用户名: 密码: 验证码:
基于加工图理论的O相合金高温变形机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti_2AlNb基合金是针对我国新型航空航天发动机的发展需求而研制的一种新型的高比强度钛铝金属间化合物,其名义成份为Ti-22Al-25Nb。全面、系统地认识热机械处理条件下Ti_2AlNb基合金的高温变形机制及组织演变规律是将其应用于航空领域迫切需要解决的重要问题。本文以××高性能发动机工程应用为背景,研究了Ti_2AlNb基合金在热变形过程中高温变形机制、不同热处理条件下的组织演变规律及其对力学性能的影响。研究的主要结果如下:
     研究揭示了Ti_2AlNb基合金热变形过程中变形温度、应变速率对流动应力的影响规律,建立了合金在三相区以及三相区以上的本构关系模型以及在1060-1100℃时的晶粒长大模型。
     采用等温恒应变速率压缩实验研究,发现在低温或高温、高应变速率下出现明显的流动应力软化现象,温度越低,应变速率越高,流动软化现象越明显;高应变速率(10s~(-1))时易发生不连续屈服现象,应变速率和温度越高,峰值流动应力下降幅度越大。不连续屈服现象与晶界突然增殖大量可动位错有关,与固溶原子的钉扎无关。
     基于动态材料模型(DMM)理论,建立了Ti-22Al-25Nb合金的热加工图,分析了热成形过程中的功率耗散规律和塑性失稳条件,揭示了Ti-22Al-25Nb合金在各种热变形条件下的组织演变规律和热变形机理。
     以Prasad塑性失稳准则为依据,建立了Ti_2AlNb基合金塑性失稳条件。发现在温度940-970℃、应变速率0.4-10s~(-1)和温度970-1060℃、应变速率1-10s~(-1)范围为流动失稳区,前者主要发生绝热剪切和45°剪切开裂,功率耗散率达到最小值;后者以局部塑性流动和纵向开裂为主,功率耗散率小于33%。
     研究了塑性加工“安全区”的变形机制,发现在940-970℃、应变速率0.001-0.4s~(-1)范围,以α_2/O相板条球化为主;在970-1030℃、应变速率0.001-1s~(-1)范围,功率耗散率为35-45%,呈现连续再结晶特征。在1030-1060℃、应变速率0.001-0.1s~(-1)范围,功率耗散率为45-66%,连续再结晶晶粒长大。
     研究了Ti_2AlNb基合金中各相之间的转变关系,发现在三相区和两相区对材料进行二次锻造,并在(α_2+O+B2)三相区和(O+B2)两相区进行合适的热处理,可以在细化原始组织的前提下得到适量的O相、α2相和B2转变组织,从而获得优越的综合性能。
Ti_2AlNb-based alloy is a new type of high specific strength titanium aluminum intermetallic compounds designed for new aeroengine development. It's nominal composition is Ti-22Al-25Nb. Study of the hot deformation mechanisms and microstructure evolvtion is meaningful for the safety designing of components used in airplane. Considering the application background of some special high performance areoengines, this investigation is focused on the hot deformation characteristics of Ti2AlNb-based alloy at different hot deformation conditions. The relationships between microstructure and performance are analyzed. A brief introduction to the project and the main achievements are as follows:
    The influence of deformation temperature, strain rate and flow stress in hot deformation process are disclosed. A constitutive relationship of this alloy is formulated at three-phase region and above it. A relational expression of the grain growth is established at 1060-1100 ℃.
    Based on the hot compression experimental study at isothermal constant strain rate, the flow curves of this alloy exhibits obvious flow softening at low temperature with all strain rates tested or at high temperature with high strain rates. The flow stress drop increases with temperature decreasing or strain rate increasing. This phenomenon is attributed to microstructure changes of this alloy. Discontinuous yielding easily occurs at higher strain rate (10s~(-1)). The peak flow stress drop increases with the strain rate and the temperature increasing. It is considered that discontinuous yielding is associated with the generation of new mobile dislocations from grain boundary sources, but independent of solute-pinning.
    Using processing maps developed on the basis of dynamic material model (DMM). The results show that this alloy exhibit a wide instability regime due to cracking or shear band formation at a strain rate greater than 1s~(-1). At lower temperatures (940-970℃), the instability was characterized by shear cracking along 45° orientation with respect to the compression axis and adiabatic shear band formation. At higher temperatures (970-1060℃), the instability was attributed to longitudinal cracking or flow localization. The others were safe regimes characterized by recrystallization.
引文
1 彭超群,黄伯云,贺跃辉.Ni-Al系、Fe-Al系和Ti_3Al金属间化合物研究.特种铸造基有色合金,2001,(6):27-29
    2 曹春晓,马济民,颜鸣皋.Ti_3Al基合金的进展.材料工程,1991,(2):32-35
    3 张小明.TiAl基合金在汽车发动机上的应用.稀有金属快报,2002,(10):18
    4 林凡,王家芳,耿瑞山.TiAl合金增压器涡轮的铸造.热加工工艺,2001,(5):33-34
    5 林建国,张永刚,陈昌麒等.TiAl金属间化合物在汽车上的应用潜力.钛工业进展,1997,(2):25-28
    6 赵景泰,宋明虎.极具潜力的金属间化合物功能材料.厦门科技,1999,(2):8-9
    7 Banerjee D. The intermetallic Ti_2AlNb. Progress in Materials Science, 1997, 42: 135-158
    8 S. Krishnamurthy, P.R. Smith, D.B. Miracle. Modification of transverse creep behavior of an orthorhombic titanium aluminide based Ti-22AI-23Nb/SiC composite using heat treatment. Materials Science and Engineering A, 1998, 243: 285-289
    9 T.K. Nandy, D. Banerjee. Creep of the orthorhombic phase based on the intermetallie Ti_2AlNb. Intermetallics, 2000, 8(5-6): 915-928
    10 R.G. Rowe. Tri-titanium aluminide alloys containing at least eighteen atom percent niobium. US Patent NO. 5032357, 1991
    11 R.G. Rowe and M. Larsen. The effect of microstructure and composition on the creep behavior of O phase titanium aluminide alloys. In Ti'95, Proceedings of the Eighth World Conference on Titanium, Birmingham. UK October, 1995: 364-371
    12 D.B. Miracle, M.A. Foster, and C.G. Rhodes. Phase equilibria in Ti-Al-Nb orthorhombic alloys. In Ti'95, Proceedings of the Eighth World Conference on Titanium, Birmingham. UK October, 1995:372-379
    13 Yong Mao, Shiqiong Li, Jianwei Zhang, et al. Microstructure and tensile properties of orthorhombic Ti-Al-Nb-Ta alloys. Intermetallics, 2000, 8(5-6): 659-662
    14 李世琼,毛勇,张建伟等.Ti_2AINb基金属间化合物合金研究.金属学报,1999,35(增刊1):284-287
    15 李世琼,张建伟,程云君等.Ti_3Al和Ti_2AINb基金属间化合物结构材料研发现状.稀有金属材料与工程,2005,34(增刊3):104-109
    16 吴波.Ti_2AlNb制备工艺和性能研究:[博士论文].北京:北京有色金属研究总院,2005
    17 K. Mureleedharan, T. K. Nandy, D. Banerjee. Phase stability and ordering behaviour of the O phase in Ti-Al-Nb alloys. Intermetallics, 1995, 3(3): 187-199
    18 D. Banerjee, A. K. Gogia, T. K. Nandy, et al. Anew ordered orthorhombic phase in a Ti_3Al-Nb alloy. Acta Metallurgica, 1988, 36(4): 871-882
    19 L.A. Bendersky, A. Roytburd and W.J. Boettinger. Phase transformations in the (Ti, Al)_3Nb section of the Ti-Al-Nb system-I. Acta Metallurgica et Materialia, 1994, 42(7): 2323-2335
    20 C.J. Boehlert, B.S. Majumdar, V. Seetharaman, et al. The Microstructural Evolution in Ti-Al-Nb O+Bcc Orthorhombic Alloys. Metallurgical and Materials Transactions A, 1999, 30A(9): 2305-2323
    21 Ying Wu, Dezhuang Yang, Guiming Song. The formation mechanism of the O phase in a Ti_3Al-Nb alloy. Intermetallics, 2000, 8(5-6): 629-632
    22 武英.Ti_3Al-Nb合金的显微组织与拉伸变形断裂行为:[博士学位论文].哈尔滨:哈尔滨工业大学,1997
    23 张永刚.金属间化合物结构材料.北京:国防工业出版社,2001:789-797
    24 袁鸽成,张新民.新型Al-Sn-Si合金高温塑性变形流变应力的研究.实验力学,2001,16(1):34-38
    25 H.J. McQueen, S. Yue, N. D. Ryan, E. Fry. Hot Working Characteristics of Steels in Austenitic State. J Mater Process Technology, 1995,53(1/2):293-310
    26 H. Shi, J. McLaren, C. M. Sellars, R. Shahani, R. Bolingbroke. Constitutive Equations for High Temperature Flow Stress of Aluminum Alloys. Materials Science and Technology, 1997,13(3):210-216
    27 S.B. Davenport, N. J. Silk, C. N. Sparks, C. M. Sellars. Development of Constitutive Equations for Modeling of Hot Rolling. Materials Science and Technology, 2000,16(5):539-546
    28 王瑜,林栋梁,Chi.C.Law.TiAl合金高温拉伸流变应力与Zener-Hollomom因子的关系函数.上海交通大学学报,2000,34(3):338-341
    29 I. Philippart, H. J. Rack. High Temperature Dynamic Yielding in Metastable Ti6.8Mo-4.5F-1.5A1. Materials Science and Engineering, 1998, 243A: 196-200
    30 S. Ankem, J.G. Shyue, M.N. Vijayshankar, R.J. Arsenault, Materials Science and Engineering, 1989, A111: 51-61
    31 R. Srinivasan, I. Weiss, D. Eylon, R.R. Boyer, D.A. Koss(Eds.). Beta Titanium Alloys in the 1990s. Titanium '92: Science and Technology. TMS, Warrendale, PA, 1993:283-295
    32 D. G. Robertson, H.B. Mcshane. Isothermal Hot Deformation Behaviour of Metastable β Titanium Alloy Ti-10V-2Fe-3Al. Materials Science and Technology, 1997, 13(7): 575-583
    33 V.V. Balasubrahmanyam, Y. V. R. K. Prasad. Deformation Behaviour of Beta Titanium Alloy Ti-10V-4.5Fe-1.5Al in Hot Upset Forging. Materials Science and Engineering, 2002; A336:150-158
    34 L.X. Li, Y. Lou, L. B. Yang, et al. Flow Stress Behavior and Deformation Characteristics of Ti-3Al-5V-5Mo Compressed at Elevated Temperatures. Materials and Design, 2002,23:451-457
    35 U. Hofmann, W. Blum. Microstructural Evolution during High Temperature Deformation of Lamellar Ti-48Al-2Nb-2Cr. Intermetallics, 1999,(7):351-361
    36 S.L. Semiatin, V. Seetharaman, I. Weiss. Flow Behavior and Globularization Kinetics during Hot working of Ti-6Al-4V with a Colony Alpha Microstructure. Materials Science and Engineering, 1999,A263:257-271
    37 韩冰.7075z铝合金高温塑性变形行为研究.[广东工业大学学位论文].广东:广东工业大学,2003
    38 孙新军.钛合金片层组织的等轴化规律及超细晶钛合金超塑性的研究.清华大学博士学位论文.1999
    39 U. Hofmann, W. Blum. A Simple Model of Deformation of Ti48Al-2Cr-2Nb at High Temperatures. Scripta. Metallurgica et Materialia, 1995,32:371-376
    40 T. Seshacharyulu, S. C. Medeiros, W. G. Frazier, et al. Unstable Flow during Supratransus Working of Ti-6Al-4V. Materials Letters, 2001, 47:133-139
    41 R.j. Aresenault, J. R. Beelar, D. M. Esteding. Computer Simulation in Materials Science. ASM Material Science Seminar. Florida. ASM international, 1998: 291-342
    42 王少林,阮雪榆,俞新陆等.运用热模拟压缩试验确定精确的金属流动方 程.中国机械工程,1996,(7):101-102
    43 波卢欣,贡,加尔金.金属与合金的塑性变形抗力.林冶平译.机械工业出版社,1984:1-66
    44 赵选民,徐伟,师义民等编.数理统计.第二版.科学出版社,2002:268-275
    45 曾卫东,周义刚,周军等.加工图理论研究进展.稀有金属材料与工程,2006,35(5):673-677
    46 T. Rajagopalachary, V.V. Kutumbarao. Intrinsic hot workability map for a titanium alloy IMI685. Scripta Materialia, 1996, 35(3): 311-316
    47 S.V.S. Narayana Murty, B. N. Rao. Reinvestigation of Dynamic Materials Model Analysis of 99.94% Purity Aluminium. Materials Science and Technology, 2002, 18(5): 571-574
    48 B.V. Radhankrishna, Y. R. Mahajan, Y. V. R. K. Prasad. Effect of Volume Fraction of SiC_ρ Reinforcement on the Processing Maps for 2124 Al Matrix Composites. Metallurgical and Materials Transactions, 2000, 31A: 629-639
    49 S. Venugopal, S.L. Mannan, Y.V.R.K. Prasad. Optimization of Hot Workability in Stainless Steel Type AISI 304L Using Processing Maps. Metallurgical Transactions, 1992, 23A: 3093-3103
    50 周军.Ti-17钛合金片状组织球化规律研究.西北工业大学硕士论文,2005:34-41
    51 俞汉清,陈金德.金属塑性成形原理.机械工业出版社,1999:38
    52 李强,徐永波,赖祖涵等.Monel合金高速塑性剪切变形与动态再结晶.金属学报,1999,35(1):49-52
    53 Shih-chieh Liao, J. Duffy. Adiabatic shear bands in a Ti-6Al-4V titanium alloy. Journal of the Mechanics and Physics of Solids, 1998, 46(11): 2201-2231
    54 杨扬,程信林.绝热剪切的研究现状及发展趋势.中国有色金属学报,2002.12(3):401-408
    55 谭成文,王富耻,李树奎等.绝热剪切带内微孔洞演化规律研究。兵工学报.2004,25(2):197-199
    56 李强,马常祥,赖祖涵.30MnCrBiMoB低合金钢绝热剪切带的形成机制与微结构.金属学报,1995,31(11):505-510
    57 郑远谋,黄光荣,陈世红.退火对钢—钢爆炸钛复合板中飞线组织和性能的影响.钢铁研究,1999,1:25-30
    58 N. Ravichandran, Y. V. R. K. Prasad. Influence of Oxygen on Dynamic Recrystallization During Hot Working of Polycrystalline Copper. Materials Science and Engineering, 1992, A156:195-204
    59 Y.V.R.K. Prasad, T. Seshacharyulu. Modelling of Hot Geformation for Microstructural Control. International Materials Reviews, 1998,43(6): 243-258
    60 O. Sivakesavama, Y. V. R. K. Prasad. Hot Deformation Behaviour of As-cast Mg-2Zn-1Mn Alloy in Aompression: A Study With Processing Map. Materials Science and Engineering, 2003, A362:118-124
    61 R.D. Doherty, D.A. Hughes, F.J. Humphreys, et al. Current issues in Recrystallization: a review. Materials Science and Engineering A, 1997, 238: 219-274
    62 Y.V.R.K.Prasad, T.Seshacharyulu. Processing Maps for Hot Working of Titanium Alloys. Materials Science and Engineering A, 1998, 243:82-88
    63 Li Shiqiong, Mao Yong, Zhang Jianwei,et al. Effect of microstructure on tensile properties and fracture behavior of intermetallic Ti_2AlNb alloys. Transactions Nonferrous Metallurgical Science. China, 2002, 12(4): 582-586
    64 U.R. Kattner, W. J. Boettinger. Thermodynamic calculation of the ternary Ti-Al-Nb system. Materials Science and Engineering A, 1992, 152(1-2): 9-17
    65 K. Gogia, T. K. Nandy, D. Banerjee, et al. Phase stability and ordering behavior of the O phase in Ti-Al-Nb alloys. Intermetallics, 1995, 3(3): 187-199
    66 司玉锋,孟丽华,陈玉勇.Ti_2AlNb基合金的研究进展.宇航材料工艺,2006,3:10-13
    67 C.Leyens,M.Peters.钛与钛合金.陈振华,译.北京:化学工业出版社,2006:52-78
    68 Charlie R.Brooks,Ashok Choudhury.工程材料的失效分析.谢斐娟,孙家骧译.北京:机械工业出版社,2003:135-137
    69 罗冬,崔玉友,卢斌等.Ti-22Al-23Nb-1Ta-1W合金的显微组织和力学性能.稀有金属材料与工程,2005,34(3):50-53
    70 Li Shiqiong, Mao yong, Zhang Jianwei, et al. Effect of microstructure on tensile properties and fracture behavior of intermetallic Ti2AlNb alloys. Transactions Nonferrous Metallurgical Science. China, 2002, 12(4): 582-586
    71 彭继华,李世琼,毛勇等.Ta对Ti_2AlNb基合金微观组织和高温性能的影响.中国有色金属学报,2000,10(1):50-53
    72 毛卫民,赵新兵.金属的再结晶与晶粒长大.北京:冶金工业出版社,1994: 218-241
    
    73 Kopp R, Karnhausen R, Souza M M. Numerical Simulation Method for Designing Thermomechanical Treatment, illustrated by Bar Rolling Scand. Journal of Metallurgy, 1991, 20: 351-360
    
    74 Shen G S, Semiatin S L, Shivpuri R. Modeling Microstructural Development during the Forging of Waspaloy. Metallurgical and Materials Transactions, 1995, 26A: 1795-1803
    
    75 Satio Y. Modelling of Microstructural Evolution in Thermonechanical Processing of Structural Steels. Materials Science and Engineering A, 1997,233: 134-145
    
    76 Medeiros S C, Prasad Y V R K, Frazier W G.. Microstructural Modeling of Metadynamic Recrystallization in Hot Working of IN 718 Super-alloy. Materials Science and Engineering A, 2000,293: 198-207
    
    77 Ding R, Guo Z X. Microstructural Modelling of Dynamic Recrystallisation Using an Extended Cellular Automation Approach. Computational Materials Science, 2002,23: 209-218
    
    78 Devadas C. The thermal and metallurgical state of steel strip during hot rolling: part 3. Microstructural evolution. Metallurgical Transactions A, 1991,22A: 335- 342

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700