用户名: 密码: 验证码:
细粒难选金红石矿分步浮选工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然金红石由于TiO2含量高、杂质少,是氯化法钛白粉和海绵钛的理想原料。但是金红石选矿技术的突破一直是解决我国天然金红石的开发利用问题的关键。论文综述了大量文献资料,并对陕西商南金红石矿200吨/日重选厂进行了流程考查,指出:细粒金红石矿的选矿,不适宜采用重选粗选抛尾,最有前途的选矿工艺是浮选。
     论文以陕西商南金红石矿为研究对象,通过工艺矿物学研究,分析了金红石矿难选的原因。在此基础上,进行了单矿物的浮选试验研究和混合体系的分散试验研究,得出了金红石浮选分离的基本条件,并通过人工混合矿的浮选研究,针对细粒难选金红石矿,提出“先抑制金红石反浮选,再活化金红石正浮选”的“分步浮选工艺”。“分步浮选工艺”的提出依据是:硫酸铝强烈的抑制金红石而活化斜长石、绿泥石,硝酸铅对被硫酸铝抑制的金红石具有较强的活化作用,烷基羟肟酸钠能有效浮选被活化的金红石;在碱性条件下,硫酸铝存在时,油酸钠作用下,混合体系中绿泥石和斜长石选择性疏水凝聚,而金红石亲水分散。
     在提出“分步浮选工艺”的基础上,论文从实际矿石探索性试验研究出发,进行了金红石矿分步浮选工艺研究。研究过程中,通过与直接浮选比较,并采用分步浮选对其它代表性矿样进行研究,突出了分步浮选工艺的重要特点。在金红石矿分步浮选工艺研究的基础上,进行了理论研究。“细粒难选金红石矿分步浮选工艺及理论研究”的主要研究内容与结果如下:
     (1)实际矿石的探索性试验,采用硫酸铝抑制金红石,用油酸钠反浮选,然后用硝酸铅活化金红石,用羟肟酸钠正浮选金红石,获得了金红石品位为18.76%,回收率为81.52%的指标,而且反浮选过程中,矿泥脱除效果好,-0.010mm粒级脱除效率达到74.79%。证明了“分步浮选工艺”分选细粒金红石矿合理可行。
     (2)采用硫酸铝抑制金红石,用油酸钠反浮选,而且油酸钠的添加采用饥饿加药的方式,可以抛去泡沫产物31.41%,泡沫产物中金红石品位为0.38%,损失率低,为6.12%。槽中金红石的品位由1.96%提高到2.67%。
     (3)反浮选后,用碳酸钠调pH为8.5,用氟硅酸钠和羧甲基纤维素组合抑制脉石矿物,用硝酸铅活化金红石,用羟肟酸钠和苄基胂酸为组合捕收剂,一次浮选可以得到品位为20.30%,回收率为83.88%的金红石粗精矿,该工艺不但金红石的回收率高,而且富集比也比较高。
     (4)与直接浮选试验相比较,分步浮选在金红石的浮选指标、浮选速率等方面均优于直接浮选。分步浮选工艺的重要特点体现在:
     a、金红石富集比高、回收率高,浮选速度快;
     b、反浮选过程中脱泥效果好,为活化金红石正浮选创造了条件,具体体现在金红石浮选的指标上;
     c、反浮选采用饥饿加药,抛弃的泡沫产率高达30%,但金红石损失率低;
     d、反浮选药剂制度简单,但实现了预选抛废和脱泥,降低了活化金红石正浮选的药剂消耗;
     e、硫酸铝在分步浮选中具有重要作用,反浮选过程中抑制金红石、活化硅酸盐矿物,活化正浮选过程中与脉石矿物抑制剂氟硅酸钠和羧甲基纤维素产生了协同作用,提高了浮选指标和浮选速率;
     (5)采用分步浮选工艺对河南方城金红石矿和陕西安康金红石矿进行小型试验研究,均取得了较好的指标,表明分步浮选对选别我国细粒难选金红石矿具有重要的理论意义和推广应用价值。
     (6)分步浮选的闭路试验研究表明,反浮选后,采用一粗一扫,两次精选可以得到品位为48.13%,回收率为80.76%的金红石粗精矿。分步浮选虽然没有直接得到合格精矿,但金红石的富集比高、回收率高,抛尾产率高达96%,所以,分步浮选可以作为金红石矿选矿的粗选工艺。
     (7)在pH值为8.5时,Al3+在溶液中主要以Al(OH)4-的形式存在,Ti-OH的活性使其与Al3+的水解组分Al,(OH)3发生反应,形成的Ti-O-Al环状物掩敝了金红石表面的Ti及水解组分,并使表面强烈亲水,从而抑制了金红石的浮选,而Al3+在绿泥石、斜长石表面发生特性吸附活化绿泥石和斜长石。被硫酸铝抑制的金红石,加入Pb(N03)2后,则Pb2+离子能取代Al+与Ti4+形成新的配合物,Pb2+在金红石表面形成强烈化学吸附后,可使表面钛质点与捕收剂作用的活性显著增强从而起到活化作用。
     (8)根据扩展DLVO理论(EDLVO),在碱性条件下,硫酸铝存在时,油酸钠作用下分散的混合体系中绿泥石、斜长石由于疏水作用而选择性性凝聚,金红石由于亲水作用而分散,研究还表明,该条件下绿泥石、斜长石的同质颗粒凝聚或异类凝聚均属于选择性疏水凝聚。所以在抑制金红石用油酸钠反浮选硅酸盐矿物的过程中,可以将油酸钠作用下选择性疏水凝聚的大量矿泥同硅酸盐矿物一起浮选出来,在反浮选过程中脱泥。
     在细粒难选金红石分步浮选工艺及理论研究的基础上,论文进行分步浮选工艺实践,半工业试验研究结果表明:充分利用矿石的选择性磨碎现象,采用高频细筛可抛废12.88%,反浮选再抛弃27.61%的泡沫产物,真正入选的矿量只有59.51%,入选品位由1.96%提高到3.01%,大大降低了选矿成本。反浮选后,采用一粗一扫,两次精选可以得到品位为48.51%,回收率为80.19%的金红石粗精矿。该粗精矿进一步采用重选进行精选,得到品位为92.23%,回收率为43.10%的金红石精矿Ⅰ;品位为85.11%,回收率为24.40%的金红石精矿Ⅱ,总回收率为67.50%。分步浮选半工业试验指标与200吨/日重选厂生产的指标相比,分步浮选作粗选,解决了陕西商南金红石矿选矿回收率低的问题,对陕西商南金红石矿的开发具有重要的工业应用价值。
     “先抑制金红石反浮选,再活化金红石正浮选”的“分步浮选工艺”,在保证金红石损失率低的前提下,在反浮选过程中有效脱泥,并提高了金红石活化浮选的选别指标和浮选速率、降低了药剂消耗。该工艺在理论上和实践上具有创新性,半工业试验规模达到处理原矿1.5吨/小时,并取得了比较好的浮选指标,在金红石的选矿研究中具有先进性。论文研究过程中取得的主要成果有:
     (1)矿石选择性磨碎现象的强化和应用:由于金红石矿中含有大量的片状脉石矿物,磨矿过程中选择性磨碎现象明显,半工业试验中用钢锻作磨矿介质,采用高频细筛可抛废.12.88%,金红石损失小;
     (2)采用分步浮选工艺,实现了细粒难选金红石矿在反浮选过程中有效脱泥:反浮选过程中,矿泥脱除产率高,金红石损失小,为细粒难选矿石的选矿提供了新的思路;
     (3)饥饿加药并采用2#油弥散气泡,提高了油酸钠的选择性:油酸钠捕收能力强,选择性差,具有起泡性能,泡沫层难稳定,采用饥饿加药的方式添加,并加入2#油,泡沫弥散好,选择性得到提高。体现在反浮选泡沫产物中金红石损失率低;
     (4)浮选药剂的合理选择和组合应用:硫酸铝在分步浮选中具有重要作用,反浮选过程中抑制金红石、活化硅酸盐矿物,活化正浮选过程中与脉石矿物抑制剂氟硅酸钠和羧甲基纤维素产生了协同作用,提高了浮选指标和浮选速率;以羟肟酸钠为主要捕收剂实现了金红石矿在碱性条件下的浮选。
The inartificial rutile in which the TiO2 is great grade and the impurity is low, so it is the perfect material to produce titanic and sponge titanium.How to make the rutile ores to be well used, to break through in mineral processing methods is the key. The thesis summarized a great amount of literature about titanium processing and checked the flowsheet of the 200t/d gravity concentration in ShanXi ShangNan. In basis of them, the thesis carried out that the gravity flowsheet is not fit for processing the fine/micro-fine rutile ores and the floatation flowsheet is the best choice.
     In the thesis, the rutile mineral in ShanXi ShangNan is made to be as a research object,why it is difficult to concentrate is analysed in basis of the study of the process mineralogy. The single mineral floatation experiment and the dispersion experiments for the single mineral of rutile, chlorite, plagioclase and the mixedture of them have carried on. the basic condition of floating the rutile has been gained. In basis of them, with the fine/micro-fine rutile ores, the research of the distribution floatation theoretic which "redirect float sliming after depressing the rutile, in following, direct float the rutile which be activated" is carried out.the experiment basis is that:Using Al2 (SO4)3, the rutile can be depressed but the chlorite and the plagioclase will be activated. Pb(NO3)2can activate the rutile which be depressed by Al2(SO4)3, RCONHONa can float the rutile which be activated by Pb(NO3)2. Under the alkaline condition, there. are some Al2(SO4)3 in the system, The rutile will be dispersive but the chlorite and the plagioclase will be agglomerate if sodium oleate is acceded to the mixedture system.
     After the distribution floatation theoretic have been carried out, which is set out from the actual mineral's investigate experiment, the distribution floatation flowsheet research has been carried on.In the process, comparing the direct floatation with the distribution floatation, making the experiment with other typical mineral kinds, the characteristics of the distribution floatation flowsheet is outstanding. In basis of the technological research, the theoretic research is studied.the main contents and the results are that:
     (1) In the actual mineral's investigate experiment, Al2(SO4)3is used to depress the rutile, the collectors-sodium oleate is used to redirect float the gangue minerals, then Pb(NO3)2can be used to activate the rutile which be depressed by Al2(SO4)3, RCONHONa can float the rutile. the rough concentrate grade is 18.76%, the recovery is 81.52%,as well as the slime in -0.010mm can be slimed about 74.79% by redirect floatation. It can explain that it is reasonable and viable to concentrate the rutile ores in the flowsheet of the distribution floatation.
     (2) When Al2(SO4)3 is used to depress the rutile and the collectors -sodium oleate is used to redirect float the gangue minerals, with jioning the sodium oleate by starvation reagent feeding, The foam can polished 31.41% by redirect floatation. The grade of the rutile in the foam is 0.38%, the lost rate is only 6.12%. The grade of the rutile in the trough is up to 2.67% from 1.96%.
     (3) After being redirect floated, make the pH=8.5 using Na2CO3, depress the gangue minerals using the combination of CMC and Na2SiF6, activate the rutile using Pb(NO3)2, the collectors RCONHONa and C6H5CH2AsO3H2, one-floatation the rough concentrate grade is 20.30%, the recovery is 83.88%. In this flowsheet, the rutile's recovery is high and the enrichment ratio is also high.
     (4) comparing with the direct floatation, the distribution floatation flowsheet is the better in the floatation index and floatation rate, The characteristic is that:
     a. The rutile's enrichment ratio, its recovery and its floatation rate are all increased.
     b. In the redirect floatation processing, the sliming rate is good. It makes the condition for the rutile's direct floatation. It is good for the great floatation index.
     c. With jioning the sodium oleate by starvation reagent feeding, the polishing foam is about 30%, but the lost rate of the rutile is low.
     d. The reagent system is simple, but it achieves the pre-concentration polishing and sliming. As the same time, the reagent consumption is reduced in direct floatation the rutile.
     e. The effect of Al2(SO4)3 in processing is great that:the Al2(SO4)3 is used for depressing the rutile and activating the silicate gangue in redirect floatation processing. In the direct floatation process, the remanent Al2(SO4)3 in company with Na2SiF6 and CMC get the good floatation index and rate.
     (5) The good index is also gained in the test research of the rutile in which the distribution floatation was used in HaNan FangCheng and ShanXi AnKang. It shows that the distribution floatation is worth for processing the fine /micro-fine rutile in our country and has the great theoretics meaning and application value.
     (6) After one roughing, one scavenging and two contentrating, the rough concentrate with the grade 48.13%, the recovery 80.76% can be gained. The eligibility concentrate is not gained by the distribution floatation flowsheet, but the rutile's enrichment ratio and its recovery are both increased, the sliming foam is about 30%. So the distribution floatation can be the roughing flowsheet of the rutile.
     (7) In pH=8.5, Al3+is being in form of Al(OH)- in liquor, Ti-OH will bring about the chemical reaction with Al(OH)3 because of its activity. Ti-O-Al is gained to hide Ti and Al(OH)3 in surface layer of the rutile. The rutile is depressed by its surface layers strong hydrophilicity. The chlorite and the plagioclase are activated by the specific adsorption of Al3+. After the Pb(NO3)2 is jioned the rutile which has been depressed, Pb2+replace Al3+ to make a new coordination with Ti4+, the new chemisorption is being in the surface layer by Pb2+. Because of it, The action of the titanium particle and the collector becomes obviously strong, The rutile becomes easily activated.
     (8) In the basis of EDLVO theory, in alkaline condition, there are some Al2 (SO4)3 in the system, the chlorite and plagioclase bring about the agglomerate, but the rutile is dispersive. The result is that in the processing of redirect floating the silicate gangue while depressing the rutile. The sodium oleate can also be used to float the slime which is agglomerate. It is the use of sliming by redirect floatation.
     (9) In the basis of the before-mentioned distribution floatation theoretic and technological research, the pilot test which is in the method of the distribution floatation was researched to concentrate the rutile. The result shows that:about 12.88% is polishing by the high-frequency fine screen in the processing of selective grinding, redirect floatation sliming 27.61%. Only about 59.51% is jioned in the processing, the grade of the rutile in the through is up to 3.01% from 1.96%. The cost is quitely decreased. After one roughing, one scavenging and two concentrate, the rough concentrate with the grade 48.5%, the recovery 80.19% can be gained. In count of the 200t/d flowsheet, the concentrate one is that the grade is 92.23%, the recovery is 43.10%, the concentrate two is that the grade is 85.12%, the recovery is 24.40%. the general recovery is 67.50%, comparing with the old 200t/d gravity flowsheet, the recovery increased 26.04% as well as the grade is same. The pilot test shows that the distribution floatation flowsheet has great application value in production of developing the rutile in ShanXi ShangNan.
     The distribution floatation theoretic which "redirect float sliming after depressing the rutile, in following, then direct float the rutile which be activated" are carried out In the premise of making sure the low lost, the efficacious polishing and sliming is achieved, the rutile's floatation index and rate are increased, the reagent consumption is reduced in direct floatation the rutile. The flowsheet has some innovation in the theory and the practice. The dimensions of the pilot test is up to 1.5t/h and the floatation index is all right. It shows that the research has the precursor in concentrating the rutile ores. The main products are that:
     (1) the culling grinding'using:there're large numbers of sheet gangue minerals. The culling grinding is distinct. The steel rod is used as grinding medium in the pilot test. About 12.88% is thrown away by the high-frequency fine screen in the processing of the culling grinding. The rutile's lost rate is low.
     (2) Because of the use of the distribution floatation flowsheet, the efficiency sliming is gained in redirect floatation the fine/micro-fine rutile:The sliming rate is high and the lost of rutile is low in redirect floatation processing, which can supply a new blinkered for processing the fine/micro-fine rutile.
     (3) The sodium oleate's selectivity is increased as a result of jioning the sodium oleate by starvation reagent feeding and using to detract the air bubble. The sodium oleate's collecting power is strong but its selectivity power is not strong. it has frothing capability but its power is not stabilization. by starvation reagent feeding and joining oil No.2, the dispersion becomes better and the selectivity power becomes stronger. It is showed in the low lost rate of the rutile which has been gained in redirect floatation.
     (4) The floatation reagents'reasonable choice and the combination use:The effect of Al2 (SO4)3 in the distribution floatation processing is great. It is used for depressing the rutile and activating the silicate gangue in redirect floatation processing. In the direct floatation process, the remanent Al(SO4)3 in company with Na2SiF6 and CMC get the good floatation index and rate. RCONHONa is used for the main collectors and the rutile's floatation in alkaline condition has been gained.
引文
[1]王立平,王镐,高颀等.我国钛资源分布和生产现状.稀有金属[J],2004,28(1):265-267
    [2]曹谏非.钛资源及其开发利用.化工矿产地质[J],1996,18(2):127-134
    [3]吴贤,张健.中国的钛资源分布及特点.钛工业进展.2006(12):8
    [4]吴贤,张健,康新婷.我国金红石矿资源分布、开发及技术现状.第五届全国稀有金属学术交流会[J],2006(11):157
    [5]邓国珠.世界钛资源及其开发利用.钛工业进展[J],2002, (5):9-12
    [6]雷必春.湖北枣阳金红石储量全国之冠.地球[J],1992,(3):10-11
    [7]沈强华,张宗华.昆明地区钛资源分布及评价.昆明理工大学学报(理工板)[J],2003,28(5):17
    [8]张青普.开发利用我省金红石资源的几点建议.河南建材[J],2003,(3):46-47
    [9]杨小芹,马树江.论连云港市金红石资源的开发利用.江苏地质科技情报[J],1995,(6):10-13
    [10]吴维平,江来利,张勇等.安徽大别山金红石矿产资源勘察、开发及利用现状.安徽地质[J],2003,(1):66-69
    [11]河南南召发现特大金红石矿,中国矿业2001(1):46
    [12]陕西商南县金红石储量居全国之首,钛工业进展2001(4):40
    [13]江苏发现特大型金红石矿床,国外金属矿选矿2001(1):42
    [14]张瑛,李文光.我国金红石资源特点及开发利用.中国化工[J],1997,(4):19-20
    [15]张云,管永诗,田玉珍.我国金红石矿资源开发利用现状.矿产保护与利用,2000(5):28-29
    [16]徐少康.我国主要金红石矿床金红石自然颗粒产状及粒度特征.化工矿产地质,2001(2):102-103
    [17]郭秉文.我国原生金红石矿选矿进展[J].矿产综合利用,1992,(6):26-30
    [18]邓国珠,王向东,车小奎.钛工业的现状和未来.钢铁钒钛,2003(1):2
    [19]王军,杨鸿.海绵钛产品的现状及市场发展前景.钛工业进展,2004,5(2):41
    [20]王铁明,邓国珠.中国钛工业发展现状及原料问题.稀有金属快报2008(6):1
    [21]韩永奇.当前我国钛工业面临的机遇与挑战.钛工业进展,2006(1):17
    [22]Jordan, C. E. A continuous dielectric separator for mineral beneficiation[R]. Washington:Bur. Mines,1980.
    [23]A. A., Hayes, P. C. Effects of thermal pre-treatment on the electrical conductivities of rutile and zircon[A]. in:Aus IMM Extractive Metallurgy Conference[c]. Perth, Aust:Publ by Australasian Inst of Mining & Metallurgy Struthers,1991.19-22.
    [24]Qingxia Liu, Fridlaender. Selective collection of non-magn etic rutile an d quartz by means of a magnetic reagent by HGMS[A]. in:IEEE Transactions on Magnetics [c]. Albuquerque, NM, USA:Sixth Joint Magnetism and Magnetic Materials-International Magnetics Conference, 1994.4668-4670.
    [25]Blendulf, G.., et al. Utilization of Readings Wet High Intensity Magnetic Separators at Richards Bay Minerals [M]. Perth, Aust Publisher:Australasian Inst of Mining & Metallurgy.1986.81-86.
    [26]Publisher:Kojovic, T.Application of Magstream in mineral sands separation[A]. in:Magnetic and Electrical Separation[c]. Gordon & Breach Science Publ Inc,1994.231-263.
    [27]Walker, M. S., et al. Separation of non-magnetic minerals using magnetic fluids in a flow-through MHS rotor [M]. Minerals & Metallurgical Processing,1990.209-214.
    [28]Bulatovic, S. Process development for treatment of complex perovskite, ilmenite and rutile ores[J]. Minerals En-gineerlng,1999,12:1407-1417.
    [29]Bertini V., et. al.3,4-(Methylenedioxy)benzyl acry-late/acrylic acid copolyers as selective pH-controlled flocculants for finely divided titanium minerals [J]. Colloids and Surfaces,1991,60:413-421.
    [30]Belardi G. et al. Application of physical separation methods for the upgrading of titainm dioxide contained in a fine aste[J]. Int. J. Miner process,1998,53,145-165
    [31]Boulos, T. R., et al. Recovery of Valuable Minerals from Welding Electrode Metallurgical Wastes[J]. Aufbereitungs-Technik,1981, 22(9):459-464.
    [32]Chachula Francis, et al. Upgrading a rutile concentrate produced from athabasca oil sands tailings[J]. Fuel,2003,82(8):929-942.
    [33]王宝娴,涞水金红石选矿试验研究,中国非金属矿工业导刊,1997(4):24
    [34]赵西泽,西安户县金红石矿地质特征及矿石选矿试验,非金属矿,1995(6):14-16
    [35]张宗华,戴惠新,吴幼竺等,会东难选金红石矿的矿物工艺特性及选矿试验研究,云南冶金2001(5):7
    [36]高利坤,张宗华,李春梅.河南方城金红石矿选矿试验研究[J].矿产综合利用,2003,(3):3-8
    [37]高利坤,张宗华,王雅静.陕西某微细粒难选金红石矿选矿试验研究,矿冶工程2008,(4)42-44
    [38]吴贤,张健.我国大型原生金红石矿的选矿工艺.稀有金属快报2006(8):5
    [39]朱建光,金红石和钛铁矿的浮选,有色矿冶1997(3):30-33
    [40]崔林,金红石和石榴石浮选分离的研究,化工矿山技术,1986(5):22
    [41]徐玉琴,欧阳监,卢寿慈等,金红石与一水硬铝石的浮选分离,矿产综合用,1996(4):1
    [42]任皞,杨则器,池汝安,双膦酸捕收铌铁金红石机理研究,有色金属,199(3): 20
    [43]Opavez, et al. Flotation of monazite-zircon-rutile with sodium Oleate and hydroxamate[C]. XVIII International mineral processing congress, Sydney,1993,1007-1012
    [44]Celik MS et al. Minorals. Engineering,1998, (12):1201 - 1208
    [45]贺智明,董雍赓,水杨氧肟酸浮选金红石的机理研究,矿产保护与利用1995(1): 25
    [46]王雅静,张宗华,高利坤.某难选金红石矿选矿试验研究.矿产综合利用,2008(1):7-10
    [47]李晔,许时,提高胂酸对金红石浮选性能的研究,中国矿业,1997(2):58
    [48]丁浩.金红石浮选中消除Ca2+对石英活化作用研究[J].矿产保护与利用,1994,(1):40-42
    [49]丁浩,崔林.六偏磷酸钠在金红石与硅钙质矿物分离中的作用机[J].有色金属(季刊),1991,(4):33-39
    [50]王彦令.用苄基胂酸、油酸,混合捕收金红石[J].矿产综合利用,1991,(3):51-52
    [51]马光荣.变质岩微细粒金红石浮选研究[J].有色金属选矿部分,1989,(3):12-13
    [52]贺智明,董雍赓,孙芨.铅离子对水杨氧肟酸浮选金红石的活化作用研究[J].有色金属(季刊),1994,(4):43-48
    [53]李晔,刘奇,许时.矿物表面金属离子组分与糊精的相互作用[J].化工矿山技术,1994,(6):23-25
    [54]丁浩.金红石与磷灰石浮选分离中硫酸铝的作用研究[J].化工矿山技术,1997,(3):13-16
    [55]Manser. R.M., Handbook of Silicate Flotation[M]. England, DOB. Servicesltd.1975
    [56]Fuerstenau. D. W.硅酸盐矿物结晶化学、表面性质和浮选行为[J],国外金属矿选矿,1978,(9)28-45
    [57]孙传尧,印万忠.硅酸盐矿物浮选原理[M],北京:科学出版社,2001
    [58]孙传尧.分离钠铁硅酸盐霓石和铁矿物的新方法-络合物浸蚀浮选法[D],北京:北京矿冶研究总院,1981
    [59]孙传尧,吕永信.用络合浸蚀浮选法分离霓石和铁矿物[J],有色金属(季刊),1982(2):42-51
    [60]印万忠,孙传尧.硅酸盐矿物可浮性研究及晶体化学分析[J],有色金属(选矿),1983(3):1-6
    [61]孙传尧.霓石、赤铁矿对月桂胺、油酸钠和淀粉的吸附特性[J],北京矿冶研究总院报,1984.(3):44-50
    [62]印万忠,孙传尧.矿物晶体结构与表面特性和可浮性关系的研究[J],国外金属矿选矿,1998,(4):8-11
    [63]孙传尧,印万忠.关于硅酸盐矿物的可浮性与其晶体结构及表面特性关系的研究[J],矿冶,1998,(3):22-28
    [64]印万忠.硅酸盐矿物晶体化学特征与表面特性及可浮性关系的研究[D],沈阳:东北大学,1999
    [65]戴强,唐甲莹,程正柄.石英长石浮选分离的进展[J],非金属矿,1996, (2):16-21
    [66]刘亚川,龚焕高,张克仁.石英长石矿物结晶化学特性与药剂作用机理[J],中国有色金属学报1992.2(4):21-25
    [67]刘亚川,龚焕高.石英长石浮选分离技术的开发与利用[J],非金属矿,1992(增刊):63-66
    [68]刘亚川.长石石英浮选分离新技术及其机理研究[D],沈阳:东北大学,1993
    [69]El-Salmawy. M.S. Solution Chemistry of anionic/nonionic surfactants and its role in flotation separation of quartz form feldspar[C], Proceedings of the XXIMPC-Aachen,1997:617-625
    [70]El-Salmawy. M. S., Nakahiro. Y. and Wakamatsu. T. The role of surface silanol groups in flotation separation of quarz form feldspar using nonionic surfactants[C], XVIII Internatiinal Mineral Processing Congress Sydney,1993:845-849
    [71]El-Salmawy. M. S., Nakahiro. Y. and Wakamatsu. T. The role of alkaline earth cations in flotation separation of quarz form feldspar [J], Minerals Engineering 1993,16(12):1231-1243
    [72]El-Salmawy. M. S.石英与长石浮选分离的新药剂制度[J],国外金属矿选矿,1997,(9):23-28
    [73]El-Salmawy. M. S, Nakahiro. Y. and Wakamatsu. T.用非离子型表面活性剂浮选分离石英和长石中表面硅烷基作用[J],国外金属矿选矿,1995(4):44-49
    [74]Hanumantha Rao. K. and Forssberg. K. S. E. Solution chemistry of mixed cationic/anionic collectors and flotation separation of feldspar form quartz[C], ⅩⅤⅢ Internatiinal Mineral Processing Congress Sydney, 1993:837-844
    [75]Tang Jiaying, Sun Baoqi, Cheng Zhenbing, Chen Xiangguo, Zhao Huiling and Zhang Shaozhong. Theoretical studies and production practice of acidless and fluoless flotation of silica sand [C], XVIII Internatiinal Mineral Processing Congress Sydney,1993:851-856
    [76]Botelho de Sousa. A, Amarante. M. A and Machado leite. M. Processing a feldspar ore by flotation, using HF and H2SO4 AS PH regulators [C], Processings of the XXIMPC-Aachen,1997:637-644
    [77]Hanumantha Rao. K. and Forssberg. K. S. E.阴/阳离子捕收剂的溶液化学及长石与石英的浮选分离[J],国外金属矿选矿,1994,(5):36-45
    [78]Shehu. N.and Spaziani. E. Technical note separation of feldspar form quarz using EDTA as modifier, Minerals Engineering,1999,12(11): 1393-1397
    [79]张琪,方和平.Fe3+对.Al3+活化微斜长石产生屏蔽的机理[J],中国有色金属学报,1999,9(3):606-609
    [80]P. Parsonage, D. watson, T. J. Hicky.某些工业矿物的表面结构,矿泥覆盖和浮选,国外金属矿选矿,1984(7):22-36
    [81]尹周澜,高孝恢,邹祖荣.硅酸盐中金属离子对Si-0键影响的量子化学研究[J].矿物学报,1990,(10):348-355
    [82]印万忠,孙传尧.淀粉及其与Pb2+对硅酸盐矿物的抑制和协同抑制作用的晶体化学分析[J],矿冶,1999(1):19-24
    [83]胡岳华,冯其明.矿物资源加工技术与设备,科学出版社,200:240
    [84]秦奇武,胡岳华.细粒矿物疏水凝聚分选研究的进展.矿冶工程,1998(4):20-24
    [85]Tsao Y H, et al. Langmuir.1991,7:3154-3159
    [86]罗琳,等.中南工业大学学报,1996,27(2):153-158
    [87]Yotsumoto H, et al. J Coll Inter Sci,1993,157:426-433
    [88]Yotsumoto H, et al. J Coll Inter Sci,1993,157:434-441
    [89]Fielden M L, et al. Langmuir.1996,12:3721-3727
    [90]Bunkin N F, et al. Langmuir.13:3024-3028
    [91]卢寿慈、翁达.界面分选原理及应用.冶金工业出版社.1992
    [92]岳铁兵,曹进城,魏德州等.细粒金红石矿重选抛尾工艺研究.化工矿物与加工.2005(1):15-17
    [93]Hao Ren, Feifei Ji, Shuaxiang Zhang, et al. Effects of diphosphoinc acid on ilmenorutile collecting property and research of action mechanism [J].J Univ Sci Technol Beijing,2002,9(1):249-252
    [94]Ren Hao, Ji Feifei, Zhang Shuaxiang. Effect and mechanism of diphosphonic acid on flotation characteristic of fersmite and its intergrowth gangue [J]. Transactions of Nonferrous Metals Society of China,2003,13(4):1013-1018
    [95]任皞,纪绯绯.双磷酸对铌铁矿捕收剂特性的影响及其作用机理[J].湘潭矿业学院学报,2003,18(3):84-87
    [96]任皞.铌铁金红石与萤石、赤铁矿的分离及其机理研究[D].北京:北京科技大学,1996:47-49
    [97]Bansal V K and Biswal A K. IMM,1995,9(184):131
    [98]Takahashi K and Wakamastsu T. Int J Miner Process,1984,12:127
    [99]王雅静,张宗华.微细粒金红石浮选捕收剂的研究.矿业快报,2008(1):31-32
    [100]杜岩.烷基双甲苯膦酸浮选金红石研究[J].矿冶工程,1993,(2)34-37
    [101]马鸿文.工业矿物与岩石.化学工业出版社.2005,191
    [102]王濮,潘兆橹,翁玲宝等.系统矿物学(上册)[M],北京:地质出版社,1986,536-539
    [103]王濮等.系统矿物学(下册)[M],北京:地质出版社,1986年6月,106-107
    [104]东北工学院普通化学研究室.无机化学[M],沈阳:东北工学院出版社,1985,200
    [105]尹敬执,申半文.基础无机化学(上)[M],北京:人民教育出版社,1980,50
    [106]朱玉霜、朱建光.浮选药剂的化学原理.中南大学出版社.1996:114-117
    [107]高桥克侑.水曜会志,第19卷,第1号,55(昭和53年11月);第19卷,第2号,127(昭和54年5月)
    [108]0. C. Bogdanow, et al.. VII International Mineral Processing Congress, Sao Paudo:1977,2
    [109]王淀佐.中南矿冶学院学报,1980,NO.4,7
    [110]Yoon, R. H., Salman, T, Donnay, G. predicting point of zero charge of oxides and hydroxides [J]. J. Colloid Interface Sci,1979.70(3): 483-493
    [111]胡为柏.浮选[M].北京:冶金工业出版社.1989
    [112]胡熙庚,黄和慰,毛锯凡.浮选理论与工艺[M].长沙:中南工业大学出版社.1991
    [113]冶金部长沙矿冶研究所,攀枝花钒钛磁铁矿表外矿的物质组成[R].1977,3
    [114]长沙矿冶研究所等.攀枝花朱家包包铁矿表外矿石选矿工业试验[R].1979,6
    [115]Jones P. et al. Trans. faraday Soc.1971(67):2679
    [116]北京矿冶研究总院编写组.有机浮选药剂分析[M].北京:冶金工业出版社,1987
    [117]#12
    [118]王淀佐,胡岳华著,浮选溶液化学.长沙:湖南科学技术出版社,1988.
    [119]彭文世,刘高魁.矿物红外光谱图集.科学出版社,1982,114
    [120]卢涌泉,邓振华.实用红外光谱解析[M],北京:电子工业出版社.1989,8
    [121]王宗明等.实用红外光谱学[M],北京:石油工业出版社,1982,4
    [122]荆煦瑛等.红外光谱实用指南[M],天津:天津科学技术出版社,1992,6
    [123]中本一雄.无机和配位化合物的红外光谱和拉曼光谱[M],北京:化学工业出版社,1991,2
    [124]Lai R.W.M., Furstenau D. W., Trans. ALME, Vol.260,1976, pp.104-107
    [125]Yarar, B. and Kaoma, J., Estimation of the eritical surface tension of wetting of hydrophpbic solids by flotation, colloids and surfaces.1984, voⅢ(3-4),429-436
    [126]P. somasrnclaran,以离子分离络合物为基础的浮选机理,中南矿冶学院选矿译文专辑(增刊2)1983,59-68
    [127]范先锋,N. A. Rowson.钛铁矿活化浮选[J],国外金属矿物选矿,1999年,(4):2-6
    [128]Deer. w. a., Howie. a., Zussman. J. The introduction to The Rock-Forming Minerals [J], Longman Scientific &Technical,1993:543-547
    [129]Jan Leja. Surface Chemistry of froth Flotation [M], New York:Plenum Press,1982,639
    [130]J. S. Laskowski, J. Ralston, Collid Chemistry in Mineral Processing [M], Elseveier Science Publishers B.V.,1992,54
    [131]邱冠周,胡岳华,王淀佐.颗粒间相互作用与细粒浮选,中南工业大学出版社.1993
    [132]骆兆军,胡岳华.铝土矿反浮选体系分散与凝集理论.中国有色金属学报2001(8):16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700