用户名: 密码: 验证码:
基于MEMS技术的新型细胞传感器及其在细胞电生理中应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生物医学工程和微机械加工技术(micro electronic mechanicalsystem,MEMS)的发展,生物医学传感器的微型化使其研究的范围已达到了细胞和分子水平。细胞拥有并表达着一系列分子识别的元件,如受体、离子通道、酶等,这些分子可以作为靶分析物,当有外界刺激时,将按照固有的细胞生理机制进行相应的生理功能活动。
     基于MEMS技术的细胞传感器(cell-based biosensor)包括有微电极阵列(microelectrode array,MEA)、场效应管(field effect transistor,FET)阵列及光寻址电位传感器阵列(light-addressable potentiometric sensor,LAPS)等,它们可用于实现细胞胞外电位的记录。作为一种体外检测的新型细胞芯片技术,其实质就是在各阵列化的传感器芯片表面培养细胞,使细胞通过一层薄的电解液同芯片的电极或栅极相耦合,构成可以实现控制电路和神经系统双向通讯的生物芯片,从而对细胞的电生理特性进行传感测量。该技术以其可对多个细胞同时进行长期、无损检测的特点,已在药物筛选、环境检测等生物医学领域得到了初步的应用。同时,基于体加工技术的芯片技术同样适用于在体研究,从而在脑高级功能、神经修复、以及人工器官等研究领域展现出了诱人的前景。
     目前胞外电生理芯片很多已实现了商品化,其存在的主要问题是测试参数的单一化、指标的不稳定、测试环境要求很高等。基于此,本论文首先从基于MEA的细胞传感器出发,介绍了自主设计的用于细胞胞外电生理测试的MEA,分析其基本原理和电学模型以及制作工艺,并研究了心肌细胞、嗅觉细胞在其表面的生长和电信号传递过程,此外,进行了8通道动作电位的并行检测试验。在此基础上,设计了一种基于细胞电生理检测的集成芯片,用于实现多种参数实时无损测量,包括胞外多种不同离子(H~+、K~+、Ca~(2+))的测试,胞外动作电位的检测,细胞贴壁的叉指电极(interdigital array,IDA)阻抗测量等,为集成化细胞传感器技术拓展了新的应用领域。
     本论文的主要内容和贡献在于:
     1.深入研究了细胞—MEA、细胞—IDA、细胞—LAPS器件耦合机理及测量模型。通过研究细胞膜的特点及膜上离子通道的通透性和导电性,分析了Au/Si/SiO_2界面特点对细胞接触的影响:在国外学者Kovacs、Fromherz等人建立的模型基础上,进一步提出了电活性细胞—金属、半导体界面的一种简化耦合模型;从而为本论文细胞传感器的设计提供了理论基础,也为实验结果的分析提供了重要的依据。
     2.提出了一种用于细胞外电生理测试的微电极阵列的设计方法,分析了其工作原理、界面模型及基于MEMS技术的微加工制作工艺。研究了心肌、嗅觉等多种细胞等在其表面的生长和信号传递过程,进行了多通道动作电位的并行检测。实验结果表明,该细胞传感器可对多个细胞同时进行长期、无损的胞外测量,并具有制备简单、使用方便的特点,可应用于细胞电生理研究和药物检测等领域。
     3.提出了一种细胞阻抗细胞胞外代谢离子与细胞动作电位同时检测的多功能集成芯片的设计方法,实现了细胞多种电生理参数的实时无损测量。通过电阻抗快速反映细胞在体外培养环境下的生长状况,采用MEA进行药物刺激下细胞动作电位的检测;采用LAPS进行细胞代谢产物中多种离子的浓度变化检测。芯片各部分同时工作,利用流动分析装置控制流向和速度,从而可以按一定顺序连续监测细胞从正常生理状态到药物刺激下的形态变化、动作电位以及代谢物质的改变,从多个方面揭示细胞生理活动的机理。该研究为集成化细胞传感器开拓了一个新的应用领域。
With the development of Biomedical Engineering and micro electronic mechanical system(MEMS), the research on micromation of cell-based biosensor (CBB) has reached on the cellular and molecular level. Cells provide and express a series of elements such as naturally evolved receptor, ion-channels, and enzymes that can be the targets of biological active analytes. When stimulated, the living cell responds and take actions: induce electronic activity, excrete something or absorb something. Cell-based biosensors that treat cells as biological sensing elements have the capacity to respond to analytes in a physiologically relevant manner.
     CBB with MEMS technique, which include microelectrode array(MEA), field effect transistor array(FET), and the light-addressable potentiometric sensor(LAPS), can be applied as the secondary biosensor that coupled with living cells to realize the recording of extracellular electrophysiological signals. As a novel cell-based biochip, the principle of which is to culture varieties of cells on certain type of sensor array. When the cells are stimulated and electronically activated, the signals are transferred to the effective area of sensors, such as the metal electrodes of MEA and the gate of FET, and the two-way interface of cell-sensor can be constructed to make it feasible of transferring cellular signals to the processing amplifying units. Because of the advantage of extracellular CBB, e. g. long-term recording in non-invasive way, fast response, and easy fabrication, such biosensors have numerous applications including pharmaceutical screening, cellular physiological analysis, toxin detecting, peripheral nerve regeneration and environment monitoring, as well as in-vivo recordings, thus they are also promising in fields of neuronal prostheses and the reconstruction of damaged sense organs.
     Nowadays, a diversity of CBBs are already commercially available, however, the main problems lie in the singleness of parameters, the instability of guide line and the critical environmental requirements. Thus this thesis first introduced MEA designed by ourselves for extracellular action potential monitoring, mainly focusing on the theories of cell-microelectrode interfacial model, the design and fabricating process, and the extracellular signal transferring process with different cell types, etc., cardiac myocytes and olfactory bulb neurons. Based on this, an integrated chip for detection of cell physiology was designed to realize the parallel monitoring of different parameters such as the metabolite(according to the H~+、K~+、Ca~(2+) level), the action potentials and the impedance change due to cell-IDA electrode attachment. The integrated chip deepens and widens the new fields of applications in CBBs.
     The major contents and contributions of this thesis are given in the following aspects:
     1. The model of the cell-silicon, cell-metal electrode interface and the detection model of MEA, IDA and LAPS have been demonstrated deeply. Firstly, the characteristic equations of transmembrane ionic current are given based on the conductance and permeability of cellular membrane. Secondly, we analyze the influence of Si/SiO_2 and Au interface on the cell-silicon interface model. Then, the cell-electrode model established by Kovacs group and the neuron-FET model established by Fromherz group in German have been deduced into the cell-silicon or cell-metal device model and simplified into the design of our experiment. Afterwards, the detection theory and model of certain sensor type has been discussed in detail, which is the theoretical foundations of cell-based biosensor design and provide the premise to explain the experiment results.
     2. We designed and brought forward a novel MEA based on MEMS technique, including the theories, the design and fabricating process, and the system (hardware and software) implementation. Varieties of cell types, e.g. cardiac myocytes and olfactory bulb neurons, were cultured on the surface of MEA to validate the 8 parallel channels of CBBs. It offers the advantages of long-term recording in non-invasive way and easy fabrication, which facilitates the latter integration process, and can be applied in physiological analysis, peripheral nerve regeneration and environment monitoring.
     3. The design and fabricating process of integrated cellular chip including MEA/IDA/LAPS unites are provided. Our efforts are directed to the parallel development, fabrication and integration of different sensors into miniaturized biochips for a multiparametric cellular monitoring with the multi parametric chip. Parallel and on-line acquisition of data related to different cellular targets will be required for advanced stages of drug screening, and the chip includes 3 main units: The IDA with the impedance measurement of cells for attachment evaluation is firstly detected for cellular impedance detection; The MEA with the voltage measurement of cells for extracellular action potential detection is secondly tested; The LAPS for the sensitive ions, e.g. H~+, K~+, Ca~(2+), from cellular metabolites in micro environment is thirdly measured. A set of automatic fluid flowing system is also introduced to control the process of inlet and outlet by software by changing the direction, the drugs and the velocity. Thus the continuous monitoring of cells from normal shapes to changes of cellular attachment, action potentials, metabolite according to stimulation is available. The primary cellular physiological experiments are done for further developments in cellular and molecular sensors.
引文
1. Cui, Y., 2001. Qingqiao Wei, Hongkun Park et al., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 293(5533),: 1289-1292.
    2. Fromherz, P., Offenhausser, A., Vetter, T., et al., 1991, A neuron-silicon junction: A Retzius cell of the leech on an insulated-gate field effect transistor. Science, 252: 1290-1293.
    3. Offenhausser, A., Sprossler, C., Matsuzawa, M., et al., 1997. Field-effect transistor array for monitoring electrical activity from mammalian neurons in culture. Biosensor and Bioelectronics. 12(8): 819-826.
    4. Perez, J. M., Simeone, F. J., Saeki, Y., et al., 2003. Viral-Induced Self-Assembly of Magnetic Nanoparticles Allows the Detection of Viral Particles in Biological Media. Journal of the American Chemical Society, 125: 10192-10193.
    5. Yeung, C-K, Ingebrandt, S., Krause, M., et al., 2001, Validation of the use of field effect transistors for extracellular signal recording in pharmacological bioassays. Journal of Pharmacological and Toxicological Methods, 45: 207-214.
    6.彭承琳,2000.生物医学传感器原理及应用,高等教育出版社,58-76.
    7.司士辉,2002.生物传感器,化学工业出版社,10-29.
    8.布莱恩 R.埃金斯,2005.化学传感器与生物传感器,化学工业出版社,30-70.
    1. Brunet, L. J., Gold, G. H., Ngai, J., 1996. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron, 17, 681-693.
    2. Duchamp, V. P., Chaput, M. A., Duchamp, A., 1999. Odor Response Properties of Rat Olfactory Receptor Neurons. Science, 284(5423): 2171-2174.
    3. Furue H., Yoshii K., A method for in-situ tight-seal recordings from single taste bud cells of mice, Journal of Neuroscience Methods, 1998, 84: 109-114.
    4. Huang, Y. J., Maruyama, Y., Lu K S, et al., 2005, Mouse Taste Buds Release Serotonin in Response to Taste Stimuli. Chemical Sensers, 30 (suppl 1): ⅰ39-ⅰ40.
    5. Kentaro, K., Kimihiko, S., Makoto, K., 2000. Functional synapse formation between rat olfactory receptor neurons and olfactory bulb neurons in vitro. Neuroscience Letters. 285: 76-78.
    6. Li, Z. P., Hertz. J., 2000. Odour recognition and segmentation by a model olfactory bulb and cortex. Network: Computation in Neural Systems, 11: 83-102.
    7. Narusuye, K., Kawai, F., Miyachi, E., 2003. Spike encoding of olfactory receptor cells. Neuroscience Research, 46, 407-413.
    8. Krautwurst, D., Yau, K. W., Randall, R., 1998. Identification ofligands for olfactory receptors by functional of a receptor library. Cell 95, 917-926.
    9. Pancrazio, J. J., Whelan, J. P., Borkholder, D. A., Ma, W., Stenger, D. A., 1999. Development and application of cell-based biosensors. Ann. Biomed. Eng. 27, 697-711.
    10. Roper, S. Regenerative impulses in taste cells. 1983, Science, 220 (4603): 1311-1312.
    11. Schild, D., Restrepo, D., 1998. Transduction mechanisms in vertebrate olfactory receptor cells. Physiological Review 78, 429-466.
    12. Shahaf, G., Marom, S., 2001. Learning in networks of cortical neurons. Journal of Neuroscience, 21, 8782-8788.
    13. Turner, A. P., 2000. Biochemistry: biosensor-sense and sensitivity. Science, 17, 1315-1317.
    14. Wang, P., Xu, G. X., Qin, L. F., Xu, Y., Li, Y., Li, R., 2005. Cell-based biosensors and its application in biomedicine. Sensors Actuators B, 108, 576-584.
    15. Yoshida R, Sanematsu K, Shigemura N, et al., 2005. Taste Receptor Cells Responding with Action Potentials to Taste Stimuli and their Molecular Expression of Taste Related Genes. Chemical Sensors,, 30 (suppl 1): ⅰ19-ⅰ20.
    16. http://sun.menloschool.org/~cweaver/cells/c/cell_membrane/
    17. http://med.tn.tudelft.nl/~hadley/nanoscience/week4/4.html
    18. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/C/CeliMembranes.html
    19. http://www.cvphysiology.com/Arrhythmias/A004.htm
    20.程京,邢婉丽.2003.生物芯片技术.北京:清华大学出版社.
    21.黄秉宪.2000.脑的高级功能与神经网络.北京:科学出版社.
    1. Adamsa, C., Mathiesona, K., Gunning, D., 2005. Development of flexible arrays for in vivo neuronal recording and stimulation. Nuclear Instruments and Methods in Physics Research A 546 154-159.
    2. Antonik, M. D., D'Costa, N. P., Hoh, J. H. 1997. A biosensor based on micromechanical interrogation of living cells. IEEE Engineering in Medicine and Biology, 16(2):66-72.
    3. Aravanis, A. M., DeBusschere, B. D., Chruscinski, A. J., 2001. A genetically engineered cell-based biosensor for functional classification of agents. Biosens Bioelectron. 16(7-8): 571-577.
    4. Bellamkonda, R., Ranieri, A. P., 1995. Laminin oligopeptide derivatized agrose gels allow three-dimentional neurite extension in vitro. Journal of Neuroscience Research, 41: 501-509.
    5. Berdondini, L., Chiappalone, M., Wal, P. D.,2006. A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons. Sensors and Actuators B, 114(1): 530-541.
    6. Berdondini, L., Wal, P. D., Rooij, N. F., 2004. Development of an electroless post-processing technique for depositing gold as electrode material on CMOS devices. Sensors and Actuators B, 99: 505 - 510.
    
    7. Bergen, A. V., Papanikolaou, T., Schuker, A., et al., 2003. Long-term stimulation of mouse hippocampal slice culture on microelectrode array. Brain Research Protocal, 11:123-133.
    
    8. Borkholder, D. A., Maluf, N. I., Perl E R. Microelectrode arrays for stimulation of neural slice preparations. Journal of Neuroscience Methods, 1997, 77: 61-66.
    
    9. Borkholder, D. A., Bao, J., Maluf, N. I. et al., 1997. Microelectrode arrays for stimulation of neural slice preparations. Journal of Neuroscience Methods 77: 61-66.
    
    10. Borkholder, D. A., 1998. Cell based biosensors using microelectrodes. Electrical engineering. USA, Stanford university. Ph.D Thesis:75-100.
    
    11. Breckenridge, L. J., Wilson, R. J. A., Connolly, P., et al., 1995. Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording. Journal of Neuroscience Research, 42 (2):266-276.
    
    12. Chang, J. C., Brewer, G. J., Wheeler, B.C., 2000. Microelectrode array recordings of patterned hippocampal neurons for four weeks. Journal of Biomedical Microdevision,2(4):245-300.
    
    13. Clark, P, Britland,S., et al., 1993. Growth cone guidance and neuron morphology on micropatterned laminin surfaces. Journal of Cell Science, 105(1): 203-212.
    
    14. DeBusschere, B. D., Kovacs, G. T. A., 2001. Portable Cell-Based Biosensor System Using Integrated CMOS Cell-cartridges. Biosensors and Bioelectronics, 16: 543-556.
    
    15. Ecken, H., Ingebrandt, S., Krause, M., 2003. 64-Channel extended gate electrode arrays for extracellular signal recording. Electrochimical Actuator, 48: 3355-3362.
    
    16. Elbert, K. L., Hubbell, J. A., et al., 1996. Surface treatments of polymers for biocompatiility. Annual Review of Materials Science,26:365-394.
    
    17. Franks, W., Schenker,I., Schmutz, P.,2005. Impedance Characterization and Modeling of Electrodes for Biomedical Applications. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 52(7): 1295-1302.
    
    18. Fromherz, P., 2002. Sheet conductor model of brain slices for stimulation and recording with planar electronic contacts. European Biophysics Journal, 31: 228-231.
    
    19. Fromherz, P., 2002 Electrical interfacing of nerve cells and semiconductor chips. Chemical physics of chemistry , 2002,3(3): 276-284.
    
    20. Giovangrandi, L., Kristin, H., Gilchrist, R. et al., 2006. Low-cost microelectrode array with integrated heater for extracellular recording of cardiomyocyte cultures using commercial flexible printed circuit technology. Sensors and Actuators B: Chemical 113(1): 545-554.
    
    21. Grattarola, M., Martinoia, S., Massobrio, G., et al., 1991, Computer simulations of the responses of passive and active integrate microbiosensors to cell activity. Sensors, and Actuators, B4: 261-265
    
    22. Grattarola, M., Martinoia, S. 1993. Modeling the neuron-microtransducer junction: from extracellular to patch recording, Biomedical Engineering, IEEE Transactions on 40(14),: 35-41.
    
    23. Griscorn, L., Degenaar, P., LePioufle, B.,2002. Techniques for patterning and guidance of primary culture neurons on micro-electrode arrays. Sensors and Actuators B 83( 1-3): 15-21.
    
    24. Gross, G. W., Rieske, E., Kreutzberg, G. W., et al., 1977. A new fixed-array multi-microelectrode system designed for long-term monitoring of extracellular single unit neuronal activity in vitro. Neuroscience Letters, 6: 101-105.
    
    25. Gross, G. W., 1979. Simultaneous single unit recording in vitro with a photoetched laser deinsulate gold multimicroelectrode surface. IEEE Transactions on Biomedical Engineering, BME-26: 273-279.
    
    26. Gross, G. W., Rhoades, B. and Fordan, R., 1992. Neuronal networks for biochemical sensing. Sensors and Actuators B, 6: 1-8.
    
    27. Gross, G.W., Rhoades, B. K., Reust, D. L., et al., 1993. Stimulation of monolayer networks in culture through thin-film indium-tin oxide recording electrodes. Journal of Neuroscience Methods, 50: 131-143.
    
    28. Gross, G. W., Rhoaes, B. K., Azzazy, H. M. E., et al., 1995. The use of neuronal networks on multielectrode arrays as biosensors, Biosensor and Bioelectronics, 10: 553-567.
    
    29. Gunninga, D., Adamsa, C., Cunninghama, W. ,2005. 30 μm spacing 519-electrode arrays for in vitro retinal studies. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 546(1-2 ): 148-153.
    
    30. Heckmann, M. , Dudel, J.,1997. Desensitization and resensitization kinetics of glutamate receptor channels from drosophila larval muscle. Journal of Biophysics. 72: 2160-2169.
    
    31. Heer , F. Franks, W. Blau, A. 2004. CMOS microelectrode array for the monitoring of electrogenic cells. Biosensors and Bioelectronics 20: 358-366.
    
    32. Holsheimer, J., 1987. Electrical conductivity of the hippocampal CA1 layers and application to current-source-density analysis. Experimental Brain Research, 67:402-410.
    
    33. Huang, X. Q., Nguyen, D., Greve, D. W., 2004. Simulation of Microelectrode Impedance Changes Due to Cell Growth. IEEE SENSORS JOURNAL 4(5): 576-583.
    
    34. Ismail, B. M., Yoshinobu, T., Iwasaki, H. et al., 2002. Investigation on light-addressable potentiometric sensor as a possible cell-semiconductor hybrid. Biosensor and Bioelectronics, 18(12): 1509-14.
    
    35. Israel, D.A., Barry, W. H., Edell, D.J. et al., 1984. An array of microelectrodes to stimulate and record from cardiac cells in culture, American Journal of Physiology, 247(4): H669-H674.
    
    36. Jenker, M., Muller, B., Fromherz, P. ,2001. Interfacing a silicon chip to pairs of snail neurons connected by electrical synapses. Biological Cybernetics ,84:239-49.
    
    37. Jimbo, Y., Kawana. A, Parodi. Y, P, et al., 2000. The dynamics of a neuronal culture of dissociated cortical neurons of neonatal rats. Biological Cybernecics, 83:1 - 20.
    
    38. Joseph, J., Pancrazio, P. P., Bey, J., et al., 1998. Portable cell-based biosensor system for toxin detection. Sensors and Actuators B, 53: 179- 185.
    
    39. Keefer, E. W., Gramowski, A., Stenger, D. A., et al., 2001. Characterization of acute neurotoxic effects of trimethylolpropane phosphate via neuronal network biosensors. Biosensors and Bioelectronics, 16: 513-525.
    
    40. Kevin, T. C., Chai, P. A., Hammond, D. R. S., et al., 2005. Modification of a CMOS microelectrode array for a bioimpedance imaging system. Sensors and Actuators B, 111-112: 305-309.
    
    41. Kovacs, G.T.A., 1990. Technology development for a chronic neural interface, Doctoral Dissertation, Electrical Engineering, Stanford University, CA .
    
    42. Kovacs, G. T. A. 1994. Introduction to the theory, design, and modeling of thin-film microelectrodes for neural interfaces, in enabling technologies for cultured neuralnetworks. San Diego: Academic Press, 115-160
    
    43. Lang, J., Sances, A., Larson, S. J., 1969. Determination of specific cerebral impedance and cerebral current density during the application of diffuse electrical currents. Medical Biological Engineering, 7:517- 526.
    
    44. Lo, C. M., Vang, H. B., Dembo, M., et al., 2000. Cell movement is guided by the rigidity of the substrate. Journal of Biophysics. 79(1):144-52.
    
    45. Lowinsohn, D., Peres, H. E. M, Kosminsky, L., 2006. Design and fabrication of a microelectrode array for iodate quantification in small sample volumes. Sensors and Actuators B, 113: 80-87.
    
    46. Martinoia, S., Massobrio, P., Bove. M., 2004. Cultured Neurons Coupled to Microelectrode Arrays:Circuit Models, Simulations and Experimental Data. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 51 (5): 859-864.
    
    47. Martinoia, S., Bonzano, L., Chiappalone, M., 2005. In vitro cortical neuronal networks as a new high-sensitive system for biosensing applications. Biosensor and Bioelectronics, 20(10):2071-2078.
    
    48. Matsuzawa, M., Kobayashi,K., et al., 1998. A biocompatible interface for the geometrical guidance of central neurons in vitro. Journal of colloid and interface science, 202,213-221.
    
    49. Merrill, D.R. .Tresco, P. A., 2005. Impedance characterization of microarray recording electrodes in vitro, 52(11):1960- 1965
    
    50. Morina, F., Nishimuraa, N., Griscomb, L., 2006. Constraining the connectivity of neuronal networks cultured on microelectrode arrays with microfluidic techniques: A step towards neuron-based functional chips. Biosensors and Bioelectronics, 21(7): 1093-1100.
    
    51. Natarajana, A., XMolnara, A. Sieverdes, K. ,2006. Microelectrode array recordings of cardiac action potentials as a high throughput method to evaluate pesticide toxicity. Toxicology in Vitro, 20(3): 375-381.
    
    52. Nisch, W., Bock, J., Egert, U., et al., 1994. A thin filmmicroelectrode array for monitoring extracellular neuronal activity in vitro. Biosensor and Bioelectronics, 9:737 - 74.
    
    53. Offenhausser, A., Sprossler, C., Matsuzawh, M., et al., 1997. Field-Effect transistor array for monitoring electrical activity from mammalian neurons in culture. Biosensor and Bioelectronics, 12(8): 819-826.
    
    54. Pearce, T. M. , Oakes, S. G. , Pope R. ,2004. Dynamic Control of Extracellular Environment in in vitro Neural Recording Systems. Proceedings of the 26th Annual International Conference of the IEEE EMBS: 4045-4048.
    
    55. Peterson, S. L., McDonald, A., Gourley, P. L, et al., 2005. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: cell culture and flow studies with glial cells. Journal of Biomedical Material Research-Part A, 72 (1): 10-18.
    
    56. Pine, J., 1980. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. Journal of Neuroscience Methods, 2: 19-31.
    
    57. Ronen,S., Yoash, S., Morris, B. ,2001. Observations and modeling of synchronized bursting in two-dimensional neural networks, Physical Review E,64(1):011920-011928.
    
    58. Ruardij, T. G., Goedbloed, M. H., Rutten, W. L. C., 2003. Long-term adhesion and survival of dissociated cortical neurons on miniaturized chemical patterns. Engineering in Medicine and Biology Society, 41(2):227-32.
    
    59. Scholl, M., Sprossler, C., Denyer, M.,et al. ,2000. Ordered networks of rat hippocampal neurons attached to silicon oxide surfaces. Journal of Neuroscience Methods, 104:65-75.
    
    60. Selinger, J. V., Pancrazio, J. J., Gross, G. W., 2004. Measuring synchronization in neuronal networks for biosensor applications. Biosensor and Bioelectronics, 19:675-683.
    
    61. Seo, J. M., Kimb,S. J., Chung, H., 2004. Biocompatibility of polyimide microelectrode array for retinal stimulation. Materials Science and Engineering C, 24:185-189.
    
    62. Sergio, M., Paolo, M., Marco, B. et al., 2004. Cultured Neurons Coupled to Microelectrode Arrays:Circuit Models, Simulations and Experimental Data. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 51 (5) :859-864
    
    63. Shimono, K., Taketani, M., Brucher, F., et al.,2000. Continuous two-dimensional current source density analyses of electrophysiological activity in hippocampal slices. Neurocomputing 38-40:899-905.
    
    64. Sprossler, C., Deyyer, M., Britland, S., et al., 1999. Electrical recordings from rat cardiac muscle cells using cells using field-effect transistors. Physical Review E, 60: 2171-2176.
    
    65. Stoppini, L., Duport, S., Correges, P. L., 1997. A new extracellular multirecording system for electrophysiological studies: application to hippocampal organotypic cultures. Journal of Neuroscience Methods, 72:23-33.
    
    66. Thomas, M., Pearce, J., Wilson, A., Oakes, S. G., 2005. Integrated microelectrode array and microfluidics for temperature clamp of sensory neurons in culture. Lab on a Chip, 5: 97-101.
    
    67. Turner, S., Kam, L., et al., 1997. Cell attachment on silicon nanostructures. Journal of Vacuum Science & Technology B, 15(6): 2848-2854.
    
    68. Wheeler, B. C., Corey, J. M., Brewer, G. J., et al., 1999. Microcontact printing for precise control of nerve cell growth in culture. Journal of Biomechanical Engineering, 121: 73-78.
    69. Wyart, C., Ybert, C., Bourdieu, L., et al., 2002. Constrained synaptic activity in functional mammalian neuronal networks grown on patterned surfaces. Journal of Neuroscience Methods 117(2): 123-131.
    70. Xu, G. X., Ye, X. S., Qin, L. F., et al., 2005. Cell-based biosensors based on light-addressable potentiometric sensors for single cell monitoring. Biosensor and Bioelectronics. 20, 1757-1763.
    71. Zeck, G., Fromherz, P., 2001. Noninvasive neuroelectronic interfacing with synaptically connected snail neurons immobilized on a semiconductor chip. Proceedings of the National Academy of Sciences, 98(18): 10457-10462.
    72.范昱玮,2001,脑中枢神经及血管修复组织工程相关研究,清华大学博士学位论文
    73.郝杰 等,2002,组织工程中生物材料表面修饰的研究.国外医学生物医学工程分册,25(4):180-184.
    74.黄庆安 硅微机械加工技术:东南大学,1993
    75.蒋稼欢,蔡绍皙,1998.细胞形态与功能的一种工程化控制方法.国外医学生物医学工程分册,21(2):109-112.
    76.许改霞 吴一聪 李蓉 王平 等,2002.细胞传感器的研究进展.科学通报,47(15):1126-1132.
    77.邹东霆,刘云岗.2000,一种提高细胞贴附率的简易方法.广州医学院学报,28(4):57-58.
    1. Arndt, S., Seebach, J., Psathaki, K., et al., 2004. Bioelectrical impedance assay to monitor changes in cell shape during apoptosis. Biosensors and Bioelectronics, 19: 583-594.
    
    2. Brischwein, M., Baumann, W., Ehret, R., et al., 1996. Mikrosensorische Systeme in der zellbiologischen Grundlagenforschung und medizinischen Diagnostik. Naturwissenschaften, 83, 193-200.
    
    3. Depaola, N., Phelps, J., Florez, L., 2001. Electrical Impedance of Cultured Endothelium Under Fluid Flow. Annals of Biomedical Engineering 29: 648-656.
    
    4. Ehret R., Baumann W., Brischwein M. , 1997. Monitoring of cellular behaviour impedance measurements on by interdigitated electrode structures. Biosensors and Bioelectronics, 12(1): 29-41.
    
    5. Gingell, D., 1990. Cell contact with solid surfaces. In Biophysics of the Cell Surface, ed. R. Glaser and D. Gingell. Springer, New York:263-286.
    
    6. Guo, M. L , Chen, J. H. , Yun, X. B., 2005. Monitoring of cell growth and assessment of cytotoxicity using 3 electrochemical impedance spectroscopy. Biochimica et Biophysica Acta. 1760(3):432-439
    
    7. Finklea, H. O. ,Snider, D. S., Fedyk, J., 1993. Characterization of Octadecanethiol-Coated Gold Electrodes as Microarray Electrodes by Cyclic Voltammetry and ac Impedance Spectroscopy. Langmuir, 9, 3660-3667.
    
    8. Giaever, I., Keese, C. R, 1991. Micromotion of mammalian cells measured electrically. Proceedings of the National Academy of Sciences, 88(17): 7896 - 7900.
    
    9. Giaever, I., Keese, C. R.,1993. A morphological biosensor for mammalian cells. Nature, 366: 591-592.
    
    10. Huang, X., Greve, D. W., Nguyen, D. D., 2003. Impedance based biosensor array for monitoring mammalian cell behavior. Sensors, Proceedings of IEEE, 1:22-24.
    
    11. Keese, C. R., Giaever, 1.1990. A whole cell biosensor based on cell-substrate interactions. Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 12(2): 500-501.
    
    12. Keese, C. R., Giaever, I., 1994. A biosensor that monitors cell morphology with electrical fields. Journal of IEEE Medical Biology. 13(33): 402-408.
    
    13. Lo, C. M., Keese, C. R., Giaever, 1.1994. pH Changes in Pulsed CO2 Incubators Cause Periodic Changes in Cell Morphology. Experimental Cell Research 213(2): 391-397.
    
    14. Nicolson, G. L., 1982. Metastatic tumor cell attachment and invasion assay utilizing vascular endothelial cell monolayers, 30(3) :214-220.
    
    15. Slaughter, G. E., Bieberich, E., Wnek, G. E., et al .,2004. Improving neuron-to-electrode surface attachment via alkanethiol self-assembly: an alternating current impedance study. Langmuir, 20(17): 7189-200.
    
    16. Tengvall, P., Lestelius, M., Liedberg, M., et al., 1992. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir 8, 1236-1238.
    
    17. Wegener, J., Keese, C. R., and Giaever, I., 2000. Electric-Cell -Substrate Impedance Sensing (ECIS) as a Noninvasive Means to Monitor the Kinetics of Cell Spreading to Artificial Surfaces. Experimental Cell Research, 259: 158-166.
    
    18. Wegener, J., Hakvoort, A., Galla, H. J., 2000. Barrier function of porcine choroid plexus epithelial cells is modulated by cAMP-dependent pathways in vitro. Brain Research, 853 (1), 115-124.
    
    19. Wolley, D. E., Tetlow, L.C.,2002. Electrochemical monitoring of anitcancer compounds on the human ovarian carcinoma cell line A2780 and its adriamycin and cisplatin-resistant variants. Experimental Cell Research, 273:65-72.
    
    20. Xiao, C. D., Lachance, B., Sunahara, G., Luong, J. H. T., 2002. An In-Depth Analysis of Electric Cell-Substrate Impedance Sensing To Study the Attachment and Spreading of Mammalian Cells. Analytical Chemistry 74: 1333-1339.
    
    21. Yang, L. J., Li, Y. B., Erf, G. F., 2004. Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor forDetection of Escherichia coli O157:H7. Analytical. Chemistry., 76 (4), 1107 - 1113.
    
    22. Yong, H., Naveep, S. S. ,2003. Instantaneous, quantitative single-cell viablility assessment by electrical evaluation of cell membrane integrity with microfabricated devices. Sensors and Actuators A, 105(1):31-39.
    
    23. The use of the conductive media dc application mode for time-harmonic problems. Available: htttp://www. comsol. com
    1. Cai, H., Xu Y., Liu Q. J., et al., 2006. High Speed Chemical Imaging Sensor Combined with Microlens Array Based on Mems, Asia-Pacific Conference of Transducers and Micro-Nano Technology, Sinapore: 286.
    
    2. George, M., Parak, W.J., Gerhardt, I., et al., 2000, Investigation of the spatial resolution of the light-addressable potentiometric sensor. Sensors and Actuators B, 86:187-196.
    
    3. Hafner, F., 2000. Cytosensor Microphysiometer: technology and recent applications. Biosensor and Bioelectronics, 15:149-158.
    
    4. Ken, I., Seiji.K., Mami. ,S., et al., 1999. Ca2+ mobilization and activation of extracellular acidification by carbachol in acutely dispersed cells from guinea pig detrusor: Fura 2 fluorometry and microphysiometry using the cytosensor, Life Sciences, 65(15): 1569-1577.
    
    5. McConnell H.M., Owicki, J. C., Parce, J. W., et al., 1992, The Cytosensor Microphysiometer: Biological Application of Silicon Technology. Science, 257: 1906-1912.
    
    6. Michael, G.., Wolfgang, J. P. .Hermann, E.G. , 2000. Highly integrated surface potential sensors. Sensors and Actuators B, 69:266-275.
    
    7. Miller, D. L., et al., 1993. Cholinergic stiumlation of the Na+/K+ adenosine triphosphatase as revealed by microphysiometry. Biophys Journal of Biophysical Society, (64):813-823.
    
    8. Owicki, J. C., Parce, J. W., Kersco, K. M., et al., 1990, Continuous monitoring of receptor-mediated changes in the metabolic rates of living cells. Proceedings of the National Academy of Sciences, 87: 4007-4011.
    
    9. Parak, W. J., Hofmann, U. G., Gaub, H. E. et al., 1997, Lateral resolution of LAPS devices: Theoretical and experimental investigations. Sensors and Actuators, A 63:47-57.
    
    10. Parce, J. W., Owicki, J. C., Kercso, K. M., et al., 1989, Detection of cell-affecting agents with a silicon biosensor. Science, 246:243-247.
    11. Weis, R. , Fromherz, P., 1997, Frequency dependent signal transfer in neuron transistors. Physical Review E, 55: 877-88.
    
    12. Wu, Y. C., Wang, P., Ye, X. S., et al., 2001, Drug evaluations using a novel microphysiometer based on cell-base biosensors. Sensors and Actuators B, 80: 215-221.
    
    13. Wu, Y. C., Wang, P., Ye, X. S. et al., 2001, A novel microphysiometer based on MLAPS for drugs screening. Biosensors and Bioelectronics, 16: 277-286.
    
    14. Xu, Y. ,Xu, G. X., Liu, Q. J., 2006. A novel multi-functional cell-based microphysiometer. PROGRESS IN NATURAL SCIENCE,16(8):808-816.
    1. Bucher, V., Brunner, B., Leibrock, C., Schubert, M., Nisch, W., 2001. Electrical properties of a light-addressable microelectrode chip with high electrode density for extracellular stimulation and recording of excitable cells. Biosens. Bioelectron. 16, 205-210.
    2. Kentaro, K., Kimihiko, S., Makoto, K, 2000. Functional synapse formation between rat olfactory receptor neurons and olfactory bulb neurons in vitro. Neuroscience Letters. 285: 76-78.
    3. Mori, K., Nagao, H., Yoshihara, Y., 1999. The Olfactory Bulb: Coding and Processing of Odor Molecule Information. Science, 286(22): 711-715.
    4. Stett A, Burckhardt C, Weber U, et al. Cytocentering: A novel technique enabling automated cell-by-cell patch clamping with the cytopatch chip[J]. Receptors Channels A, 2003, 9 (1): 59~66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700