用户名: 密码: 验证码:
超细晶铜材的大变形异步叠轧制备技术、组织演变过程与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超细晶铜材因具有微小的细晶结构而表现出了优异的延展性、导电性以及导热性等性能,已经发展成为了电器仪表、化工、造船、航空、机械等工业部门中的重要原料,具有广阔的应用前景。但由于目前超细晶材料仍无法连续制备在一定程度上限制了它的应用。此外,如何获得组织均匀稳定、性能优异的超细晶材料也是应用中急需解决的一个关键问题。本论文采用大变形异步叠轧法成功地制备出了超细晶铜材,该方法能够实现超细晶带材的连续化工业生产,是一种极具潜力的超细晶材料产业化的生产技术。
     采用大变形异步叠轧法对粗晶铜带材进行了加工及再结晶退火处理,最终制备出了超细晶铜材。在此基础上,研究了制备过程中超细晶铜材的组织和性能,取得了如下成果:
     1.研究了大变形异步叠轧及再结晶退火工艺条件对超细晶铜材组织及性能的影响,主要包括等效应变、再结晶退火温度和再结晶退火时间对铜材变形组织、晶粒大小、显微硬度、抗拉强度、屈服强度以及电阻率的影响,获得了制备具有均匀稳定性、高强度和较好电导率的超细晶铜材的最佳工艺条件。
     (1)对粗晶铜材进行等效应变ε=4.8的异步叠轧,获得的超细晶含有许多亚结构。然后再进行220℃×30~50min的热处理,可以制备出200~500nm的超细晶铜材;
     (2)制备出的超细晶铜材的抗拉强度σ_b为424.5MPa,屈服强度σ_(0.2)为323.1Mpa;板面显微硬度为125HV,横截面显微硬度为110HV,纵截面显微硬度为103HV;电导率为76.3 MS/m。
     2.研究了大变形异步叠轧制备超细晶铜材过程的组织和取向织构变化情况,结果表明:
     (1)变形等效应变ε≤1.6时,剪切应力的作用使晶粒与晶粒之间发生滑动,部分晶粒内部晶面发生滑移,大晶粒内部转变为许多具有小角度晶界、大小为5个微米的亚晶。此时,异步产生的剪切力在晶粒细化过程中起主要作用;
     变形等效应变ε在2.4~4.0之间时,随着等效应变的增加,碎化的大角度小晶粒数量增加,包含小角度亚晶的大晶粒内部的位错密度增加;ε≤4.0时,随着变形等效应变的增加,界面逐渐被焊合,在异步叠轧过程中产生的缺陷部分在界面处消失。此时,异步叠轧中性面位置的改变对界面的复合起到主要作用,变形等效应变的增大使晶粒细化程度变大;
     变形等效应变ε≥4.8时,粗晶铜在变形过程中有两种组织区域组成,分别为细小亚晶区和高密度位错区。增加等效应变ε,高密度位错区减少,亚晶区增大,此时异步叠轧过程形成的界面已经完全焊合;无论等效应变ε有多大,异步产生的剪切力都会使实际中性层与几何中性层位置错开,使其在界面复合中起主导作用;
     (2)累积叠轧过程和异步叠轧过程在制备超细晶方面的差异在于:异步叠轧细化晶粒过程增加了剪切力的作用,加剧了晶粒间的摩擦,增大了晶界及晶内滑移,同时促进了叠合面的复合;累积叠轧过程大角度晶界的形成由几何变形引起,而异步叠轧过程大角度晶界的形成与位错的塑性滑移有关;
     (3)经异步叠轧后,样品的变形织构显现出铜式冷轧织构的特征,其中C-{112}<111>取向的晶粒最多,与在早期研究中金属铜的轧制织构基本一致,只是织构位置因剪切力的存在发生偏移;随着异步叠轧等效应变ε的增加,冷轧织构也随之增强;变形主要以位错滑移方式进行。
     3.对等效应变ε=4.8时获得的超细晶铜材进行再结晶处理,观察再结晶组织及织构演变过程,结果表明:
     (1)等效应变ε=4.8时,获得的超细晶铜材再结晶过程为:首先发生回复过程,回复机制主要为亚晶规整化,小部分区域发生多边化的回复过程;随着再结晶退火时间的延长,形成新的晶核,形核方式为亚晶转动、聚合形核和亚晶界迁移、亚晶长大形核两种方式;形核过程完成后,在35~50min内形成的晶粒大小在200~500nm之间。再结晶处理后,超细晶较稳定;
     (2)再结晶初期织构保持再结晶前的轧制织构特征,变形铜材发生很强的回复;随着再结晶退火时间的延长,立方织构组分、退火R织构组分、S组分、B/G组分等织构组分出现,发生不连续的正常再结晶,此时再结晶形成的晶核主要通过大角度晶界的移动来完成;
     (3)普通轧制获得的铜材再结晶过程中,具有立方取向的再结晶晶核优先生成,在长大过程中会保持优先生长,再结晶退火后主要以立方织构为主;大变形异步叠轧铜材过程中,定向生长机制受到限制,各种再结晶织构组分并存,且已形成的各种取向的晶核在长大过程中共同生长,形成的再结晶织构比较漫散,使铜材的各向异性较普通轧制再结晶退火有很大提高。
     4.测试了不同等效应变变形铜材、等效应变变形再结晶铜材和对超细晶进行变形加工铜材的显微硬度、力学性能以及导电性能,结合组织研究对其性能的变化进行了分析:
     (1)在异步叠轧过程中,铜材强度随等效应变的增加而增大,但其延伸率降低;等效应变ε为4.8时的铜材经220℃再结晶退火处理35~50min后,可以获得综合性能较好的超细晶;异步叠轧(ε=4.8)再结晶获得的超细晶铜退火时间大于35min后,残余应力得到消除,但超细晶铜材再进行轧制变形加工,残余应力又开始增加;
     (2)对于异步叠轧(ε=4.8)再结晶获得的超细晶铜,在晶粒细化到100~500nm时,屈服强度和晶粒尺寸依然较好的符合了传统的Hall-Petch关系;在室温下,超细晶铜具有良好的延展性;
     (3)等效应变ε增加,超细晶铜材的电阻率增加,电导率降低;经异步叠轧(ε=4.8)和再结晶退火处理后所获得的超细晶铜材的导电性和1#标准退火态铜的导电性相当。
     5.采用大变形异步叠轧法制备出了组织均匀、高强度、高延展性及良好导电性的超细晶铜材,是本论文的最重要研究成果之一。首次提出采用大变形异步叠轧法制备超细晶铜材,为超细晶材料的制备找到了一种新的途径。关于大变形异步叠轧法制备超细晶铜材组织及织构演变过程的研究以前未见报道,本论文首次开展了这方面的研究工作,同时对晶粒细化机制进行了分析和讨论。
     6.在最佳工艺条件下,制备出的超细晶铜材的电阻率和1#退火态铜相当;在超细晶铜材加工过程中,电阻率变化不大,与传统理论相悖,其所表现出的这些特性还需进一步探讨和验证。
The Ultra-Fine-Grained copper(UFG-Copper)with fine structure performs excellent properties,such as ductibility,electrical conductivity and heat conductivity and so on.It has become an important raw material in the following industrial departments as electric apparatus instrument,chemical industry, shipbuilding,aviation and machinery,etc.,and has wide application prospects.At present,that the Ultra-Fine-Grained material is unable to be prepared continuously limits its application in succession.In addition,it is also a key problem need to be solved in application how to obtain uniform and stable UFG material with excellent properties.In this thesis,the UFG-Copper has been prepared by Asymmetrical Accumulative Rolling Bonding(AARB),which can also realize to the industrial production in succession.for UFG-Copper,therefore,it is an extremely potential technology for UFG-Copper industrialization.
     The copper with big grains was processed by AARB and treated by recrystallization annealing,UFG-Copper was obtained finally in this thesis.On this basis,the structures and properties of UFG-Copper were researched,and the results were as follows:
     1.Effects of process conditions of AARB and recrystallization annealing on structures and properties of UFG-Copper were studied,including effects of equivalent strain,recrystallization annealing temperate and recrystallization annealing time on deformed structure,grains sizes,micro hardness,tensile strength, yield strength and electrical conductivity of UFG-Copper.The best process conditions and parameters prepared for uniform and stable UFG-Copper with high strength and good electrical conductivity,have been obtained.
     (1)The Copper with big grains was processed by AARB and the equivalent strain(ε)was equal to 4.8,the UFG obtained is composed of lot of sub-structure.Then these UFG was heat-treated at 220℃for 30~50min and the UFG-Copper with the grain sizes of 200~500nm has been prepared.
     (2)Tensile strength(σ_b)of UFG-Copper is 424.5Mpa,yield strength(σ_(0.2))is 323.1Mpa,the micro hardness on normal plane,transition plane,rolling plane is 125HV,110HV,103HV respectively and the electrical conductivity is 76.3 MS/m.
     2.The structures and orientation texture evolution of UFG-Copper during AARB were studied and the results were as follows:
     (1)Whenεis lower or equal to 1.6,the slips happen on grain boundaries and crystal planes owing to the shearing force.There occur many sub-grains possessing small angle boundaries and 5μm grains sizes within the big grains. At this moment,the shearing force by asymmetrical rolling plays a main role in the course of grain refinement.
     Whenεis between 2.4 and 4.0,the amounts of small grains which have big angle boundaries and the density of dislocation in big grains containing many sub-grains increase with the rise ofε.When e is lower or equal to 4.0, with increasingε,the interface are bonded gradually and some defects produced by AARB have disappeared on interface.At this moment,that the change of neutral plane position plays a main role in the course of interface bonding,the grain refinement degree heightens whenεincreases.
     When e is higher than 4.8,the copper with big grains is made up of two kinds of structure regions in the course of deforming,namely fine sub-grains region and high density dislocation region.The high density dislocation region reduces and the sub-grains region increases with the rise ofε,the interfaces produced by AARB have bonded completely at this moment.No matter what e is,the shearing force brought by asymmetrical rolling plays a main role in interface bonding,which leads to the position difference of real neutral plane and the geometric neutral plane.
     (2)The difference in preparing UFG used by AARB and ARB lies in:the shearing force is added in AARB process,which enhances the friction of grains,improves the slips of boundaries and crystal plane,and promotes the bonding of interfaces.The formation of big angle boundaries is caused by geometric deformation during ARB process,while the formation of big angle boundaries is related to plastic slips of dislocations during AARB process.
     (3)The deformed texture of the samples prepared by AARB shows the characteristic of cold-rolled texture-Copper texture,the number of grains with C orientation is the largest,which is the same to some research on that of the rolling copper early,but the texture position deviates owing to the existing of shearing stress.The strength of rolling texture becomes stronger with increasingε.The deformation goes on by means of the dislocation slip.
     3.UFG-Copper was treated by recrystallization annealing whenεwas equal to 4.8,and then the reerystallization structure and texture were observed,the results were as follows:
     (1)Whenεwas equal to 4.8,the recrystallization course of UFG-Copper obtained is that the recovery course happens firstly and its recovery mechanism is mainly sub-structures regularity and polygonization recovery at a small region.The new grain cores form gradually with the longer annealing time,which are two nucleation formations during recrystallization course,one is sub-grains turning and aggregating to nucleate,and the other is transferring of sub-grain boundaries and growing up to nucleate for sub-grain.The grains with the sizes of 200~500nm come into being when the recrystallization annealing time is controlled between 35min and 50min. UFG-Copper is uniform and stable after recrystallization.
     (2)At the beginning of recrystallization,the texture sustains the characteristics of rolling texture and the strong recovery happens in deformed copper.With the longer annealing time,there appear some component textures,such as cube texture,R texture,S texture and B/G texture,and the discontinuous recrystallization takes place,at this moment,the formation of crystal nucleus is completed by the transferring of big angle boundaries.
     (3)During the course of recrystallization for copper prepared by common rolling,crystal nucleus with cube orientation come into being preferentially, which will sustain the priority of growth during the growing up,the main texture is cube texture after recrystallization annealing.While during the course of recrystallization for copper prepared by AARB,the directional growth mechanism is limited and there are all kinds of recrystallization textures existing,the crystal nucleus having been formed with all kinds of orientation grows up together,so,the recrystallization texture is diffuse,which makes the anisotropy of the copper by AARB is better than that of the copper by common rolling and recrystallization.
     4.The micro hardness,tensile properties and electrical conductivity of UFG-Copper under the different conditions were determined and the change of properties was analyzed.
     (1)During the course of AARB,the strength of copper increases with the rise ofε,but its elongation rate decreases.UFG-Copper with good properties(ε= 4.8)can be obtained when recrystallized annealing at 220℃for 35~50 minutes.When the recrystallization annealing time is longer than 35 minutes, the remaining strain is banished,but the remaining strain of UFG-Copper begins to increase when deformed again.
     (2)The yield strength and grains sizes of the recrystallization UFG-Copper prepared by AARB withε=4.8,still meet to traditional Hall-Petch relation,the UFG-Copper has good ductibility at room temperature.
     (3)Electrical resistivity of UFG-Copper increases and electrical conductivity decreases with the rise of equivalent strain.Electrical conductivity of UFG-Copper prepared by AARB withε=4.8 and recrystallization is the same to that of annealing copper of No.1.
     5.UFG-Copper possessing uniform structure,high strength and ductibility, good electrical conductivity has been prepared by AARB and recrystallization annealing,which is one of the most important research achievements of this thesis. UFG-Copper prepared by AARB was proposed firstly,this can provide a new method for preparing UFG materials.The structure and texture evolution in the course of UFG-Copper prepared by AARB have not been reported yet,but this work was researched here,in the meantime,the mechanism of grain refinement was analyzed and discussed too.
     6.Electrical resistivity of UFG-Copper prepared by AARB at the optimal process conditions is the same to that of annealing copper of No.1.The electrical resistivity has little change during the process of UFG-Copper,which are different to traditional theory,but above characteristics need to be investigated further.
引文
[1]王立忠,王经涛,郭成等.等径弯曲通道变形制备超细晶铝合金的组织性能[J].西安交通大学学报,2004,38(5):457-460,473
    [2]R.Z.valiev,钱玉麟等.急剧塑性变形工艺加工超细晶粒合金的增强超塑性[J].上海钢研,2001,(3):37-41
    [3]唐志宏,黄伯云,周科朝等.超细晶材料制备新工艺—等径角挤压[J].材料导报,2001,15(8):16-19
    [4]罗蓬,夏巨谌,胡侨丹等.基于等径角挤压(ECAP)的超细晶铸造镁合金制备研究[J].稀有金属材料与工程,2005,34(9):1493-1496
    [5]黄俊霞,曹小芳,杜忠泽等.等径弯曲通道变形法及其晶粒细化机制[J].金属材料研究,2002,28(4):1-6
    [6]索涛,李玉龙.等径通道挤压中晶粒细化影响因素的研究进展[J].材料科学与工程学报,2004,22(1):132-137
    [7]杜忠泽,冯广海,符寒光等.ECAP变形与材料组织性能控制的研究[J].材料工程,2006,3:64-68
    [8]李建萍,于艳丽,胡建辉等.等通道转角挤压工艺制备超细化合金的研究与进展[J].南昌航空工业学院学报(自然科学版),2005,19(3):10-140
    [9]李宕.等径弯曲通道变形法在制备Cu基超细晶合金材料中的应用研究[J].金属材料研究,2003,29(1):7
    [10]Kyung-Tae PARK,Young Kook Lee,Dong Hyuk SHIN.Fabrication of ultrafine grained Ferrite/Martensite dual phase steel by severe plastic deformation[J].ISIJ international,2005,25(5):750-755
    [11]Ruslan Z.Valiev,Terence G.Langdon.Principles of equal-channel angular pressing as a processing tool for grain refinement[J].Progress in Materials Science.2006(51):881-981
    [12]V.G.Pushin,V.V.Stolyarov,R.Z.Valiev,etal.Nanostructured TiNi-based shape memory alloys processed by severe plastic deformation[J].Materials Science and Engineering A,2005(410-411)386-389
    [13]M.Ferry,N.Burhan.Microstructural evolution in a fine-grained AI-0.3 wt.%Sc alloy produced by severe plastic deformation[J].Scripta Materialia,2007(56):525-528
    [14]D.Nagarajan,Uday Chakkingal,P.Venugopal.Influence of cold extrusion on the microstructure and mechanical properties of an aluminium alloy previously subjected to equal channel angular pressing[J].Journal of Materials Processing Technology,2007(182):363-368
    [15]P.Leo,E.Cerri,P.P.De Marco,etal.Properties and deformation behaviour of severe plastic deformed aluminium alloys Journal of Materials Processing Technology,2007(182):207-214
    [16]F.Dalla Torre,R.Lapovok,J.Sandlin,etal.Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes[J].Acta Materialia,2004(52):4819-4832
    [17]W.S.Zhao,N.R.Tao,J.Y.Guo,etal.High density nano-scale twins in Cu induced by dynamic plastic deformation[J].Scripta Materialia,2005(53):745-749
    [18]S.D.Wu,Z.G.Wang,C.B.Jiang,etal.Shear bands in cyclically deformed ultrafine grained copper processed by ECAP[J].Materials Science and Engineering A,2004(387-389):560-564
    [19]C.X.Huang,K.Wang,S.D.Wu,etal.Deformation twinning in polycrystalline copper at room temperature and low strain rate[J].Acta Materialia,2006(54):655-665
    [20]X.W.Li,S.D.Wu,H.Y.Yasuda,Y.Umakoshi.Temperature-dependent microstructure in fatigured ultrafine-grained Copper produced by Equal Channel Angular Pressing[J].Advanced engineering materials,2005,7(9):829-833
    [21]M.K.Wong,W.P.Kao,J.T.Lui,etal.Cyclic deformation of ultrafine-grained aluminum[J].Acta Materialia,2007(55):715-725
    [22]王立忠,王经涛,郭成等.ECAP法制备超细晶铝合金材料的超塑性行为[J].中国有色金属学报,2004,14(7):1112-1116
    [23]刘睿,孙康宁,毕见强.等径角挤压法制备块体超细晶材料的研究现状及展望[J].锻压技术,2005(6):85-89
    [24]黄崇湘,吴世丁,李广义等.循环形变对超细晶铜室温拉伸行为的影响[J].金属学报,2004.40(11)1165-1169
    [25]H..Mughrabi,R..Z.Valiev.Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper[J].Philosophical Magazine A,2002,82(9):1781-1794
    [26]K.R.McNee,G.W.Greenwood.Microstructural evidence for diffusional creep in copper using atomic force microscopy[J].Scripta materialia,2001,44(2):351-357
    [27]Z.F.Zhang,Z.G.Wang and Z.M.Sun.Evolution and microstructural characteristics of deformation bands in fatigued copper single crystals[J].Acta materialia,2001,49(15):2875-2886
    [28]H.J.Maier,P.Gabor,N.Gupta,etal.Cyclic stress-strain response of ultrafine grained copper[J].International Journal of Fatigue,2006(28):243-250
    [29]H.J.Maier,P.Gabor,I.Karaman.Cyclic stress-strain response and low-cycle fatigue damage in ultrafine grained copper[J].Materials Science and Engineering A,2005(410-411):457-461
    [30]H.W.H6ppel,M.Kautz,C.Xu,M.etal.An overview:Fatigue behaviour of ultrafine-grained metals and alloys[J].International Journal of Fatigue,2006(28):1001-1010
    [31]H.Mughrabi,H.W.Hoppel,M.Kautz.Fatigue and microstructure of ultrafine-grained metals produced by severe plastic deformation[J].Scripta Materialia,2004(51):807-812
    [32]L.Kunz,P.Lukas,M.Svoboda.Fatigue strength,microstructural stability and strain localization in ultrafine-grained Copper[J].Materials Science and Engineering A,2006(424)97-104
    [33]M.Goto,S.Z.Han,T.Yakushiji,C.Y.Lim,S.S.Kim.Formation process of shear bands and protrusions in ultrafine grained copper under cyclic stresses[J].Scripta Materialia,2006(54):2101-2106
    [34]Zbigniew Pakiela,Halina Garbacz,Malgorzata Lewandowska,etal.Structure and properties of nanomaterials produced by severe plastic deformation[J].NUKLEONIKA,2006;51(Supplement 1):19-25
    [35]V.M.Segal,S.Ferrasse,F.Alford.Tensile testing of ultra fine grained metals[J].Materials Science and Engineering A,2006(422):321-326
    [36]Cheng Xu,Zenji Horita,Terence G.Langdon.The evolution of homogeneity in processing by high-pressure torsion[J].Acta Materialia 2007(55):203-212
    [37]Tam,is Ungar,Levente Balogh,Yuntian T.Zhu.Using X-ray microdiffraction to determine grain sizes at selected positions in disks processed by high-pressure torsion[J].Materials Science and Engineering A,2007(444):153-156
    [38]Galeev R M,Valiahmetov O R,Salishchev GA.Russian Metally,1990,(4):97
    [39]Imayev R M,Imayev V M,Salishchev GA.J MaterSci,1992,(27):4465
    [40]Salishchev G A,Valiakhmetov O R,Galeyev R M.J Mater Sci,1993,(28):2898
    [41]BelyakovA,GaoW,MiuraH,etal.J MetallMaterTransA,1998,(29A):2957
    [42]BelyakovA,SakaiT,etal.PhilMaSA,2001,(81):2629
    [43]BelyakovA,SakaiT,etal.ActaMater,2002,(50):1547
    [44]陆文林,海锦涛等.采用沙漏挤压工艺制备超细晶材料.热加工工艺,2001,(2):10-12
    [45]Zhu Y T,Lowe T C,Jiang H,et al.Method for Producing Ultrafine-grained Materials using Repetitive Corrugation and Straightening,Us Patent 619 7129,2001
    [46]大森章夫,高宏适,曹涵清.中温轧制法试制超细铁素体-渗碳体组织钢板的性能[J].世界钢铁,2004,4(2):20-26
    [47]范建文,张维旭,赵胜国等.普通碳锰钢的超细晶板材控轧工艺研究[J].材料热处理学,2004,25(1):32-35
    [48]殷匠.钢铁材料的纳米技术(一)[J].热处理,2004,19(1):17
    [49]石淑琴,陈光,谷南驹.超细晶超高碳钢的超塑性研究[J].新技术新工艺,2003,(12):45-48
    [50]石淑琴,陈光,谷南驹.超细晶超高碳钢的研究现状及展望[J].材料导报,2003,17(11):19-22
    [51]刘清友,侯豁然.微合金钢超细组织的控制轧制[J].钢铁研究学报,2000,12(6):29-32
    [52]董瀚.超细晶粒钢及其力学性能特征[J].中国冶金,2003,(10):26-31,35
    [53]Gerhard Wilde,Guru-Prasad Dinda,Harald Rosner.Synthesis of bulk nanocrystalline materials by repeated cold rolling[J].Advanced engineering materials,2005,7(1-2):11-15
    [54]T.Shanmugasundaram,B.S.Murty,V.Subramanya Sarma.Development of ultrafine grained high strength Al-Cu alloy by cryorolling[J].Scripta Materialia,2006(54):2013-2017
    [55]B.L.Li,N.Tsuji,N.Kamikawa.Microstructure homogeneity in various metallic materials heavily deformed by accumulative roll-bonding[J].Materials Science and Engineering A,2006(423):331-342
    [56]M.C.Chen,H.C.Hsieh,Weite Wu.The evolution of microstructures and mechanical properties during accumulative roll bonding of AI/Mg composite[J].Journal of Alloys and Compounds,2006(416):169-172
    [57]M.T.Perez-Prado,J.A.del Valle,O.A.Ruano,etal.Achieving high strength in commercial Mg cast alloys through large strain rolling[J].Materials Letters,2005(59):3299-3303
    [58]J.A.del Valle,M.T.Perez-Prado,O.A.Ruano.Accumulative roll bonding of a Mg-based AZ61 alloy[J].Materials Science and Engineering A,2005(410-411):353-357
    [59]M.T.Perez-Prado,J.A.del Valle,O.A.Ruano.Grain refinement of Mg-Al-Zn alloys via accumulative roll bonding[J].Scripta Materialia,2004(51):1093-1097
    [60]J.A.del Valle,M.T.Perez-Prado,O.A.Ruano.Texture evolution during large-strain hot rolling of the Mg AZ61 alloy[J].Materials Science and Engineering A,2003(355):68-78
    [61]代秀芝,刘靖,韩静涛.超细晶铜带材的制备及其力学性能研究[J].南方金属,2006(153):9-11
    [62]代秀芝,刘靖,韩静涛.超细晶铜带材的组织及力学性能研究[J].山东冶金,2005,28(5):40-42
    [63]朱国辉,S.V.Subramanian.多道次轧制过程中超细晶粒控制[J].安徽工业大学学报,2005,22(4):313-318
    [64]陈彬,林栋樑,曾小勤等.累积轧合法的研究现状及存在的问题[J].机械工程材料,2005,29(8):4-6
    [65]魏伟,史庆南.室温ARB技术制备超细晶铜板的研究[J].有色金属,2007,59(1):35-37
    [66]王耀奇,侯红亮,李志强等.纯铝累积叠轧焊组织与性能演变规律研究[J].塑性工程学报,2006,13(6):96-99
    [67]王耀奇,侯红亮,许荣昌等.累积叠轧焊对L2纯铝力学性能影响的研究[J].锻压技术,2006,(1):86-89
    [68]管仁国,俊鹏,赵金力等.叠轧深变形制备超细晶Al-1%Mg合金[J].材料与冶金学报,2005,4(1):65-69
    [69]魏坤霞,史庆南,魏伟等.室温累积叠轧技术对纯铝板材力学性能的影响[J].江苏工业学院学报,2004,16(4):40-43
    [70]赵军,荆天辅,高聿为等.Q235钢超细晶粒钢板的制备[J].酒钢科技,2005(1):50-52
    [71]赵新,荆天辅,高聿为等.板条马氏体大变形轧制工艺的晶粒细化机制[J].钢铁研究学报,2004,16(6):69-73
    [72]方建敏,张杏耀,单爱党等.累积叠轧焊不锈钢的组织和性能[J].机械工程材料,2006,30(8):16-18
    [73]许荣昌,唐荻,任学平等.累积叠轧焊工艺改善普碳钢材料性能特征[J].北京科技大学学报,2005,27(4):448-452
    [74]许荣昌,唐荻,任学平等.累积叠轧焊强加工制备亚微米金属材料的研究[J].塑性工程学报,2006,13(4):86-89
    [75]N.Tsuji,Y.Saito,S.H.Lee,etal.ARB(Accumulative Roll-Bonding)and other new Techniques to Produce Bulk Ultrafine Grained Materials[J].Advanced Engineering Materials,2003,5(5):338-344
    [76]N.Tsuji,R.Ueji.Nanoscale crystallographic analysis of ultrafine grained IF steel fabricated by ARB process[J].Scripta materialia,2002,47(2):69-76
    [77]N.Tsuji,Y.Ito.Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing[J].Scripta materialia,2002,47(12):893-899
    [78]Hiromoto Kitahara,Nobuhiro Tsuji,Yoritoshi Minamino.Martensite transformation from ultrafine grained austenite in Fe-28.5 at.%Ni[J].Materials Science and Engineering A 2006,(438-440):233-236
    [79]Nikhil Rangaraju,T.Raghuram,B.Vamsi Krishna,etal.Effect of cryo-rolling and annealing on microstructure and properties of commercially pure aluminium[J].Materials Science and Engineering A,2005(398):246-251
    [80]Hyoung-Wook Kim,Suk-Bong Kang,Nobuhiro Tsuji,etal.Elongation increase in ultra-fine grained A1-Fe-Si alloy sheets[J].Acta Materialia,2005(53):1737-1749
    [81]A.L.M.Costa,A.C.C.Reis,L.Kestens,etal.Ultra grain refinement and hardening of IF-steel during accumulative roll-bonding[J].Materials Science and Engineering A,2005(406):279-285
    [82]陈彦博,赵晶磊,李英龙等.连续ECAP技术制备超细晶铝[J].中国有色金属学报,2006,16(12):2054-2059
    [83]运新兵,宋宝韫,陈莉.连续等径角挤压制备超细晶铜[J].中国有色金属学报,2006,16(9):1563-1569
    [84]黄斌,石原庆一,新宫秀夫.重复压缩—轧制法制备纳米级金属多层材料[J].金属学报,1998,34(5):455-458
    [85]A.M.Hodge,Y.M.Wang,T.W.Barbee Jr.Large-scale production of nano-twinned,ultrafine-grained copper[J].Materials Science and Engineering A,2006(429):272-276
    [86]H.Petryk,S.Stupkiewicz.A quantitative model of grain refinement and strain hardening during severe plastic deformation[J].Materials Science and Engineering A,2007(444):214-219
    [87]Y.Huanga,P.B.Prangnell.Continuous frictional angular extrusion and its application in the production of ultrafine-grained sheet metals[J].Scripta Materialia,2007(56)333-336
    [88]H.Conrad,K.Jung.On the strain rate sensitivity of the flow stress of ultrafine-grained Cu processed by equal channel angular extrusion(ECAE)[J].Scripta Materialia,2005(53):581-584
    [89]A.P.Zhilyaev,B.-K.Kim,J.A.Szpunar,etal.The microstructural characteristics of ultrafine-grained nickel[J].Materials Science and Engineering A,2005(391):377-389
    [90]H.Utsunomiya,K.Hatsuda,T.Sakai,Y.Saito.Continuous grain refinement of aluminum strip by conshearing[J].Materials Science and Engineering A,2004(372):199-206
    [91]杜随更,傅莉等.铜表面的连续摩擦压扭处理[J].材料研究学报,2002,16(6):615-618
    [92]杜随更,简波,傅莉.用强冷摩擦搅拌工艺制备超细晶紫铜板材[J].材料研究学报,2006,20(3):295-299
    [93]孙新军,顾家琳,代冰等.原始组织结构对压缩变形制备超细晶钛合金的影响[J].金属热处理,2000,(2):15-18
    [94]范爱玲,贺怀堂,田文怀等.电铸超细晶材料的微观组织研究[J].太原重型机械学院学报,2003,24(2):88-91
    [95]范爱玲,孙起等.电铸超细晶Cu超高速变形机理的TEM研究[J].电子显微学报,2002,21(5):679-680
    [96]Vladimir V.Stolyarov,Y.Theodore Zhu,Igor V.Alexandrov,etal.Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling[J].Materials Science and Engineering A,2003(343):43-50
    [97]Balakrishna Cherukuri,Teodora S.Nedkova,Raghavan Srinivasan.A comparison of the properties of SPD-processed AA-6061 by equal-channel angular pressing,multi-axial compressions/forgings and accumulative roll bonding[J].Materials Science and Engineering A,2005(410-411):394-397
    [98]陈勇军,王渠东,李德江等.往复挤压工艺制备超细晶材料的研究与发展[J].材料科学与工程学报,2006,24(1):152-155
    [99]刘刚,齐克敏,王福等.剪切变形方式对取向硅钢织构和磁性的影响[J].钢铁,2000,35(4):40-43
    [100]高秀华,齐克敏,邱春林等.同步、异步组合轧制取向硅钢极薄带的织构研究[J].材料导报,2002,16(1):54-55
    [101]刘刚,刘桂兰,齐克敏等.异步轧制取向硅钢薄带的三次再结晶[J].材料研究学报,1998,12(4):431-433
    [102]刘刚,齐克敏,贺会军等.异步轧制取向硅钢的织构形成与转变机理[J].钢铁研究学报,1999,11(5):30-33
    [103]高秀华,齐克敏,邱春林等.异步轧制取向硅钢极薄带的冷轧织构研究[J].金属材料研究,2001,27(2):16-18
    [104]刘刚,赵迪,王艺霏等.异步轧制取向硅钢织构的模拟研究[J].辽宁大学学报,1998,25(4):367-372
    [105]刘刚,王福,齐克敏等.异步轧制取向硅钢中织构沿板厚的分布与发展[J].金属学报,1997,33(4):364-369
    [106]刘刚,齐克敏,王福等.异步轧制速比对3%硅钢织构转变的影响[J].金属学报,1998,34(4):400-405
    [107]高秀华,齐克敏,邱春林等.轧制方式对超薄取向硅钢带性能的影响[J].钢铁研究学报,2001,13(5):48-50
    [108]贺会军,马傅,齐克敏等.异步轧制对取向硅钢性能影响的研究[J].金属材料研究,1997,23(4):17-19
    [109]羊忆军,方建敏,吴建生等.累积叠轧焊硅钢的组织与性能研究[J].上海应用技术学院学报,2005,5(3):203-206
    [110]金自力,任慧平,王玉峰等.冷轧无取向硅钢的织构和组织性能分析[J].特殊钢,2004,25(1):32
    [111]金自力,徐向棋.轧制条件对冷轧无取向硅钢织构的影响[J].2005,26(2):25-27
    [112]Minoru Takashima等.两次冷轧法轧制的无取向硅钢{001}<210>织构的发展[J].钢铁译文集,2006(2):10
    [113]高秀华,齐克敏,叶何舟等.异步轧制对硅钢极薄带三次再结晶的影响[J].材料科学与工艺,2005,13(4):384-386
    [114]曹利华,刘衍敏.菜钢异径异步轧制薄带技术措施的确定及理论分析[J].山东冶金,2000,22(1):37-39
    [115]陈爱平,刘岳华.冷轧窄带钢异步轧制工艺研究及试生产[J].江西冶金,1994,14(5):1-5
    [116]杨忠民,赵燕,王瑞珍等.普通碳素钢超细晶临界奥氏体控轧工艺研究[J].钢铁,2001,36(8):43-47
    [117]张才国,邹柳娟,王桂兰.同步轧制与异步轧制B3F钢的正电子寿命研究[J].华中理工大学学报,1991,19(6):131-134
    [118]刘岳华,程小三.异步轧制对65Mn带钢质量影响机理的探讨[J].江西冶金,1996,16(4):8-11
    [119]郑文光,董德元.窄带钢异步冷轧轧辊热凸度及带钢同相差应用研究[J].包头钢铁学 院学报,1993,12(3):50-57
    [120]李立新,郑红专,王铭宗等.固相异步轧制复合双金属材料工艺条件的确定[J].武汉钢铁学院学报,1994,17(4):363-366
    [121]李立新.固相轧结铜铝铜双金属复合材料工艺条件优化[J].上海有色金属,1995,16(6):326-329
    [122]李立新.同步及异步固相轧结铜铝铜复合材料的比较研究[J].上海有色金属,1995,16(3):133-137
    [123]王铭宗,郑红专,姚利仁.异步轧结铝—钢双金属的实验研究[J].钢铁,1994,29(12):32-35
    [124]李立新.异步轧结双金属复合材料轧制力矩研究[J].江苏冶金,1996(4):15-17
    [125]林大超,史庆南,贺艳苓等.精密复合带材异步轧制工艺中的变形关系[J].昆明理工大学学报,1997,22(1):78-83
    [126]段坤祥,张营森,史庆南等.双金属异步轧制压力的测试实验研究[J].昆明理工大学学报,1997,22(1):54-57
    [127]林大超,史庆南.双金属轧制复合技术及其研究的进展[J].云南冶金,1998,27(6):32-36
    [128]魏伟,史庆南.铜/钢双金属板异步轧制复合机理研究[J].稀有金属,2001,25(4):307-311
    [129]张永福,丁修垫.双金属固相复合异步轧制新工艺[J].东北工学院学报,1991,12(6):619-624
    [130]李尧.异步轧制对3004铝合金变形织构及制耳率的影响[J].中国有色金属学报,1997,7(2):113-117
    [131]赵骧,赵宏,徐家桢等.退火时间对单向异步轧制70-30黄铜再结晶织构的影响[J].材料研究学报,1995,9(1):21-24
    [132]吕爱强,蒋奇武,王福等.异步轧制对高纯铝箔冷轧织构的影响[J].金属学报,2002,38(9):974-978
    [133]吕爱强,黄涛,王福等.异步轧制高纯铝箔冷轧织构沿板厚的分布规律[J].中国有色金属学报,2003,13(1):56-59
    [134]陈扬,赵刚,刘春明等.6111铝合金在冷轧过程中织构的变化[J].东北大学学报(自然科学版),2006,27(1):42-45
    [135]林丹,陈扬,宋鸿等.道次压下率及几何因素对Al-Mg-Si合金冷轧织构的影响[J].辽宁工学院学报,2005,25(5):306-310
    [136]陈扬,田妮,赵刚等.形变量对6111铝合金再结晶织构的影响[J].轻合金加工技术,2006,34(5):23-27
    [137]黄涛,曲家惠,胡卓超等.高纯铝箔在异步轧制和再结晶过程中取向的演变[J].金属学报,2005,41(9):953-957
    [138]黄涛,刘沿东,陈金玉.冷轧形变量对异步轧制高纯铝箔织构的影响[J].材料研究学报,2005,19(6):619-624
    [139]黄涛,曲家惠,王福等.异步轧制高纯铝箔在退火过程中织构的演变[J].轻合金加工技术,2005,33(4):37-40
    [140]黄涛,曲家惠,张正贵等.退火工艺与速比对异步轧制高纯铝箔微取向的影响[J].械工程材料,2006,30(4):13-16
    [141]邓运来,张新明,唐建国等.剪切变形方向特征对高纯铝箔轧制织构的影响[J].中国有色金属学报,2005,15(3):829-835
    [142]张德芬,胡卓超,王福等.冷轧3004铝合金再结晶织构的研究[J].轻金属,2004,1:53
    [143]胡卓超,张德芬,刘沿东等.形变模式对3104铝合金板微取向流变行为的影响[J].材料科学与工艺,2005,13(1):12-15
    [144]何欣,孙鸿藻.冷轧卷尺用钢带生产中的质量控制[J].江西冶金,1991,11(6):42
    [145]计伟志.异步轧制理论探讨[J].上海工程技术大学学报,1993,7(1):46-49
    [146]高宏,陈光南.利用激光毛化技术在普通冷带轧机上实现异步轧制[J].钢铁,1998,33(3):63-66
    [147]于九明,于大克,穆晓森等.大延伸异步连轧实验研究[J].钢铁,1999,34(2):29-31
    [148]李尧,崔建忠,马龙翔.异步轧制使单位压力降低的原因分析[J].钢铁,1990,25(4):41-44
    [149]赵正才,宋美君,汪木其.全异步轧制约塑性力学和O.雷夫曼公式[J].应用科学学报,1990,8(3):223-231
    [150]赵正才,严颖惠.无张力冷轧薄板异步轧制的无摩擦峰理论[J].四川冶金,1992,(1):49-53
    [151]刘守华,高德福,朱泉等.薄带异步冷轧时轧机颤振研究[J].武钢技术,1994,5:48-52
    [152]王铭东,赵正刁,姚利仁等.可控工艺参数对S异步轧制产品力学性能的影响[J].武汉钢铁学院学报,1990,13(1):25-31
    [153]王铭宗,罗海燕,姚利仁.异步轧制变形区单位压力纵向分布的实验研究[J].钢铁研究学报,1990(2):23-30
    [154]徐秋实,汤富麟,徐守国.异步单机连轧机轧制压力公式推导[J].鞍钢技术,1998,(12):17-21
    [155]白光润,赵林,宋岚等.异步交叉轧制变形区应力分布特征[J].东北大学学报,1998,19(6):567-570
    [156]赵林,白光润,金国田等.异步交叉轧制的能耗特性[J].东北大学学报,1997,18(4):366-369
    [157]赵林,白光润,金国田等.异步交叉轧制的轴向力研究[J].钢铁研究学报,1997,9(6):13-15
    [158]赵林,金国田,傅作宝等.异步交叉轧制能耗特性研究[J].钢铁,1998,33(1):42-44
    [159]赵林,白光润.异步交叉轧制轴向力的实验研究[J].鞍钢技术,1997,(4):14-17
    [160]林原茂.异步冷轧薄件单位压力上界解[J].江苏冶金,1991,(4):18-21
    [161]李立新.异步冷轧对带材深冲性能影响的初步研究[J].武汉冶金,1993,(2):15-16
    [162]郑文光.异步冷轧轧制力矩的理论及实验分析[J].包头钢铁学院学报,1994,13 (3):45-51
    [163]齐克敏,贾广凤,粟守维等.异步轧制极薄带材技术的新进展及应用前景[J].辽宁冶金.1994(5):34-37
    [164]H.Gao,S.C.Ramalingam,G.C.Barber,etal.Analysis of asymmetrical cold rolling with varying coefficients of friction[J].Journal of Materials Processing Technology,2002,124:178-182
    [165]M.Kadkhodaei,M.Salimi,M.Poursin.Analysis of asymmetrical sheet rolling by a genetic algorithm[J].International Journal of Mechanical Sciences,2007(49):622-634
    [166]J.-S.Lu,O.-K.Harrer,W.Schwenzfeier,etal.Analysis of the bending of the rolling material in asymmetrical sheet rolling[J].International Journal of Mechanical Sciences 2000(42):4961
    [167]Swi toniowski.Interdependence between rolling mill vibrations and the plastic deformation process[J].Journal of Materials Processing Technology,1996(61):354-364
    [168]Gow-Yi Tzou,Ming-Nan Huang.Study on the minimum thickness for the asymmetrical PV cold rolling of sheet[J].Journal of Materials Processing Technology,2000(105):344-351
    [169]Gow-Yi Tzou,Ming-Nan Huang.Study on the minimum thickness for the asymmetrical hot-and-cold PV rolling of sheet considering constant shear friction[J].Journal of Materials Processing Technology,2001(119):229-233
    [170]H.Jin,D.J.Lloyd.Effect of a duplex grain size on the tensile ductility of an ultra-fine grained Al-Mg alloy,AA5754,produced by asymmetric rolling and.annealing[J].Scripta Materialia,2004,50:1319-1323
    [171]Y.H.Ji a,J.J.Park a,W.J.Kimb.Finite element analysis of severe deformation in Mg-3Al-1Zn sheets through differential-speed rolling with a high speed ratio[J].Materials Science and Engineering A,2007(454-455):570-574
    [172]W.J.Kim,J.B.Lee,W.Y.Kim,etal.Microstructure and mechanical properties of Mg-Al-Zn alloy sheets severely deformed by asymmetrical rolling[J].Scripta Materialia,2007(56):309-312
    [173]杨钢,刘正东,林肇杰等.用等径角挤压变形法制备纳米晶金属结构材料的组织演变[J].钢铁,2003,38(12):38-42
    [174]Mishra,V.Richard,F.Gregori,etal.Microstructural evolution in Copper processed by severe plastic deformation[J].Materials Science and Engineering A 2005(410-411):290-298
    [175]Mishra,B.K.Kad,F Gregori,etal.Microstructure evolution in Copper subjected to severe plastic deformation:experiments and analysis.2007,report,ENSAM,Germany
    [176]Mishra,B.K.Kad,F.Gregori,etal.Microstructural evolution in copper subjected to severe plastic deformation:Experiments and analysis[J].Acta Materialia,2007(55):13-28
    [177]汪建敏,许晓静,石风健等.侧向等径挤压过程中的材料组织演化规律[J].锻压技术,2005(2):41-43
    [178]汪建敏,许晓静,石凤健等.等径角挤压获得超细晶铜的研究[J].热加工工艺,2004(7):6-8
    [179]Sherby O D,Oyama T,Kum D W,etal.Ultrahigh Carbon Steels[J].J Met,1985,(6):50
    [180]Hutchinson W B.Development and Control of Annealing Textures in Low-Carbon Steels[J].Inter.Metals Rewiews,1984,29:25-42
    [181]A.A.Gazder,F.Dalla Torre,C.F.Gu etal.Microstructure and texture evolution of bcc and fcc metals subjected to equal channel angular extrusion[J].Materials Science and Engineering A,2006(415):126-139
    [182]Saiyi Li,Irene J.Beyerlein,David J.Alexander.Characterization of deformation textures in pure copper processed by equal channel angular extrusion via route A[J].Materials Science and Engineering A,2006(431):339-345
    [183]Saiyi Li,Azdiar A.Gazder,Irene J.Beyerlein,etal.Microstructure and texture evolution during equal channelangular extrusion of interstitial-free steel:Effects of die angleand processing route[J].Acta Materialia,2007(55):1017-1032
    [184]Saiyi Li,Irene J.Beyerlein,Carl T.Necker,On the development of microstructure and texture heterogeneity in ECAE via route C[J].Acta Materialia,2006(54):1397-1408
    [185]J.De Messemaeker,B.Verlinden,J.Van Humbeeck.Texture of IF steel after equal channel angular pressing(ECAP)[J].Acta Materialia,2005(53):4245-4257
    [186]J.De Messemaeker,B.Verlinden,J.Van Humbeeck.On the strength of boundaries in submicron IF steel[J].Materials Letters,2004(58):3782-3786
    [187]S.Ferrasse,V.M.Segal,S.R.Kalidindi,F.Alford.Texture evolution during equal channel angular extrusion Part I.Effect of route,number of passes and initial texture[J].Materials Science and Engineering A,2004(368):28-40
    [188]S.Ferrasse,V.M.Segal,F.Alford.Texture evolution during equal channel angular extrusion(ECAE)Part Ⅱ.An effect of post-deformation annealing[J].Materials Science and Engineering A,2004(372)235-244
    [189]S.Ferrasse,V.M.Segal,F.Alford.Effect of additional processing on texture evolution of A10.5Cu alloy processed by equal channel angular extrusion(ECAE)[J].Materials Science and Engineering A,2004(372):44-55
    [190]杨平.轧制Al-Mn合金再结晶过程立方织构的形成[J].金属学报,1999,35(3):25
    [191]王昭东,郭艳辉,孙大庆等.IF钢铁素体区热轧和退火过程中织构的演变[J].材料研究学报,2006,8(4):399-402
    [192]张锦刚,刘沿东,蒋奇武等.异步冷轧工艺对IF钢织构的影响[J].材料与冶金学报2005,5(2):129-132
    [193]石凤键,汪建敏,许晓静.等截面角形挤压的研究内容及现状[J].热加工工艺,2003,(1):51-53
    [194]毛卫民,张新明著.晶体材料织构定量分析[M],冶金工业出版社,1993,北京
    [195]Mason T A,Adams B L.The Application of Orientation Imaging Microscopy[J].J.Min.Met.&Mater.Society,1994,46(10):43-45
    [196]GB/T 228-2002,金属材料室温拉伸试验方法,中华人民共和国国家标准:297-313
    [197]史庆南,林大超.复合带材异步轧制工艺基础及理论研究[M].云南大学出版社,2001
    [198]潘金生著.材料科学基础[M].清华大学出版社,1998,北京
    [199]吕爽,王快社,张兵等.ECAP与ARB纯铝的微观组织和力学性能的比较[J].新技术新工艺,2007(4):61-63
    [200]陈彬,林栋棵,曾小勤等.深度塑性变形法的研究现状和前景.材料导报,2006,20(9):73-76
    [201]Naoya Kamikawa,Nobuhiro Tsuji,Xiaoxu Huang,et al.Quantification of annealed microstructures in ARB processed aluminum[J].Acta Materialia 2006(54):3055-3066
    [202]余永宁,毛卫民著.材料的结构[M].冶金工业出版社,2001,北京
    [203]包永千著.金属学基础[M].冶金工业出版社,1986,北京
    [204]毛卫民著.晶体材料的结构[M],冶金工业出版社,1998,北京
    [205]Hirsch J,Lucke K.Mechanism of Deformation and Development of Rolling Texture in Polycrystalline FCC Metal[J].Acta metal.,1988,36:2863-2927
    [206]H.E.Vatne,Ph.D.Thesis.Univ.of Trondheim.Norway,1995
    [207]B.J.Duggan,K.Lucke,G.Kohlhoffand C.S.Lee.Acta Metall.,41(1993):1921
    [208]L.V.Alexandrov,G.J.Davies,Mater.Sci.Eng.,LI(1985):75
    [209]武保林,王沿东,左良等.激光加热下铜的再结晶织构及其机制探讨[J].材料研究学报,1998,2,12(1),42-46
    [210]H.E.Vatne,E.Nes.Scripta Metall.Mater.(1994),30(3),309
    [211]王磊,樊建中等.SPD法及P/M法制备金属纳米体材料进展[J].稀有金属.2002,26(2):129-133
    [212]Valiev R Z,Ivanisenko Y V,Rauch E F,et al.Acta Mater1997,44:4705
    [213]M.Kawazoe,TShibata,T.Mukai,et al.Elevated temperature mechanical properties of A 5056 A1-Mg alloy processed by equal-channel-angularextrusion[J].Script a Material.1997(36):699-706
    [214]张立德,解思深.纳米材料和纳米结构[M].北京:化学工业出版社,2005, 330-337
    [215]赵志业著.金属塑性变形与轧制理论[M],冶金工业出版社,1980,北京
    [216]卢柯.纳米孪晶纯铜的强度和导电性研究[J].中国科学院院刊,2004,19(5):352-354
    [217]申勇峰,卢磊,陈先华等.纳米孪晶纯铜的强度和导电性[J].物理,2005,34(5):344-347

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700