAP浓度伴随着DNA浓度显著升高,导致SLE小鼠血清中SAP浓度与DNA浓度的比值显著低于正常小鼠,而且其比值和SLE小鼠血清中抗dsDNA的水平成负相关。进一步的研究发现SAP可以和DNA结合从而促进巨噬细胞介导的DNA吞噬。在体外,SAP和DNA结合后可以使巨噬细胞极化类型从DNA诱导type-Ⅱ型(M2b)转为SAP-DNA复合物诱导的替代性途径活化类型(alternatively activated macrophages, AAMΦs; M2a)。AAMΦs分泌大量的细胞因子IL-10一方面可以阻止DNA诱导巨噬细胞type-Ⅱ活化,另一方面可以促进AAMΦs对DNA的吞噬。更为重要的是我们用SAP处理小鼠,增加SLE小鼠体内的SAP水平,通过诱导巨噬细胞极化为AAMΦs,从而缓解肾小球肾炎的症状。以上研究结果显示SAP在SLE疾病过程中发挥保护性的作用,增加SAP水平可以通过诱导巨噬细胞极化类型从促炎性的type-Ⅱ类型转换为抗炎性的AAMΦs,从而缓解SLE。本研究提示SAP可能参与巨噬细胞极化类型转换和维持巨噬细胞对自身DNA的免疫耐受,可以作为SLE疾病治疗的有效途径之一。
The study on the new mechanism for ALD-DNA induced SLE:macrophage polarization and its role in SLE
     Systemic lupus erythematosus (SLE) is a potentially fatal disease characterized by the prototypic autoimmune syndrome with heterogeneous manifestations frequently including autoimmunity, vasculitis, arthritis, and glomerulonephritis. In the United States, the number of patients with SLE exceeds 250,000. The 90 percent of SLE patients are women of childbearing age. Recently, the 5-y survival rate of patients with lupus glomerulonephritis increased from 44%in the 1950s to 82%. Despite great advances in the treatment of this autoimmune disease, the mean age of death of patients dying from systemic lupus erythematosus is 44 y. To the clinician, SLE is important because it is a potentially fatal disease that is easily confused with many other disorders. To the immunologist, lupus is intriguing because all the key components of the immune system are involved in the underlying mechanisms of the SLE disease.
     The anti-dsDNA autoantibody, which is a serological hallmark of SLE, has been proved to be pathogenic and could cause subsequent tissue deposition of immune complexes (IC) and tissue damage. Anti-dsDNA antibodies are highly specific for SLE and levels of anti-dsDNA antibodies in serum tend to reflect disease activity. Genetic studies in SLE patients revealed that anti-dsDNA autoantibodies, which generally belong to IgG subtype with high-affinity binding to dsDNA, differ from the germ line due to somatic mutations. Generally, mammalian DNA gains poor immunogenicity and could not trigger the immune response. Accumulating data indicated that undigested DNA released from apoptotic cells could induce macrophage activation and trigger a set of immune response, thus producing autoantibodies to self-DNA, which occurs commonly in SLE patients. In this study, we utilized the SLE murine model established by our group previously through immunizing syngeneic female BALB/c mice with a self-DNA released from apoptotic lymphocytes which termed as activated lymphocyte-derived DNA. A series of SLE syndrome including highly anti-dsDNA antibodies, proteinuria, immune complex deposition, and glomerulonephritis were developed in our murine model, which resembles human SLE syndrome accompanied with abundant self-DNA released from unremoved apoptotic cells. Thereby the ALD-DNA immunized mice could be used as an ideal murine lupus model to explore the potential cellular and molecular immunological mechanisms responsible for SLE disease.
     SLE syndrome is generally considered to be autoantibody-mediated systemic inflammation and tissue damage triggered by aggressive T and B cell responses of the adaptive immune system. Yet, the underlying cellular and molecular mechanisms for onset and progression of SLE are still poorly understood. It was reported that markedly activated macrophages and other myeloid cells which infiltrated in lymphoid tissues and kidneys, mediated the onset and propagation of an aggressive adaptive immune response, thereby leading to SLE pathogenesis in mice. Accumulating data demonstrated that F4/80+macrophages represented the major inflammatory infiltrated cells and played a crucial pathogenic role in the development of SLE nephritis. However, It is still unclear whether the activated macrophages found in the kidneys have a pathogenic or protective role. Furthermore, macrophages display remarkable plasticity and can change their physiology in response to exposure to various microenvironmental signals. Functional macrophage polarization represents different extremes of a continuum ranging from M1, M2a (alternatively activated macrophages, AAMΦs), M2b (type-II), to M2c. The concrete phenotype and mechanism for functional macrophage polarization in SLE remains unclear.
     PART ONE:Induction of inflammatory and immune responses by macrophages stimulated with ALD-DNA:implications for the pathogenesis of SLE
     Undigested DNA released from apoptotic cells could trigger a set of immune response, thus producing autoantibodies to self-DNA, which occurs commonly in SLE patients. But the role of macrophages in the pathogenesis of SLE remains largely unknown. In this study, we report that in the SLE murine model generated by immunization with ALD-DNA, the nephritic tissues were found infiltrated with activated macrophages. ALD-DNA could induce the secretion of TNF-α, IL-1β, IL-6, and IL-10 and the expression of activation markers including MHC class-II, CD40, CD80, and CD86 in macrophages in vitro and in vivo. However, DNA derived from un-activated lymphocytes (UnALD-DNA) could not. Furthermore, activated macrophages were found to be involved in the ALD-DNA induced autoimmune response via promoting the cytokine production by T cells and autoantibody production by B cells when stimulated with ALD-DNA. More importantly, macrophage depletion could decrease the urine protein and induce the remission of established lupus nephritis in SLE murine model. Our findings suggest that ALD-DNA activates macrophages and, thereby, may crucially contribute to the pathogenesis of SLE.
     PART TWO:Blockade of Notchl signaling alleviates murine lupus via blunting macrophage activation and M2b polarization
     Systemic lupus erythematosus (SLE) patients are found to be accompanied with innate immunity dysregulation including abnormally macrophage activation. But the concrete phenotype and the mechanism for functional polarization of the activated macrophages during pathogenesis of SLE remains unknown. As an important local cellular interaction mechanism responsible for cell fate determination, Notch signaling is reported to exert crucial functions in the development and differentiation of various immunocytes, whereas its role in macrophage polarization is not fully understood. Herein, in the SLE murine model generated by immunization with activated lymphocyte-derived DNA (ALD-DNA), the nephritic tissues were found infiltrated with M2b-polarized macrophages. Notchl signaling activity was significantly up-regulated in the ALD-DNA induced M2b macrophages in vitro and in vivo. Furthermore, ALD-DNA induced M2b polarization was found to be dependent on enhanced Notchl signaling through accelerating NF-κB p50 translocation into nucleus mediated by PI3K and MAPK pathways. Moreover, blockade of Notchl signaling with y-secretase inhibitor (GSI) treatment could ameliorate murine lupus through impeding macrophage M2b polarization. Our results implied that Notchl signaling dependent M2b-polarized macrophages might play a pivotal role in the pathogenesis of SLE, which could provide Notchl signaling blockade as a potential therapeutic approach for SLE disease.
     PART THREE:Notchl engagement by Jaggedl bias the M2 functional differentiation of activated macrophages
     Following activation by antigen, macrophages execute distinct genetic programs that result in their differentiation toward the type 1 or type 2 macrophages (M1 or M2) phenotype. Although the differentiation and function of these macrophage subsets has been well studied, little is known about the contribution to these differentiation events of cell surface receptors other than those for soluble cytokines, such as IFN-y or IL-4. Here, we provide direct evidence that the Jaggedl interaction with Notchl on macrophages transduces signals, promoting development toward the M2 phenotype. The positive role of Notch signaling in effector cell differentiation was dose dependent, with high levels of Jaggedl stimulation resulting in increased macrophage M2 polarization. Our data revealed a clear contribution of Notchl pathways engaged by Jaggedl to M2 versus M1 fate decisions, while also providing insight into another mechanism for inhibition of macrophage M2 activation.
     PART FOUR:Serum amyloid P component ameliorates murine lupus via biasing macrophage activation to the alternative pathway
     Serum amyloid P component (SAP) has been reported to activate macrophage-mediated phagocytosis of nuclear debris, whereas its role in the pathogenesis of systemic lupus erythematosus (SLE) is not fully understood. Herein, decreased serological ratios of SAP to DNA were found to be negatively correlated with the titers of anti-dsDNA antibodies in SLE patients and lupus murine model. SAP was shown to promote macrophage-mediated DNA uptake through binding to DNA. Furthermore, type-Ⅱpolarized macrophages induced by DNA could be switched to alternatively activated macrophages (AAMΦs) by SAP-DNA complex in vitro. IL-10 secreted by AAMΦs was found to predominantly impede DNA induced macrophage type-II activation and promote DNA phagocytosis. More importantly, reinforced SAP level in vivo could efficiently ameliorate glomerulonephritis through inducing renal macrophage alternative activation in lupus murine model. Taken together, our results reveal a protective role of SAP in lupus, which suggest that enhanced SAP level could alleviate SLE syndrome via switching the polarized phenotype of macrophages from pro-immune type-II activation to anti-immune alternative activation. This might provide SAP as a potential therapeutic approach for SLE disease.
引文
1. Davidson, A., and B. Diamond.2001. Autoimmune diseases. N. Engl. J. Med. 345:340-350.
    2. Johnson, A. E., C. Gordon, R. G. Palmer, and P. A. Bacon.1995. The prevalence and incidence of systemic lupus erythematosus in Birmingham, England. Relationship to ethnicity and country of birth. Arthritis Rheum. 38:551-558.
    3. Merrell, M., and L. E. Shulman.1955. Determination of prognosis in chronic disease, illustrated by systemic lupus erythematosus. J. Chronic. Dis.1:12-32.
    4. Abu-Shakra, M., M. B. Urowitz, D. D. Gladman, and J. Gough.1995. Mortality studies in systemic lupus erythematosus. Results from a single center. Ⅱ. Predictor variables for mortality. J. Rheumatol.22:1265-1270.
    5. Rahman, A., and D. A. Isenberg.2008. Systemic lupus erythematosus. N. Engl. J. Med.358:929-939.
    6. Urowitz, M. B., A. A. Bookman, B. E. Koehler, D. A. Gordon, H. A. Smythe, and M. A. Ogryzlo.1976. The bimodal mortality pattern of systemic lupus erythematosus. Am. J. Med.60:221-225.
    7. Kotzin, B. L.1996. Systemic lupus erythematosus. Cell 85:303-306.
    8. Koffler, D., P. H. Schur, and H. G. Kunkel.1967. Immunological studies concerning the nephritis of systemic lupus erythematosus. J. Exp. Med. 126:607-624.
    9. Hahn, B. H.1998. Antibodies to DNA. N. Engl. J. Med.338:1359-1368.
    10. Isenberg, D. A., J. J. Manson, M. R. Ehrenstein, and A. Rahman.2007. Fifty years of anti-ds DNA antibodies:are we approaching journey's end? Rheumatology (Oxford) 46:1052-1056.
    11. Isenberg, D. A., Y. Shoenfeld, M. Walport, C. Mackworth-Young, C. Dudeney, A. Todd-Pokropek, S. Brill, A. Weinberger, and J. Pinkas.1985. Detection of cross-reactive anti-DNA antibody idiotypes in the serum of systemic lupus erythematosus patients and of their relatives. Arthritis Rheum.28:999-1007.
    12. Shmerling, R. H.2003. Autoantibodies in systemic lupus erythematosus-there before you know it. N. Engl. J. Med.349:1499-1500.
    13. Arbuckle, M. R., M. T. McClain, M. V. Rubertone, R. H. Scofield, G. J. Dennis, J. A. James, and J. B. Harley.2003. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl. J. Med. 349:1526-1533.
    14. Savill, J., I. Dransfield, C. Gregory, and C. Haslett.2002. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2:965-975.
    15. Berden, J. H., R. Licht, M. C. van Bruggen, and W. J. Tax.1999. Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens.8:299-306.
    16. Kramers, C., M. N. Hylkema, M. C. van Bruggen, R. van de Lagemaat, H. B. Dijkman, K. J. Assmann, R. J. Smeenk, and J. H. Berden.1994. Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J. Clin. Invest.94:568-577.
    17. van Bruggen, M. C., B. Walgreen, T. P. Rijke, W. Tamboer, K. Kramers, R. J. Smeenk, M. Monestier, G. J. Fournie, and J. H. Berden.1997. Antigen specificity of anti-nuclear antibodies complexed to nucleosomes determines glomerular basement membrane binding in vivo. Eur. J. Immunol. 27:1564-1569.
    18. Kalaaji, M., K. A. Fenton, E. S. Mortensen, R. Olsen, G. Sturfelt, P. Alm, and O. P. Rekvig.2007. Glomerular apoptotic nucleosomes are central target structures for nephritogenic antibodies in human SLE nephritis. Kidney Int 71:664-672.
    19. Kalaaji, M., E. Mortensen, L. Jorgensen, R. Olsen, and O. P. Rekvig.2006. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am. J. Pathol.168:1779-1792.
    20. Mostoslavsky, G, R. Fischel, N. Yachimovich, Y. Yarkoni, E. Rosenmann, M. Monestier, M. Baniyash, and D. Eilat.2001. Lupus anti-DNA autoantibodies cross-react with a glomerular structural protein:a case for tissue injury by molecular mimicry. Eur. J. Immunol.31:1221-1227.
    21. Deocharan, B., X. Qing, J. Lichauco, and C. Putterman.2002. Alpha-actinin is a cross-reactive renal target for pathogenic anti-DNA antibodies. J. Immunol. 168:3072-3078.
    22. Chang, N. H., T. McKenzie, G. Bonventi, C. Landolt-Marticorena, P. R. Fortin,
    D. Gladman, M. Urowitz, and J. E. Wither.2008. Expanded population of activated antigen-engaged cells within the naive B cell compartment of patients with systemic lupus erythematosus. J. Immunol.180:1276-1284.
    23. McClain, M. T., L. D. Heinlen, G. J. Dennis, J. Roebuck, J. B. Harley, and J. A. James.2005. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med.11:85-89.
    24. Humrich, J. Y., H. Morbach, R. Undeutsch, P. Enghard, S. Rosenberger, O. Weigert, L. Kloke, J. Heimann, T. Gaber, S. Brandenburg, A. Scheffold, J. Huehn, A. Radbruch, G. R. Burmester, and G. Riemekasten.2010. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc. Natl. Acad. Sci. USA 107:204-209.
    25. Gandhi, R., E. Hussain, J. Das, R. Handa, and R. Pal.2006. Anti-idiotype-mediated epitope spreading and diminished phagocytosis by a human monoclonal antibody recognizing late-stage apoptotic cells. Cell Death. Differ.13:1715-1726.
    26. Shlomchik, M. J., A. Marshak-Rothstein, C. B. Wolfowicz, T. L. Rothstein, and M. G. Weigert.1987. The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805-811.
    27. Vinuesa, C. G., and C. C. Goodnow.2002. Immunology:DNA drives autoimmunity. Nature 416:595-598.
    28. Pisetsky, D. S.1996. The immunologic properties of DNA. J. Immunol. 156:421-423.
    29. Qiao, B., J. Wu, Y. W. Chu, Y. Wang, D. P. Wang, H. S. Wu, and S. D. Xiong. 2005. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 44:1108-1114.
    30. Wen, Z. K., W. Xu, L. Xu, Q. H. Cao, Y. Wang, Y. W. Chu, and S. D. Xiong. 2007. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice. Rheumatology (Oxford) 46:1796-1803.
    31. Paulson, J. C.2007. Innate immune response triggers lupus-like autoimmune disease. Cell 130:589-591.
    32. Okamura, M., Y. Kanayama, K. Amastu, N. Negoro, S. Kohda, T. Takeda, and T. Inoue.1993. Significance of enzyme linked immunosorbent assay (ELISA) for antibodies to double stranded and single stranded DNA in patients with lupus nephritis:correlation with severity of renal histology. Ann. Rheum. Dis. 52:14-20.
    33. Coffman, R. L., D. A. Lebman, and P. Rothman.1993. Mechanism and regulation of immunoglobulin isotype switching. Adv. Immunol.54:229-270.
    34. Yu, C. C., H. W. Tsui, B. Y. Ngan, M. J. Shulman, G. E. Wu, and F. W. Tsui. 1996. B and T cells are not required for the viable motheaten phenotype. J. Exp. Med.183:371-380.
    35. Green, R. S., E. L. Stone, M. Tenno, E. Lehtonen, M. G. Farquhar, and J. D. Marth.2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27:308-320.
    36. Hutcheson, J., J. C. Scatizzi, A. M. Siddiqui, G. K. Haines,3rd, T. Wu, Q. Z. Li, L. S. Davis, C. Mohan, and H. Perlman.2008. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28:206-217.
    37. Hill, G. S., M. Delahousse, D. Nochy, P. Remy, F. Mignon, J. P. Mery, and J. Bariety.2001. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int.59:304-316.
    38. Lan, H. Y., D. J. Nikolic-Paterson, W. Mu, and R. C. Atkins.1995. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int. 48:753-760.
    39. Jothy, S., and R. J. Sawka.1981. Presence of monocytes in systemic lupus erythematosus-associated glomerulonephritis:marker study and significance. Arch. Pathol. Lab. Med.105:590-593.
    40. Kobayashi, M., A. Koyama, M. Narita, and H. Shigematsu.1991. Intraglomerular monocytes in human glomerulonephritis. Nephron 59:580-585.
    41. Zhang, W., W. Xu, S. Xiong.2010. Blockade of Notchl Signaling Alleviates Murine Lupus via Blunting Macrophage Activation and M2b Polarization. J. Immunol.184.
    1. Paulson, J. C.2007. Innate immune response triggers lupus-like autoimmune disease. Cell 130:589-591.
    2. Rahman, A., and D. A. Isenberg.2008. Systemic lupus erythematosus. N. Engl. J. Med.358:929-939.
    3. Urbonaviciute, V., B. G Furnrohr, S. Meister, L. Munoz, P. Heyder, F. De Marchis, M. E. Bianchi, C. Kirschning, H. Wagner, A. A. Manfredi, J. R. Kalden, G Schett, P. Rovere-Querini, M. Herrmann, and R. E. Voll.2008. Induction of inflammatory and immune responses by HMGB1-nucleosome complexes:implications for the pathogenesis of SLE. J. Exp. Med. 205:3007-3018.
    4. Shlomchik, M. J., A. Marshak-Rothstein, C. B. Wolfowicz, T. L. Rothstein, and M. G Weigert.1987. The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805-811.
    5. Vinuesa, C. G., and C. C. Goodnow.2002. Immunology:DNA drives autoimmunity. Nature 416:595-598.
    6. Qiao, B., J. Wu, Y. W. Chu, Y. Wang, D. P. Wang, H. S. Wu, and S. D. Xiong. 2005. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 44:1108-1114.
    7. Wen, Z. K., W. Xu, L. Xu, Q. H. Cao, Y. Wang, Y. W. Chu, and S. D. Xiong. 2007. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice. Rheumatology (Oxford) 46:1796-1803.
    8. Green, R. S., E. L. Stone, M. Tenno, E. Lehtonen, M. G Farquhar, and J. D. Marth.2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27:308-320.
    9. Hutcheson, J., J. C. Scatizzi, A. M. Siddiqui, G K. Haines,3rd, T. Wu, Q. Z. Li, L. S. Davis, C. Mohan, and H. Perlman.2008. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28:206-217.
    10. Hill, G S., M. Delahousse, D. Nochy, P. Remy, F. Mignon, J. P. Mery, and J. Bariety.2001. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int.59:304-316.
    11. Jothy, S., and R. J. Sawka.1981. Presence of monocytes in systemic lupus erythematosus-associated glomerulonephritis:marker study and significance. Arch. Pathol. Lab. Med.105:590-593.
    12. Kobayashi, M., A. Koyama, M. Narita, and H. Shigematsu.1991. Intraglomerular monocytes in human glomerulonephritis. Nephron 59:580-585.
    13. Lan, H. Y, D. J. Nikolic-Paterson, W. Mu, and R. C. Atkins.1995. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int. 48:753-760.
    14. Li, K., W. Xu, Q. Guo, Z. Jiang, P. Wang, Y. Yue, and S. Xiong.2009. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ. Res.105:353-364.
    15. Ito, T., M. Schaller, C. M. Hogaboam, T. J. Standiford, M. Sandor, N. W. Lukacs, S. W. Chensue, and S. L. Kunkel.2009. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J. Clin. Invest.119:33-46.
    16. Van Rooijen, N., and A. Sanders.1994. Liposome mediated depletion of macrophages:mechanism of action, preparation of liposomes and applications. J. Immunol. Methods 174:83-93.
    17. Alves-Rosa, F., C. Stanganelli, J. Cabrera, N. van Rooijen, M. S. Palermo, and M. A. Isturiz.2000. Treatment with liposome-encapsulated clodronate as a new strategic approach in the management of immune thrombocytopenic purpura in a mouse model. Blood 96:2834-2840.
    18. Triantafyllopoulou, A., C. W. Franzke, S. V. Seshan, G. Perino, G. D. Kalliolias, M. Ramanujam, N. van Rooijen, A. Davidson, and L. B. Ivashkiv.2010. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl. Acad. Sci. USA 107:3012-3017.
    19. Yu, C. C., H. W. Tsui, B. Y. Ngan, M. J. Shulman, G. E. Wu, and F. W. Tsui. 1996. B and T cells are not required for the viable motheaten phenotype. J.
    Exp. Med.183:371-380.
    20. Schiffer, L., R. Bethunaickan, M. Ramanujam, W. Huang, M. Schiffer, H. Tao, M. P. Madaio, E. P. Bottinger, and A. Davidson.2008. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol.180:1938-1947.
    21. Martinez, F. O., L. Helming, and S. Gordon.2009. Alternative activation of macrophages:an immunologic functional perspective. Annu. Rev. Immunol. 27:451-483.
    22. Mosser, D. M., and J. P. Edwards.2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol.8:958-969.
    23. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25:677-686.
    24. van Rooijen, N., A. Sanders, and T. K. van den Berg.1996. Apoptosis of macrophages induced by liposome-mediated intracellular delivery of clodronate and propamidine. J. Immunol. Methods 193:93-99.
    25. McGill, J., N. Van Rooijen, and K. L. Legge.2008. Protective influenza-specific CD8 T cell responses require interactions with dendritic cells in the lungs. J. Exp. Med.205:1635-1646.
    1. Rahman, A., and D. A. Isenberg.2008. Systemic lupus erythematosus. N. Engl. J. Med.358:929-939.
    2. Davidson, A., and B. Diamond.2001. Autoimmune diseases. N. Engl. J. Med. 345:340-350.
    3. Kotzin, B. L.1996. Systemic lupus erythematosus. Cell 85:303-306.
    4. Teachey, D. T., A. E. Seif, V. I. Brown, M. Bruno, R. M. Bunte, Y. J. Chang, J. K. Choi, J. D. Fish, J. Hall, G. S. Reid, T. Ryan, C. Sheen, P. Zweidler-McKay, and S. A. Grupp.2008. Targeting Notch signaling in autoimmune and lymphoproliferative disease. Blood 111:705-714.
    5. Desai, D. D., M. R. Krishnan, J. T. Swindle, and T. N. Marion.1993. Antigen-specific induction of antibodies against native mammalian DNA in nonautoimmune mice. J. Immunol.151:1614-1626.
    6. Vinuesa, C. G., and C. C. Goodnow.2002. Immunology:DNA drives autoimmunity. Nature 416:595-598.
    7. Pisetsky, D. S.1996. The immunologic properties of DNA. J. Immunol. 156:421-423.
    8. Leadbetter, E. A., I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik, and A. Marshak-Rothstein.2002. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603-607.
    9. Berden, J. H., R. Licht, M. C. van Bruggen, and W. J. Tax.1999. Role of nucleosomes for induction and glomerular binding of autoantibodies in lupus nephritis. Curr. Opin. Nephrol. Hypertens.8:299-306.
    10. Qiao, B., J. Wu, Y. W. Chu, Y. Wang, D. P. Wang, H. S. Wu, and S. D. Xiong. 2005. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 44:1108-1114.
    11. Wen, Z. K., W. Xu, L. Xu, Q. H. Cao, Y. Wang, Y. W. Chu, and S. D. Xiong. 2007. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice. Rheumatology (Oxford) 46:1796-1803.
    12. Schiffer, L., R. Bethunaickan, M. Ramanujam, W. Huang, M. Schiffer, H. Tao, M. P. Madaio, E. P. Bottinger, and A. Davidson.2008. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis.J. Immunol.180:1938-1947.
    13. Liu, K., and C. Mohan.2006. What do mouse models teach us about human SLE? Clin. Immunol.119:123-130.
    14. Paulson, J. C.2007. Innate immune response triggers lupus-like autoimmune disease. Cell 130:589-591.
    15. Green, R. S., E. L. Stone, M. Tenno, E. Lehtonen, M. G. Farquhar, and J. D. Marth.2007. Mammalian N-glycan branching protects against innate immune self-recognition and inflammation in autoimmune disease pathogenesis. Immunity 27:308-320.
    16. Hutcheson, J., J. C. Scatizzi, A. M. Siddiqui, G. K. Haines,3rd, T. Wu, Q. Z. Li, L. S. Davis, C. Mohan, and H. Perlman.2008. Combined deficiency of proapoptotic regulators Bim and Fas results in the early onset of systemic autoimmunity. Immunity 28:206-217.
    17. Hill, G. S., M. Delahousse, D. Nochy, P. Remy, F. Mignon, J. P. Mery, and J. Bariety.2001. Predictive power of the second renal biopsy in lupus nephritis: significance of macrophages. Kidney Int.59:304-316.
    18. Jothy, S., and R. J. Sawka.1981. Presence of monocytes in systemic lupus erythematosus-associated glomerulonephritis:marker study and significance. Arch. Pathol. Lab. Med.105:590-593.
    19. Kobayashi, M., A. Koyama, M. Narita, and H. Shigematsu.1991. Intraglomerular monocytes in human glomerulonephritis. Nephron 59:580-585.
    20. Lan, H. Y., D. J. Nikolic-Paterson, W. Mu, and R. C. Atkins.1995. Local macrophage proliferation in the progression of glomerular and tubulointerstitial injury in rat anti-GBM glomerulonephritis. Kidney Int. 48:753-760.
    21. Mosser, D. M., and J. P. Edwards.2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol.8:958-969.
    22. Mantovani, A., A. Sica, and M. Locati.2005. Macrophage polarization comes of age. Immunity 23:344-346.
    23. Benoit, M., B. Desnues, and J. L. Mege.2008. Macrophage polarization in bacterial infections.J. Immunol.181:3733-3739.
    24. Martinez, F.O., L. Helming, and S. Gordon.2009. Alternative activation of macrophages:an immunologic functional perspective. Annu. Rev. Immunol. 27:451-483.
    25. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25:677-686.
    26. Li, K., W. Xu, Q. Guo, Z. Jiang, P. Wang, Y. Yue, and S. Xiong.2009. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ. Res.105:353-364.
    27. Gordon, S.2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23-35.
    28. Artavanis-Tsakonas, S., M. D. Rand, and R. J. Lake.1999. Notch signaling: cell fate control and signal integration in development. Science 284:770-776.
    29. Maillard, I., T. Fang, and W. S. Pear.2005. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol.23:945-974.
    30. Tanigaki, K., and T. Honjo.2007. Regulation of lymphocyte development by Notch signaling. Nat. Immunol.8:451-456.
    31. Ohishi, K., B. Varnum-Finney, R. E. Serda, C. Anasetti, and I. D. Bernstein. 2001. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98:1402-1407.
    32. Hu, X., A. Y. Chung, I. Wu, J. Foldi, J. Chen, J. D. Ji, T. Tateya, Y. J. Kang, J. Han, M. Gessler, R. Kageyama, and L. B. Ivashkiv.2008. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 29:691-703.
    33. Palaga, T., C. Buranaruk, S. Rengpipat, A. H. Fauq, T. E. Golde, S. H. Kaufmann, and B. A. Osborne.2008. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur. J. Immunol.38:174-183.
    34. Narayana, Y, and K. N. Balaji.2008. NOTCH1 up-regulation and signaling involved in Mycobacterium bovis BCG-induced SOCS3 expression in macrophages. J. Biol. Chem.283:12501-12511.
    35. Monsalve, E., M. A. Perez, A. Rubio, M. J. Ruiz-Hidalgo, V. Baladron, J. J. Garcia-Ramirez, J. C. Gomez, J. Laborda, and M. J. Diaz-Guerra.2006. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J. Immunol.176:5362-5373.
    36. Ito, T., M. Schaller, C. M. Hogaboam, T. J. Standiford, M. Sandor, N. W. Lukacs, S. W. Chensue, and S. L. Kunkel.2009. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J. Clin. Invest.119:33-46.
    37. Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, and T. Taniguchi.2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13:539-548.
    38. Takaoka, A., H. Yanai, S. Kondo, G Duncan, H. Negishi, T. Mizutani, S. Kano, K. Honda, Y. Ohba, T. W. Mak, and T. Taniguchi.2005. Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 434:243-249.
    39. Capozzo, A. V., K. Ramirez, J. M. Polo, J. Ulmer, E. M. Barry, M. M. Levine, and M. F. Pasetti.2006. Neonatal immunization with a Sindbis virus-DNA measles vaccine induces adult-like neutralizing antibodies and cell-mediated immunity in the presence of maternal antibodies. J. Immunol.176:5671-5681.
    40. Perez, O. D., and G. P. Nolan.2002. Simultaneous measurement of multiple active kinase states using polychromatic flow cytometry. Nat. Biotechnol. 20:155-162.
    41. Chung, E. Y, J. Liu, Y. Homma, Y. Zhang, A. Brendolan, M. Saggese, J. Han, R. Silverstein, L. Selleri, and X. Ma.2007. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1. Immunity 27:952-964.
    42. Lumeng, C. N., J. L. Bodzin, and A. R. Saltiel.2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117:175-184.
    43. Gao, B., Z. Duan, W. Xu, and S. Xiong.2009. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424-433.
    44. Minhajuddin, M., F. Fazal, K. M. Bijli, M. R. Amin, and A. Rahman.2005. Inhibition of mammalian target of rapamycin potentiates thrombin-induced intercellular adhesion molecule-1 expression by accelerating and stabilizing NF-kappa B activation in endothelial cells. J. Immunol.174:5823-5829.
    45. Guan, E., J. Wang, J. Laborda, M. Norcross, P. A. Baeuerle, and T. Hoffman. 1996. T cell leukemia-associated human Notch/translocation-associated Notch homologue has I kappa B-like activity and physically interacts with nuclear factor-kappa B proteins in T cells. J. Exp. Med.183:2025-2032.
    46. Rosati, E., R. Sabatini, G. Rampino, A. Tabilio, M. Di Ianni, K. Fettucciari, A. Bartoli, S. Coaccioli, I. Screpanti, and P. Marconi.2009. Constitutively activated Notch signaling is involved in survival and apoptosis resistance of B-CLL cells. Blood 113:856-865.
    47. McKenzie, G., G. Ward, Y. Stallwood, E. Briend, S. Papadia, A. Lennard, M. Turner, B. Champion, and G. E. Hardingham.2006. Cellular Notch responsiveness is defined by phosphoinositide 3-kinase-dependent signals. BMC Cell Biol.7:10.
    48. Liu, Z. J., M. Xiao, K. Balint, K. S. Smalley, P. Brafford, R. Qiu, C. C. Pinnix, X. Li, and M. Herlyn.2006. Notchl signaling promotes primary melanoma progression by activating mitogen-activated protein kinase/phosphatidylinositol 3-kinase-Akt pathways and up-regulating N-cadherin expression. Cancer Res.66:4182-4190.
    49. Sade, H., S. Krishna, and A. Sarin.2004. The anti-apoptotic effect of Notch-1 requires p561ck-dependent, Akt/PKB-mediated signaling in T cells. J. Biol. Chem.279:2937-2944.
    50. Savill, J., I. Dransfield, C. Gregory, and C. Haslett.2002. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2:965-975.
    51. Okabe, Y., K. Kawane, S. Akira, T. Taniguchi, and S. Nagata.2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med.202:1333-1339.
    52. Mukundan, L., J. I. Odegaard, C. R. Morel, J. E. Heredia, J. W. Mwangi, R. R. Ricardo-Gonzalez, Y. P. Goh, A. R. Eagle, S. E. Dunn, J. U. Awakuni, K. D. Nguyen, L. Steinman, S. A. Michie, and A. Chawla.2009. PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15:1266-1272.
    53. Napirei, M., H. Karsunky, B. Zevnik, H. Stephan, H. G. Mannherz, and T. Moroy.2000. Features of systemic lupus erythematosus in Dnasel-deficient mice. Nat. Genet.25:177-181.
    54. Bickerstaff, M. C., M. Botto, W. L. Hutchinson, J. Herbert, G. A. Tennent, A. Bybee, D. A. Mitchell, H. T. Cook, P. J. Butler, M. J. Walport, and M. B. Pepys.1999. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat. Med.5:694-697.
    55. Familian, A., B. Zwart, H. G. Huisman, I. Rensink, D. Roem, P. L. Hordijk, L. A. Aarden, and C. E. Hack.2001. Chromatin-independent binding of serum amyloid P component to apoptotic cells. J. Immunol.167:647-654.
    56. Botto, M., C. Dell'Agnola, A. E. Bygrave, E. M. Thompson, H. T. Cook, F. Petry, M. Loos, P. P. Pandolfi, and M. J. Walport.1998. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat. Genet.19:56-59.
    57. Hahn, B. H.1998. Antibodies to DNA. N. Engl. J. Med.338:1359-1368.
    58. Yu, C. C., H. W. Tsui, B. Y. Ngan, M. J. Shulman, G. E. Wu, and F. W. Tsui. 1996. B and T cells are not required for the viable motheaten phenotype. J. Exp.Med.183:371-380.
    59. Radtke, F., A. Wilson, S. J. Mancini, and H. R. MacDonald.2004. Notch regulation of lymphocyte development and function. Nat. Immunol. 5:247-253.
    60. Xu, J., X. Yun, J. Jiang, Y. Wei, Y. Wu, W. Zhang, Y. Liu, W. Wang, Y. Wen, and J. Gu.2010. Hepatitis B virus X protein blunts senescence-like growth arrest of human hepatocellular carcinoma via reducing Notch1 cleavage. Hepatology 9999.
    61. Besseyrias, V., E. Fiorini, L. J. Strobl, U. Zimber-Strobl, A. Dumortier, U. Koch, M. L. Arcangeli, S. Ezine, H. R. Macdonald, and F. Radtke.2007. Hierarchy of Notch-Delta interactions promoting T cell lineage commitment and maturation. J. Exp. Med.204:331-343.
    62. Jenkinson, E. J., W. E. Jenkinson, S. W. Rossi, and G. Anderson.2006. The thymus and T-cell commitment:the right niche for Notch? Nat. Rev. Immunol. 6:551-555.
    63. Fang, T. C., Y. Yashiro-Ohtani, C. Del Bianco, D. M. Knoblock, S. C. Blacklow, and W. S. Pear.2007. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27:100-110.
    64. Tu, L., T. C. Fang, D. Artis,O. Shestova, S. E. Pross, I. Maillard, and W. S. Pear.2005. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med.202:1037-1042.
    65. Caton, M. L., M. R. Smith-Raska, and B. Reizis.2007. Notch-RBP-J signaling controls the homeostasis of CD8-dendritic cells in the spleen. J. Exp. Med. 204:1653-1664.
    66. Zhou, J., P. Cheng, J. I. Youn, M. J. Cotter, and D. I. Gabrilovich.2009. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30:845-859.
    67. Hertzog, P.2008. A notch in the toll belt. Immunity 29:663-665.
    68. Gu, L., S. Tseng, R. M. Homer, C. Tam, M. Loda, and B. J. Rollins.2000. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 404:407-411.
    69. Urbonaviciute, V., B. G. Furnrohr, S. Meister, L. Munoz, P. Heyder, F. De Marchis, M. E. Bianchi, C. Kirschning, H. Wagner, A. A. Manfredi, J. R. Kalden, G. Schett, P. Rovere-Querini, M. Herrmann, and R. E. Voll.2008. Induction of inflammatory and immune responses by HMGBl-nucleosome complexes:implications for the pathogenesis of SLE. J. Exp. Med. 205:3007-3018.
    70. Tesch, G. H., S. Maifert, A. Schwarting, B. J. Rollins, and V. R. Kelley.1999. Monocyte chemoattractant protein 1-dependent leukocytic infiltrates are responsible for autoimmune disease in MRL-Fas(lpr) mice. J. Exp. Med. 190:1813-1824.
    71. Shin, H. M., L. M. Minter, O. H. Cho, S. Gottipati, A. H. Fauq, T. E. Golde, G. E. Sonenshein, and B. A. Osborne.2006. Notchl augments NF-kappaB activity by facilitating its nuclear retention. EMBO J.25:129-138.
    72. Schiffer, L., J. Sinha, X. Wang, W. Huang, G. von Gersdorff, M. Schiffer, M. P. Madaio, and A. Davidson.2003. Short term administration of costimulatory blockade and cyclophosphamide induces remission of systemic lupus erythematosus nephritis in NZB/W F1 mice by a mechanism downstream of renal immune complex deposition. J. Immunol.171:489-497.
    73. Triantafyllopoulou, A., C. W. Franzke, S. V. Seshan, G. Perino, G. D. Kalliolias, M. Ramanujam, N. van Rooijen, A. Davidson, and L. B. Ivashkiv.2010. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl. Acad. Sci. USA 107:3012-3017.
    1. Rauh, M. J., V. Ho, C. Pereira, A. Sham, L. M. Sly, V. Lam, L. Huxham, A. I. Minchinton, A. Mui, and G. Krystal.2005. SHIP represses the generation of alternatively activated macrophages. Immunity 23:361-374.
    2. Mosser, D. M., and J. P. Edwards.2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol.8:958-969.
    3. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25:677-686.
    4. Mylonas, K. J., M. G. Nair, L. Prieto-Lafuente, D. Paape, and J. E. Allen.2009. Alternatively activated macrophages elicited by helminth infection can be reprogrammed to enable microbial killing. J. Immunol.182:3084-3094.
    5. Martinez, F. O., L. Helming, and S. Gordon.2009. Alternative activation of macrophages:an immunologic functional perspective. Annu. Rev. Immunol. 27:451-483.
    6. Li, K., W. Xu, Q. Guo, Z. Jiang, P. Wang, Y. Yue, and S. Xiong.2009. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ. Res.105:353-364.
    7. Gordon, S.2003. Alternative activation of macrophages. Nat. Rev. Immunol. 3:23-35.
    8. Rodriguez, P. C., D. G. Quiceno, J. Zabaleta, B. Ortiz, A. H. Zea, M. B. Piazuelo, A. Delgado, P. Correa, J. Brayer, E. M. Sotomayor, S. Antonia, J. B. Ochoa, and A. C. Ochoa.2004. Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res.64:5839-5849.
    9. Takahashi, H., Y. Tsuda, D. Takeuchi, M. Kobayashi, D. N. Herndon, and F. Suzuki.2004. Influence of systemic inflammatory response syndrome on host resistance against bacterial infections. Crit. Care Med.32:1879-1885.
    10. Triantafyllopoulou, A., C. W. Franzke, S. V. Seshan, G. Perino, G. D. Kalliolias, M. Ramanujam, N. van Rooijen, A. Davidson, and L. B. Ivashkiv.2010. Proliferative lesions and metalloproteinase activity in murine lupus nephritis mediated by type I interferons and macrophages. Proc. Natl. Acad. Sci. USA 107:3012-3017.
    11. Maillard, I., T. Fang, and W. S. Pear.2005. Regulation of lymphoid development, differentiation, and function by the Notch pathway. Annu. Rev. Immunol.23:945-974.
    12. Tanigaki, K., and T. Honjo.2007. Regulation of lymphocyte development by Notch signaling. Nat. Immunol.8:451-456.
    13. Artavanis-Tsakonas, S., M. D. Rand, and R. J. Lake.1999. Notch signaling: cell fate control and signal integration in development. Science 284:770-776.
    14. Maillard, I., S. H. Adler, and W. S. Pear.2003. Notch and the immune system. Immunity 19:781-791.
    15. Osborne, B. A., and L. M. Minter.2007. Notch signalling during peripheral T-cell activation and differentiation. Nat. Rev. Immunol.7:64-75.
    16. Tu, L., T. C. Fang, D. Artis, O. Shestova, S. E. Pross, I. Maillard, and W. S. Pear.2005. Notch signaling is an important regulator of type 2 immunity. J. Exp. Med.202:1037-1042.
    17. Zhou, J., P. Cheng, J. I. Youn, M. J. Cotter, and D. I. Gabrilovich.2009. Notch and wingless signaling cooperate in regulation of dendritic cell differentiation. Immunity 30:845-859.
    18. Ohishi, K., B. Varnum-Finney, R. E. Serda, C. Anasetti, and I. D. Bernstein. 2001. The Notch ligand, Delta-1, inhibits the differentiation of monocytes into macrophages but permits their differentiation into dendritic cells. Blood 98:1402-1407.
    19. Palaga, T., C. Buranaruk, S. Rengpipat, A. H. Fauq, T. E. Golde, S. H. Kaufmann, and B. A. Osborne.2008. Notch signaling is activated by TLR stimulation and regulates macrophage functions. Eur. J. Immunol.38:174-183.
    20. Narayana, Y., and K. N. Balaji.2008. NOTCH1 up-regulation and signaling involved in Mycobacterium bovis BCG-induced SOCS3 expression in macrophages. J. Biol. Chem.283:12501-12511.
    21. Monsalve, E., M. A. Perez, A. Rubio, M. J. Ruiz-Hidalgo, V. Baladron, J. J. Garcia-Ramirez, J. C. Gomez, J. Laborda, and M. J. Diaz-Guerra.2006. Notch-1 up-regulation and signaling following macrophage activation modulates gene expression patterns known to affect antigen-presenting capacity and cytotoxic activity. J. Immunol.176:5362-5373.
    22. Ito, T., M. Schaller, C. M. Hogaboam, T. J. Standiford, M. Sandor, N. W.
    Lukacs, S. W. Chensue, and S. L. Kunkel.2009. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice through DC-derived Notch ligand delta-like 4. J. Clin. Invest.119:33-46.
    23. Lumeng, C. N., J. L. Bodzin, and A. R. Saltiel.2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117:175-184.
    24. Kelly-Welch, A. E., E. M. Hanson, M. R. Boothby, and A. D. Keegan.2003. Interleukin-4 and interleukin-13 signaling connections maps. Science 300:1527-1528.
    25. Montaner, L. J., R. P. da Silva, J. Sun, S. Sutterwala, M. Hollinshead, D. Vaux, and S. Gordon.1999. Type 1 and type 2 cytokine regulation of macrophage endocytosis:differential activation by IL-4/IL-13 as opposed to IFN-gamma or IL-10. J. Immunol.162:4606-4613.
    26. Benoit, M., B. Desnues, and J. L. Mege.2008. Macrophage polarization in bacterial infections. J. Immunol.181:3733-3739.
    27. Odegaard, J. I., R. R. Ricardo-Gonzalez, M. H. Goforth, C. R. Morel, V. Subramanian, L. Mukundan, A. Red Eagle, D. Vats, F. Brombacher, A. W. Ferrante, and A. Chawla.2007. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 447:1116-1120.
    28. Ponomarev, E. D., K. Maresz, Y. Tan, and B. N. Dittel.2007. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27:10714-10721.
    29. Jenkinson, E. J., W. E. Jenkinson, S. W. Rossi, and G. Anderson.2006. The thymus and T-cell commitment:the right niche for Notch? Nat. Rev. Immunol. 6:551-555.
    30. Radtke, F., A. Wilson, S. J. Mancini, and H. R. MacDonald.2004. Notch regulation of lymphocyte development and function. Nat. Immunol. 5:247-253.
    31. Amsen, D., A. Antov, D. Jankovic, A. Sher, F. Radtke, A. Souabni, M. Busslinger, B. McCright, T. Gridley, and R. A. Flavell.2007. Direct regulation of Gata3 expression determines the T helper differentiation potential of Notch. Immunity 27:89-99.
    32. Fang, T. C., Y. Yashiro-Ohtani, C. Del Bianco, D. M. Knoblock, S. C. Blacklow, and W. S. Pear.2007. Notch directly regulates Gata3 expression during T helper 2 cell differentiation. Immunity 27:100-110.
    33. Hu, X., A. Y. Chung, I. Wu, J. Foldi, J. Chen, J. D. Ji, T. Tateya, Y. J. Kang, J. Han, M. Gessler, R. Kageyama, and L. B. Ivashkiv.2008. Integrated regulation of Toll-like receptor responses by Notch and interferon-gamma pathways. Immunity 29:691-703.
    34. Maekawa, Y, S. Tsukumo, S. Chiba, H. Hirai, Y Hayashi, H. Okada, K. Kishihara, and K. Yasutomo.2003. Deltal-Notch3 interactions bias the functional differentiation of activated CD4+ T cells. Immunity 19:549-559.
    35. Fleming, R. J., Y. Gu, and N. A. Hukriede.1997. Serrate-mediated activation of Notch is specifically blocked by the product of the gene fringe in the dorsal compartment of the Drosophila wing imaginal disc. Development 124:2973-2981.
    36. Justice, N. J., and Y. N. Jan.2002. Variations on the Notch pathway in neural development. Curr. Opin. Neurobiol.12:64-70.
    37. Panin, V. M., V. Papayannopoulos, R. Wilson, and K. D. Irvine.1997. Fringe modulates Notch-ligand interactions. Nature 387:908-912.
    38. Amsen, D., J. M. Blander, G. R. Lee, K. Tanigaki, T. Honjo, and R. A. Flavell. 2004. Instruction of distinct CD4 T helper cell fates by different notch ligands on antigen-presenting cells. Cell 117:515-526.
    39. Jarriault, S., O. Le Bail, E. Hirsinger, O. Pourquie, F. Logeat, C. F. Strong, C. Brou, N. G. Seidah, and A. Isra 1.1998. Delta-1 activation of notch-1 signaling results in HES-1 transactivation. Mol. Cell Biol.18:7423-7431.
    40. Elyaman, W., E. M. Bradshaw, Y. Wang, M. Oukka, P. Kivisakk, S. Chiba, H. Yagita, and S. J. Khoury.2007. JAGGED1 and deltal differentially regulate the outcome of experimental autoimmune encephalomyelitis. J. Immunol. 179:5990-5998.
    1. Rahman, A., and D. A. Isenberg.2008. Systemic lupus erythematosus. N. Engl. J. Med.358:929-939.
    2. Hahn, B. H.1998. Antibodies to DNA. N. Engl. J. Med.338:1359-1368.
    3. Chang, N. H., T. McKenzie, G. Bonventi, C. Landolt-Marticorena, P. R. Fortin, D. Gladman, M. Urowitz, and J. E. Wither.2008. Expanded population of activated antigen-engaged cells within the naive B cell compartment of patients with systemic lupus erythematosus. J. Immunol.180:1276-1284.
    4. McClain, M. T., L. D. Heinlen, G. J. Dennis, J. Roebuck, J. B. Harley, and J. A. James.2005. Early events in lupus humoral autoimmunity suggest initiation through molecular mimicry. Nat. Med.11:85-89.
    5. Humrich, J. Y., H. Morbach, R. Undeutsch, P. Enghard, S. Rosenberger, O. Weigert, L. Kloke, J. Heimann, T. Gaber, S. Brandenburg, A. Scheffold, J. Huehn, A. Radbruch, G. R. Burmester, and G. Riemekasten.2010. Homeostatic imbalance of regulatory and effector T cells due to IL-2 deprivation amplifies murine lupus. Proc. Natl. Acad. Sci. USA 107:204-209.
    6. Gandhi, R., E. Hussain, J. Das, R. Handa, and R. Pal.2006. Anti-idiotype-mediated epitope spreading and diminished phagocytosis by a human monoclonal antibody recognizing late-stage apoptotic cells. Cell Death. Differ.13:1715-1726.
    7. Shlomchik, M. J., A. Marshak-Rothstein, C. B. Wolfowicz, T. L. Rothstein, and M. G. Weigert.1987. The role of clonal selection and somatic mutation in autoimmunity. Nature 328:805-811.
    8. Vinuesa, C. G., and C. C. Goodnow.2002. Immunology:DNA drives autoimmunity. Nature 416:595-598.
    9. Qiao, B., J. Wu, Y. W. Chu, Y. Wang, D. P. Wang, H. S. Wu, and S. D. Xiong. 2005. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 44:1108-1114.
    10. Wen, Z. K., W. Xu, L. Xu, Q. H. Cao, Y. Wang, Y. W. Chu, and S. D. Xiong. 2007. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice.
    Rheumatology (Oxford) 46:1796-1803.
    11. Casciola-Rosen, L. A., G. Anhalt, and A. Rosen.1994. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J. Exp. Med.179:1317-1330.
    12. Qian, Y., K. L. Conway, X. Lu, H. M. Seitz, G. K. Matsushima, and S. H. Clarke.2006. Autoreactive MZ and B-1 B-cell activation by Faslpr is coincident with an increased frequency of apoptotic lymphocytes and a defect in macrophage clearance. Blood 108:974-982.
    13. Gaipl, U. S., L. E. Munoz, G. Grossmayer, K. Lauber, S. Franz, K. Sarter, R. E. Voll, T. Winkler, A. Kuhn, J. Kalden, P. Kern, and M. Herrmann.2007. Clearance deficiency and systemic lupus erythematosus (SLE). J. Autoimmun. 28:114-121.
    14. Walport, M. J.2000. Lupus, DNase and defective disposal of cellular debris. Nat. Genet.25:135-136.
    15. Hoffmann, M. H., S. Trembleau, S. Muller, and G. Steiner.2009. Nucleic acid-associated autoantigens:Pathogenic involvement and therapeutic potential. J. Autoimmun.
    16. Napirei, M., H. Karsunky, B. Zevnik, H. Stephan, H. G. Mannherz, and T. Moroy.2000. Features of systemic lupus erythematosus in Dnasel-deficient mice.Nat. Genet.25:177-181.
    17. Dittmar, M., C. Bischofs, N. Matheis, R. Poppe, and G. J. Kahaly.2009. A novel mutation in the DNASE1 gene is related with protein instability and decreased enzyme activity in thyroid autoimmunity. J. Autoimmun.32:7-13.
    18. Pepys, M. B., and P. J. Butler.1987. Serum amyloid P component is the major calcium-dependent specific DNA binding protein of the serum. Biochem. Biophys. Res. Commun.148:308-313.
    19. Bickerstaff, M. C., M. Botto, W. L. Hutchinson, J. Herbert, G. A. Tennent, A. Bybee, D. A. Mitchell, H. T. Cook, P. J. Butler, M. J. Walport, and M. B. Pepys.1999. Serum amyloid P component controls chromatin degradation and prevents antinuclear autoimmunity. Nat. Med.5:694-697.
    20. Sorensen, I. J., E. Holm Nielsen, L. Schroder, A. Voss, L. Horvath, and S. E. Svehag.2000. Complexes of serum amyloid P component and DNA in serum from healthy individuals and systemic lupus erythematosus patients. J. Clin. Immunol.20:408-415.
    21. Breathnach, S. M., H. Kofler, N. Sepp, J. Ashworth, D. Woodrow, M. B. Pepys, and H. Hintner.1989. Serum amyloid P component binds to cell nuclei in vitro and to in vivo deposits of extracellular chromatin in systemic lupus erythematosus. J. Exp. Med.170:1433-1438.
    22. Mold, C., H. D. Gresham, and T. W. Du Clos.2001. Serum amyloid P component and C-reactive protein mediate phagocytosis through murine Fc gamma Rs. J. Immunol.166:1200-1205.
    23. Mold, C., R. Baca, and T. W. Du Clos.2002. Serum amyloid P component and C-reactive protein opsonize apoptotic cells for phagocytosis through Fcgamma receptors. J. Autoimmun.19:147-154.
    24. Lu, J., L. L. Marnell, K. D. Marjon, C. Mold, T. W. Du Clos, and P. D. Sun. 2008. Structural recognition and functional activation of FcgammaR by innate pentraxins. Nature 456:989-992.
    25. Martinez, F. O., L. Helming, and S. Gordon.2009. Alternative activation of macrophages:an immunologic functional perspective. Annu. Rev. Immunol. 27:451-483.
    26. Mosser, D. M., and J. P. Edwards.2008. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol.8:958-969.
    27. Erwig, L. P., and P. M. Henson.2007. Immunological consequences of apoptotic cell phagocytosis. Am. J. Pathol.171:2-8.
    28. Schiffer, L., R. Bethunaickan, M. Ramanujam, W. Huang, M. Schiffer, H. Tao, M. P. Madaio, E. P. Bottinger, and A. Davidson.2008. Activated renal macrophages are markers of disease onset and disease remission in lupus nephritis. J. Immunol.180:1938-1947.
    29. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol.25:677-686.
    30. Li, K., W. Xu, Q. Guo, Z. Jiang, P. Wang, Y. Yue, and S. Xiong.2009. Differential macrophage polarization in male and female BALB/c mice infected with coxsackievirus B3 defines susceptibility to viral myocarditis. Circ. Res.105:353-364.
    31. Ito, T., M. Schaller, C. M. Hogaboam, T. J. Standiford, M. Sandor, N. W. Lukacs, S. W. Chensue, and S. L. Kunkel.2009. TLR9 regulates the mycobacteria-elicited pulmonary granulomatous immune response in mice
    through DC-derived Notch ligand delta-like 4. J. Clin. Invest.119:33-46.
    32. Estabrook, M. M., D. L. Jack, N. J. Klein, and G. A. Jarvis.2004. Mannose-binding lectin binds to two major outer membrane proteins, opacity protein and porin, of Neisseria meningitidis. J. Immunol.172:3784-3792.
    33. Chung, E. Y., J. Liu, Y. Homma, Y. Zhang, A. Brendolan, M. Saggese, J. Han, R. Silverstein, L. Selleri, and X. Ma.2007. Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbxl and Prep-1. Immunity 27:952-964.
    34. Lumeng, C. N., J. L. Bodzin, and A. R. Saltiel.2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest. 117:175-184.
    35. Xu J., X. Y, J. Jiang, Y. Wei, Y. Wu, W. Zhang, Y. Liu, W. Wang, Y Wen, and J. Gu.2010. Hepatitis B virus X protein blunts senescence-like growth arrest of human hepatocellular carcinoma via reducing Notch1 cleavage. Hepatology 9999.
    36. Gao, B., Z. Duan, W. Xu, and S. Xiong.2009. Tripartite motif-containing 22 inhibits the activity of hepatitis B virus core promoter, which is dependent on nuclear-located RING domain. Hepatology 50:424-433.
    37. Garlanda, C., B. Bottazzi, A. Bastone, and A. Mantovani.2005. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol.23:337-366.
    38. Katakura, T., M. Miyazaki, M. Kobayashi, D. N. Herndon, and F. Suzuki. 2004. CCL17 and IL-10 as effectors that enable alternatively activated macrophages to inhibit the generation of classically activated macrophages. J. Immunol.172:1407-1413.
    39. Yin, Z., G. Bahtiyar, N. Zhang, L. Liu, P. Zhu, M. E. Robert, J. McNiff, M. P. Madaio, and J. Craft.2002. IL-10 regulates murine lupus. J. Immunol. 169:2148-2155.
    40. Mevorach, D., J. L. Zhou, X. Song, and K. B. Elkon.1998. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J. Exp. Med. 188:387-392.
    41. Savill, J., I. Dransfield, C. Gregory, and C. Haslett.2002. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat. Rev. Immunol. 2:965-975.
    42. Pisetsky, D. S.1996. The immunologic properties of DNA. J. Immunol. 156:421-423.
    43. Herrmann, M., R. E. Voll, O. M. Zoller, M. Hagenhofer, B. B. Ponner, and J. R. Kalden.1998. Impaired phagocytosis of apoptotic cell material by monocyte-derived macrophages from patients with systemic lupus erythematosus. Arthritis Rheum.41:1241-1250.
    44. Mukundan, L., J. I. Odegaard, C. R. Morel, J. E. Heredia, J. W. Mwangi, R. R. Ricardo-Gonzalez, Y. P. Goh, A. R. Eagle, S. E. Dunn, J. U. Awakuni, K. D. Nguyen, L. Steinman, S. A. Michie, and A. Chawla.2009. PPAR-delta senses and orchestrates clearance of apoptotic cells to promote tolerance. Nat. Med. 15:1266-1272.
    45. Okabe, Y., K. Kawane, S. Akira, T. Taniguchi, and S. Nagata.2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med.202:1333-1339.
    46. Leadbetter, E. A., I. R. Rifkin, A. M. Hohlbaum, B. C. Beaudette, M. J. Shlomchik, and A. Marshak-Rothstein.2002. Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603-607.
    47. Wu, T., Y. Fu, D. Brekken, M. Yan, X. J. Zhou, K. Vanarsa, N. Deljavan, C. Ahn, C. Putterman, and C. Mohan.2010. Urine proteome scans uncover total urinary protease, prostaglandin D synthase, serum amyloid P, and superoxide dismutase as potential markers of lupus nephritis. J. Immunol.184:2183-2193.
    48. Ponomarev, E. D., K. Maresz, Y. Tan, and B. N. Dittel.2007. CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J. Neurosci. 27:10714-10721.
    1. Rotem, Z., R. A. Cox, and A. Isaacs.1963. Inhibition of virus multiplication by foreign nucleic acid. Nature 197:564-566.
    2. Jensen, K. E., A. L. Neal, R. E. Owens, and J. Warren.1963. Interferon Responses of Chick Embryo Fibroblasts to Nucleic Acids and Related Compounds. Nature 200:433-434.
    3. Akira, S., S. Uematsu, and O. Takeuchi.2006. Pathogen recognition and innate immunity. Cell 124:783-801.
    4. Yoneyama, M., M. Kikuchi, T. Natsukawa, N. Shinobu, T. Imaizumi, M. Miyagishi, K. Taira, S. Akira, and T. Fujita.2004. The RNA helicase RIG-Ⅰ has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol.5:730-737.
    5. Meylan, E., J. Tschopp, and M. Karin.2006. Intracellular pattern recognition receptors in the host response. Nature 442:39-44.
    6. Ishii, K. J., C. Coban, H. Kato, K. Takahashi, Y. Torii, F. Takeshita, H. Ludwig, G. Sutter, K. Suzuki, H. Hemmi, S. Sato, M. Yamamoto, S. Uematsu, T. Kawai, O. Takeuchi, and S. Akira.2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol.7:40-48.
    7. Cheng, G, J. Zhong, J. Chung, and F. V. Chisari.2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. USA 104:9035-9040.
    8. Takaoka, A., Z. Wang, M. K. Choi, H. Yanai, H. Negishi, T. Ban, Y. Lu, M. Miyagishi, T. Kodama, K. Honda, Y. Ohba, and T. Taniguchi.2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501-505.
    9. Roberts, T. L., A. Idris, J. A. Dunn, G M. Kelly, C. M. Burnton, S. Hodgson, L. L. Hardy, V. Garceau, M. J. Sweet, I. L. Ross, D. A. Hume, and K. J. Stacey. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057-1060.
    10. Chiu, Y. H., J. B. Macmillan, and Z. J. Chen.2009. RNA polymerase Ⅲ detects cytosolic DNA and induces type Ⅰ interferons through the RIG-Ⅰ pathway. Cell 138:576-591.
    11. Ablasser, A., F. Bauernfeind, G. Hartmann, E. Latz, K. A. Fitzgerald, and V. Hornung.2009. RIG-Ⅰ-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase Ⅲ-transcribed RNA intermediate. Nat. Immunol.10:1065-1072.
    12. Hemmi, H., O. Takeuchi, T. Kawai, T. Kaisho, S. Sato, H. Sanjo, M. Matsumoto, K. Hoshino, H. Wagner, K. Takeda, and S. Akira.2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740-745.
    13. Stetson, D. B., and R. Medzhitov.2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93-103.
    14. Cassiday, L. A., and L. J. Maher,3rd.2002. Having it both ways:transcription factors that bind DNA and RNA. Nucleic. Acids. Res.30:4118-4126.
    15. Aravind, L., and E. V. Koonin.2000. SAP-a putative DNA-binding motif involved in chromosomal organization. Trends Biochem. Sci.25:112-114.
    16. Notenboom, V., R. G. Hibbert, S. E. van Rossum-Fikkert, J. V. Olsen, M. Mann, and T. K. Sixma.2007. Functional characterization of Radl8 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic. Acids. Res.35:5819-5830.
    17. Qiao, B., J. Wu, Y. W. Chu, Y. Wang, D. P. Wang, H. S. Wu, and S. D. Xiong. 2005. Induction of systemic lupus erythematosus-like syndrome in syngeneic mice by immunization with activated lymphocyte-derived DNA. Rheumatology (Oxford) 44:1108-1114.
    18. Wen, Z. K., W. Xu, L. Xu, Q. H. Cao, Y. Wang, Y. W. Chu, and S. D. Xiong. 2007. DNA hypomethylation is crucial for apoptotic DNA to induce systemic lupus erythematosus-like autoimmune disease in SLE-non-susceptible mice. Rheumatology (Oxford) 46:1796-1803.
    19. Torok, N. J.2007. Apoptotic cell death takes its toll. Hepatology 46:1323-1325.
    20. Watanabe, A., A. Hashmi, D. A. Gomes, T. Town, A. Badou, R. A. Flavell, and W. Z. Mehal.2007. Apoptotic hepatocyte DNA inhibits hepatic stellate cell chemotaxis via toll-like receptor 9. Hepatology 46:1509-1518.
    21. Ishii, K. J., and S. Akira.2006. Innate immune recognition of, and regulation by, DNA. Trends Immunol.27:525-532.
    22. Sano, K., H. Shirota, T. Terui, T. Hattori, and G. Tamura.2003. Oligodeoxynucleotides without CpG motifs work as adjuvant for the induction of Th2 differentiation in a sequence-independent manner. J. Immunol. 170:2367-2373.
    23. Vollmer, J., R. D. Weeratna, M. Jurk, U. Samulowitz, M. J. McCluskie, P. Payette, H. L. Davis, C. Schetter, and A. M. Krieg.2004. Oligodeoxynucleotides lacking CpG dinucleotides mediate Toll-like receptor 9 dependent T helper type 2 biased immune stimulation. Immunology 113:212-223.
    24. Roberts, T. L., M. J. Sweet, D. A. Hume, and K. J. Stacey.2005. Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J. Immunol.174:605-608.
    25. Kandimalla, E. R., L. Bhagat, Y. Li, D. Yu, D. Wang, Y. P. Cong, S. S. Song, J. X. Tang, T. Sullivan, and S. Agrawal.2005. Immunomodulatory oligonucleotides containing a cytosine-phosphate-2'-deoxy-7-deazaguanosine motif as potent toll-like receptor 9 agonists. Proc. Natl. Acad. Sci. USA 102:6925-6930.
    26. Marshak-Rothstein, A.2006. Toll-like receptors in systemic autoimmune disease. Nat. Rev. Immunol.6:823-835.
    27. Schwartz, T., J. Behlke, K. Lowenhaupt, U. Heinemann, and A. Rich.2001. Structure of the DLM-1-Z-DNA complex reveals a conserved family of Z-DNA-binding proteins. Nat. Struct. Biol.8:761-765.
    28. Fu, Y, N. Comella, K. Tognazzi, L. F. Brown, H. F. Dvorak, and O. Kocher. 1999. Cloning of DLM-1, a novel gene that is up-regulated in activated macrophages, using RNA differential display. Gene 240:157-163.
    29. Rotheriburg, S., T. Schwartz, F. Koch-Nolte, and F. Haag.2002. Complex regulation of the human gene for the Z-DNA binding protein DLM-1. Nucleic. Acids. Res.30:993-1000.
    30. Deigendesch, N., F. Koch-Nolte, and S. Rothenburg.2006. ZBP1 subcellular localization and association with stress granules is controlled by its Z-DNA binding domains. Nucleic. Acids. Res.34:5007-5020.
    31. Pham, H. T., M. Y. Park, K. K. Kim, Y. G. Kim, and J. H. Ahn.2006. Intracellular localization of human ZBP1:Differential regulation by the Z-DNA binding domain, Zalpha, in splice variants. Biochem. Biophys. Res. Commun.348:145-152.
    32. Pichlmair, A., and C. Reis e Sousa.2007. Innate recognition of viruses. Immunity 27:370-383.
    33. Saito, T., R. Hirai, Y. M. Loo, D. Owen, C. L. Johnson, S. C. Sinha, S. Akira, T. Fujita, and M. Gale, Jr.2007. Regulation of innate antiviral defenses through a shared repressor domain in RIG-Ⅰ and LGP2. Proc. Natl. Acad. Sci. USA 104:582-587.
    34. Imaizumi, T., N. Yagihashi, M. Hatakeyama, K. Yamashita, A. Ishikawa, K. Taima, H. Yoshida, I. Inoue, T. Fujita, S. Yagihashi, and K. Satoh.2004. Expression of retinoic acid-inducible gene-I in vascular smooth muscle cells stimulated with interferon-gamma. Life Sci.75:1171-1180.
    35. Imaizumi, T., S. Aratani, T. Nakajima, M. Carlson, T. Matsumiya, K. Tanji, K. Ookawa, H. Yoshida, S. Tsuchida, T. M. McIntyre, S. M. Prescott, G. A. Zimmerman, and K. Satoh.2002. Retinoic acid-inducible gene-I is induced in endothelial cells by LPS and regulates expression of COX-2. Biochem. Biophys. Res. Commun.292:274-279.
    36. O'Neill, L. A.2009. DNA makes RNA makes innate immunity. Cell 138:428-430.
    37. Cao, X.2009. New DNA-sensing pathway feeds RIG-I with RNA. Nat Immunol 10:1049-1051.
    38. Fernandes-Alnemri, T., J. W. Yu, P. Datta, J. Wu, and E. S. Alnemri.2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509-513.
    39. Hornung, V., A. Ablasser, M. Charrel-Dennis, F. Bauernfeind, G. Horvath, D. R. Caffrey, E. Latz, and K. A. Fitzgerald.2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514-518.
    40. Janssens, S., and J. Tschopp.2006. Signals from within:the DNA-damage-induced NF-kappaB response. Cell Death. Differ.13:773-784.
    41. Falck, J., J. Coates, and S. P. Jackson.2005. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434:605-611.
    42. Tian, J., A. M. Avalos, S. Y. Mao, B. Chen, K. Senthil, H. Wu, P. Parroche, S. Drabic, D. Golenbock, C. Sirois, J. Hua, L. L. An, L. Audoly, G. La Rosa, A. Bierhaus, P. Naworth, A. Marshak-Rothstein, M. K. Crow, K. A. Fitzgerald, E. Latz, P. A. Kiener, and A. J. Coyle.2007. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat. Immunol.8:487-496.
    43. Herbert, A., J. Alfken, Y. G. Kim, I. S. Mian, K. Nishikura, and A. Rich.1997. A Z-DNA binding domain present in the human editing enzyme, double-stranded RNA adenosine deaminase. Proc. Natl. Acad. Sci. USA 94:8421-8426.
    44. Ha, S. C., N. K. Lokanath, D. Van Quyen, C. A. Wu, K. Lowenhaupt, A. Rich, Y. G. Kim, and K. K. Kim.2004. A poxvirus protein forms a complex with left-handed Z-DNA:crystal structure of a Yatapoxvirus Zalpha bound to DNA. Proc. Natl. Acad. Sci. USA 101:14367-14372.
    45. Rothenburg, S., N. Deigendesch, K. Dittmar, F. Koch-Nolte, F. Haag, K. Lowenhaupt, and A. Rich.2005. A PKR-like eukaryotic initiation factor 2alpha kinase from zebrafish contains Z-DNA binding domains instead of dsRNA binding domains. Proc. Natl. Acad. Sci. USA 102:1602-1607.
    46. Ishikawa, H., Z. Ma, and G. N. Barber.2009. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 461:788-792.
    47. Ishii, K. J., C. Coban, and S. Akira.2005. Manifold mechanisms of Toll-like receptor-ligand recognition. J. Clin. Immunol.25:511-521.
    48. Bafica, A., C. A. Scanga, C. G. Feng, C. Leifer, A. Cheever, and A. Sher.2005. TLR9 regulates Thl responses and cooperates with TLR2 in mediating optimal resistance to Mycobacterium tuberculosis. J. Exp. Med. 202:1715-1724.
    49. Huang, L. Y, K. J. Ishii, S. Akira, J. Aliberti, and B. Golding.2005. Th1-like cytokine induction by heat-killed Brucella abortus is dependent on triggering of TLR9. J. Immunol.175:3964-3970.
    50. Tabeta, K., P. Georgel, E. Janssen, X. Du, K. Hoebe, K. Crozat, S. Mudd, L. Shamel, S. Sovath, J. Goode, L. Alexopoulou, R. A. Flavell, and B. Beutler. 2004. Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Natl. Acad. Sci. USA 101:3516-3521.
    51. Bave, U., M. Magnusson, M. L. Eloranta, A. Perers, G. V. Alm, and L. Ronnblom.2003. Fc gamma RⅡa is expressed on natural IFN-alpha-producing cells (plasmacytoid dendritic cells) and is required for the IFN-alpha production induced by apoptotic cells combined with lupus IgG. J. Immunol. 171:3296-3302.
    52. Lande, R., J. Gregorio, V. Facchinetti, B. Chatterjee, Y. H. Wang, B. Homey, W. Cao, B. Su, F. O. Nestle, T. Zal, I. Mellman, J. M. Schroder, Y. J. Liu, and M. Gilliet.2007. Plasmacytoid dendritic cells sense self-DNA coupled with antimicrobial peptide. Nature 449:564-569.
    53. Seth, R. B., L. Sun, and Z. J. Chen.2006. Antiviral innate immunity pathways. Cell Res.16:141-147.
    54. Hayden, M. S., A. P. West, and S. Ghosh.2006. SnapShot:NF-kappaB signaling pathways. Cell 127:1286-1287.
    55. Tomimatsu, N., C. G. Tahimic, A. Otsuki, S. Burma, A. Fukuhara, K. Sato, G. Shiota, M. Oshimura, D. J. Chen, and A. Kurimasa.2007. Ku70/80 modulates ATM and ATR signaling pathways in response to DNA double strand breaks. J. Biol. Chem.282:10138-10145.
    56. Chi, H., and R. A. Flavell.2007. Immunology:sensing the enemy within. Nature 448:423-424.
    57. Paulson, J. C.2007. Innate immune response triggers lupus-like autoimmune disease. Cell 130:589-591.
    58. Okabe, Y, K. Kawane, S. Akira, T. Taniguchi, and S. Nagata.2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med.202:1333-1339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700