用户名: 密码: 验证码:
ECAP制备超细晶铜的组织演变、织构特征及力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于大塑性纯剪切变形的ECAP技术能够有效的细化晶粒,在近年来受到了广泛的关注,但是人们对该变形过程及材料组织的变形机理尤其是织构的形成和转变过程尚缺乏全面的认识。本文系统的研究了多晶纯铜和定向凝固纯铜在ECAP中的变形过程、应变机理、织构特征和力学性能。首先用刚塑性弹性体模型对纯铜在ECAP中的模具结构、背压方式、流变行为以及温度变化和材料的应变及再结晶机理进行了模拟研究;然后用普通多晶纯铜和定向凝固纯铜分别进行了多路径、多道次的ECAP变形实验,制备出了超细晶材料;对比分析了各道次变形后试样的组织演变过程和不同原始组织纯铜在ECAP中的变形机理和XRD宏观取向特征。在此基础上,采用EBSD技术进一步对变形前几道次材料的织构特征进行了对比研究;最后,分别用2套模具对不同原始组织和不同模具结构下纯铜的力学性能进行了对比分析。主要结论如下:
     1.通过有限元模拟发现,材料在进入ECAP剪切变形区后不同阶段处于不同的应力状态,试样内层为压应力,外层为压应力—拉应力—压应力的变化过程;在变形过程中纯铜的温度会发生显著变化,引起动态再结晶,变形结束后材料内部形成混晶结构;较小的模具内角和适当增加背压,能够有效提高变形后材料的组织均匀性;多道次ECAP变形能够有效地细化晶粒,但不同路径对晶粒细化的效果不同;普通多晶材料变形后的晶粒无明确的取向,但定向凝固组织用A路径细化后的亚晶具有定向排列特征,用Bc路径变形后的组织出现胞状结构。
     2.多晶纯铜在ECAP中的变形过程为:晶界移动、晶粒转动、晶粒被拉长、晶粒被细化,晶粒内部发生了滑移和机械孪生并伴随着动态再结晶过程;多道次变形后,多晶铜的微观结构特征是含有高密度位错的大角度晶界等轴晶组织以及晶界上的非平衡结构;随着应变量增大,多晶组织位相差随剪切变形量的增加而增大;在大角度晶界数量增加的同时,晶粒更加趋于均匀化,使取向差分布的峰值不断向大角度晶界分布的中心移动。
     3.定向凝固纯铜在ECAP变形过程中,塑性变形比多晶更容易发生;A路径和C路径变形时位错的定向运动导致亚晶排列具有明显的方向性,晶内形成了与基体组织取向差较大且延伸方向与压力轴方向基本一致的岛状结构,岛状结构的面积随着应变量增加而不断扩大,亚晶界逐渐向外扩展,在原始平直晶界上产生应变不对称性,引起柱状晶界破碎后的亚晶逐渐呈现出随机分布特征;Bc路径变形时晶粒内位错运动积聚后形成胞状结构,继续挤压后晶粒从胞壁处被分割,原始组织被不断细化。在小应变量下,晶粒内无孪晶出现,出现伪织构;晶内位错的分布特征与晶粒的应力状态密切相关,而且与基体存在明显的差异。
     4.变形路径和模具结构对2种材料的力学性能影响不同,较小的模具角度下材料性能的变化较快;随着挤压道次的增加,材料逐渐从韧性断裂向脆性断裂方向发展,材料组织均匀化程度提高;多道次挤压后2种材料的硬度大幅度提高;ECAP后超细晶T2铜高周疲劳没有明显的疲劳极限。
     5.原始组织对纯铜ECAP中的力学性能影响明显,挤压后晶粒的定向排列和单位体积内细晶数目增多两方面的原因促使定向凝固纯铜在多道次挤压中塑性稳步提高;而多晶铜在变形时位错在晶界附近积聚,在后续的挤压中晶粒的取向不会发生较大改变,晶粒被细化后晶界大幅度增加,变形抗力加大,其塑性变化出现波动。
     分析认为,多晶铜在变形过程中各晶粒在变形中既相互阻碍,又相互促进,晶粒旋转方式的不同造成了多晶材料晶粒取向分布的差异性;塑性变形初期形成分布杂乱的位错缠结,变形量增加后形成胞状结构,胞壁位错纠结后不断凝集变为二维界面,形成小角度亚晶界或大角度晶界,从而实现组织的超细化。材料的细化机制概括为:剪切应变—位错分割—形变孪生强化—界面竞争消失(晶粒得到细化)。
     原始晶粒的取向对形变结构具有重要影响。随着应变量增加,引起亚晶界的应变不对称性,并且进一步在柱状晶内部形成应变梯度,一部分亚晶界从小角度晶界向大角度晶界转变,逐渐形成混合分布特征。
     塑性变形多晶材料的织构形成过程中晶粒从宏观“无序”向微观“有序”的转变,织构的演变又是从微观“有序”向宏观“有序”的转变,整个转变过程为:宏观“无序”微观“有序”宏观“有序”,存在“织构起伏”效应。“织构起伏”效应是材料组织在一定的温度和外力作用下的综合应变反映,其强度和方向与材料的应变状态密切相关,该过程连续作用的结果,将是材料组织均匀性不断提高的过程。材料内部新织构的产生与消失是晶群在受到外力作用后偏聚方向发生变化、内应力向相邻晶界传递的过程中,原来的聚集状态被破坏所致。
     本研究将对原始组织影响织构形态、晶界特征在ECAP变形中的演变规律、织构与材料性能间的关系及加工过程中材料的均匀化过程有新的认识,尤其对塑性各向异性的变形响应及强度的不对称性变化过程具有重要的理论意义。
The equal channel angle pressing (ECAP) pure shear deformation that based on the super plastic deformation (SPD) technology can refinment the grains effectively, has received widespread concern in recent years, as yet, the research of the deformation process, especially the microstructure deformation mechanism and the texture changing process during the deformation process, lack of comprehensive understanding. This paper systematically studied the deformation process, strain mechanism, texture characteristic and mechanical property of polycrystalline pure copper and directional solidification pure copper during ECAP. First, use the plastic elastomer model, studied the die structure, backpressure, rheological behaviour, temperature changing and materials strain and recrystallization mechanism, then performed the experiments use polycrystalline and unidirectional solidification pure copper through multipath and multipass, respectively. Comparison and analysis of the deformation mechanism and XRD macro orientation characteristic of different original microstructure after ECAP, on the basis, using EBSD technology contrast studied the texture characteristics of the first few passes. Finally, analyzed the mechanical properties of pure copper that ECAPed by different mould structure, main conclusions are as follows:
     1. Simulated by the finite element method, found that the sample was in different stress state at different stages in the ECAP shear deformation zone. The press stress was inside of the specimen, and the state of the surface was pressure stress–tensile stress - pressure stress. In the deformation process, temperature of the samples will have a significant changing. This will causing dynamic recrystallization. At the end of the deformation, mixed crystal structure formed inside of the material. Smaller inner-angle and appropriate increase the back pressure can improve the uniformity of the materials microstrusture during deformation. Many times ECAP deformation can effectively refinement the grain size, but different routes has different effects on the grain refinement. After deformation, the grains of the polycrystalline didn’t have a clear orientation, but the sub grains that deformated by route A of the solidification pure copper refined by route A, shows a obvious arrangement, and the microstructure that deformated by route Bc shows a cellular structure.
     2. The deformation process of polycrystalline pure copper during ECAP is: crystal boundary migration, grain rotations, grain was elongated and then the grains were refined. Sliping and twinning accompaning with dynamic recrystallization in the grain interiors. After ECAPing, the microstructure of the polycrystalline copper is non-equilibrium structure at the grain boundaries and a high density dislocations and high angle grain boundaries (HAGBs). With the strain increasing, the oritation differecce of the microstrustrue of polycopper increasing with the strain, with the number of HAGBs increasing, the crystal grain become more uniform and the distribution peak of orientation kept moving to the center of HAGBs.
     3. During the deformation of ECAP, the plastic deformation of directional solidification pure copper is more easily than polycrystalline copper. When deformated by route A and route C, dislocations moving within grains causing formed the island-like structure, continues to deformation, the area of the island-like structure is enlarged with the stain amount, causeing the ordernering transformation and the subgrain boundaries moving to the outsides, causing a strain unsymmetrical, the column grain refined and the subgrains shows a random distribution characteristic; when deformed by route Bc, the moving of dislocations resulted to cell structure. With the strains increasing, the original microstruture was refined. At small strains, there was no twins occurring in the grains but formed the fake texture.
     4. The deformation routes and the die structure has different effect on the materials mechanical property, the mechanics changing rapid at the small die angles, with the deformation times increasing, the sample fracture developing from tough to brittle model, the homogeneity increasing, the hardness of the two kinds materials increasing and the high circle fatigue has no obvious fatigued limitation.
     5. The original microstructure affected the mechanical properties of pure copper ECAP is obviously. The directional arrangement of grains and the increasing of fine-crystal grain in unit volume, causing the plasticity of directional solidification pure copper improved steadily after many times deformation, the dislocations accumulated to the grain boundaries (GBs) when the deformation occurred in polycrystalline copper, in the subsequent extrusion, grain orientations did not changing much, GBs increased greatly after be thinned, then the plastic shows a fluctuate charictristic.
     Analysis that grains of polycrystalline copper affected each other during the deformation process. The different rotatation mode of the grains resulted the oritation difference in polycrystalline copper. In earlier of plastic deformation, formed the disorderly dislocation tangle, when increasing deformation times, formed the cellular structures, the dislocations tangled and accumulated to the two-dimensional boundaries at the cell boundaries, formed the low angle subgrain boundaries (LAGBs) and HAGBs, causing the refinement of the grains. The refining mechanism can be summed as: shear strain -- dislocations division -- deformated twins strengthen– GBs competition disappearance (the grains were refined).
     The original grains orientation has an important influence on deformation structure. With the increasing of strain, causing the asymmetry of subgrain boundaries and formed the strain gradient in the internal of the columnar grains, then arosing the strain gradient, some GBs transferred from LAGBs to HAGBs, then gradually formed the mixed distribution characteristic.
     During the course of plastic deformation of polycrystalline materials, the grains transformed from macroscopic "disorder" to microcosmic "order", the evolution of the texture is from microcosmic "order" to macroscopic "order", the whole changing process as follow: macro "disorder" micro "order" macro "order". Shows a " texture heave" effect.
     The " texture heave" effect is the materials integrated strain reflect under certain temperature and external force. Its strength and direction are closely related to the materials strain state. The result of this continuously process will causing the uniformity improvement of the material microstructures. The arise and disappearance of new textures in materials is the original states of grains strain were damaged by external force in the processes of the change of partially gathered direction and inner-stresses were transferred to adjacent boundaries.
     This study will be on influence of texture formation from original microstructure, the evolution rule of the grains during ECAP deformation, the relationship between the texture and the materials mechanical property and material uniformity during machining process. This study has important theoretical significance, especially for the deformation response of plastic anisotropic and the asymmetry changing process of the meteries intensity.
引文
[1]王刚.多晶材料晶间断裂及微晶材料形变与再结晶的晶界特征分布研究. [东北大学博士学位论文].沈阳:东北大学, 2000
    [2]平德海,吴希俊.几种纳米固体材料的显微结构特征.金属学报, 1995, 31(2):79-84
    [3]肖军,潘晶,刘新才.高能球磨法及其在纳米晶磁性材料制备中的应用(一).磁性材料及器件, 2005, 36(1):6-10
    [3]李建萍,于艳丽.等通道转角挤压制备超细化合金的研究进展.南昌航空工业学院学报(自然科学版), 2005, 19(3):10-13
    [4]李春燕,寇生中,胡勇,等. Cu基块状非晶晶化过程的微区变形及力学性能.中国有色金属学报, 2007, 17(10):1586-1590
    [5]杜予晅 ,张新明.强变形制备超细晶材料的方法.材料导报, 2006, 20(7):241-244
    [6] Yoon S C, Quang P. Die design for homogeneous plastic deformation during equal channel angular pressing, 2007,(187-188):46-50
    [7]索涛,李玉龙.等径通道挤压中晶粒细化影响因素的研究进展.材料科学与工程学报, 2004, 22(1):133-135
    [8]毕见强. ZA12铝块体超细晶材料的制备、模拟及细化机制研究. [山东大学博士学位论文].济南:山东大学, 2005
    [9]王军丽.超细晶铜材的大变形异步叠轧制备技术、组织演变过程与性能研究[昆明理工大学博士学位论文].昆明:昆明理工大学, 2007
    [10] Segal V M. Materials processing by simple shear. Mater Sci. Eng.1995,197(2): 157-164
    [11]刘建明,杨素媛.等通道转角挤压技术及其工程应用研究.新技术新工艺, 2007(3):74-76
    [12]杨玉芬,陈清如.纳米材料的基本特征与纳米科技的发展.中国粉体技术, 2002, 8(3):22-26.
    [13] Mishra A, Richard V, Gr′egori F, Asaro R J, Meyers M A. Microstructural evolution in copper processed by severe plastic deformation. Materials Science and Engineering A,2005,410–411:290–298
    [14]程先华,江学明.摩擦阻力对纯铝在等径弯角挤压过程中变形的影响.上海交通大学学报, 2005, 39(1):10-13
    [15] Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostruc-tured materials from sever plastic deformation. Progress in materials science, 2000, 45(2): 886-891
    [16] Yoon S C. Preform effect on the plastic deformation behavior of workpieces inequal channel angular pressing. Scripta Materialia, 2006, 55(4):159-162
    [17] Alexander D J, Beyerlein I B. Anisotropy in mechanical properties of high-purity copper processed by equal channel angular extrusion. Mater Sci Engng A 2005, 410/411(25):480-484
    [18] Han B Q, Lavernia E J, Mohamed F A. Mechanical properties of iron processed by severe plastic deformation. Metall Mater Trans A, 2003, 34(1):71-83
    [19] Valiev R Z, Langdon T G. Principles of equal-channel angular pressing as a processing tool for grain refinement. Progress Materials Science, 2006, 51(7): 881-981
    [20] Valiev R Z, Tsenev N K. In: Langdon T G, Merchant H D, Morris J G, Zaidi M A, editors. Hot deformation of aluminum alloys. Warrendale (PA): The Minerals, Metals and Materials Society,1991,319
    [21] Valiev R Z, Korznikov AV, Mulyukov R R. Structure and properties of ultrafine- grained materials produced by severe plastic deformation. Mater Sci Eng A, 1993, 168(2):141-148
    [22] Valiev R Z, editor. Ultrafine-grained materials prepared by severe plastic deformation: Special issue.Annales de Chimie, Sci Mater 1996, 21:369
    [23]张忠明,徐春杰,田景来,等. ECAP挤压L2纯铝的微观组织演化规律.西安理工大学学报, 2005, 21(3):227-231
    [24] Kommel L, Hussainova I, Volobuev O. Microstructure and properties development of copper during severe plastic deformation. Materials and Design, 2006, 5(21):1-7
    [25] Shin H D, Pak J J, Kim Y K. Effect of pressing temperature on microstructure and tensile behavior of low carbon steels processed by equal channel angular Pressing. Materials Science and Engineering A. 2002, 325(1/2):31-37
    [26]田景来,张忠明.等通道转角挤压对L2纯铝阻尼性能的影响.材料热处理学报, 2005, 26(2):43-46
    [27]程先华,江学明.摩擦阻力对纯铝在等径弯角挤压过程中变形的影响.上海交通大学学报, 2005, 39(1):10-13
    [28] Cabibbo M, Evangelista E, Vedani M. Influence of severe plastic deformations on secondary phase precipitation in a 6082 Al2Mg2Si alloy. Metallurgical and Materials Transactions A, 2005, 36(5):1353-1364
    [29] Xu C, Furukawa M, Horita Z, et al. Influence of ECAP on precipitate distributions in a spray-cast aluminum alloy. Acta Materialia, 2005, 53(3):749-758
    [30] Fecht H J. Edestein A S, Cammarata R C. Nanomaterials: Synthesis, properties, and application. Bristol: J. W. Arrowsmith Ltd, 1996
    [29] Ivanisenko Yu, Lojkowski W, Valiev R Z, et al. The mechanism of formation ofnanostructure and dissolution of cementite in a pearlitic steel during high pressure torsion. Acta Materialia, 2003, 51(18):5555-5570
    [30] Bhadeshia H K D H. Mechanically alloyed metals. Materials Science and Technology, 2000 16:1404-1411
    [31] Yamaguchi D, Horita Z, Nemoto M, et al. Significance of adiabatic heating in equal channel angular pressing. Scrip ta mater, 1999, 41(8):791-796.
    [32] Segal V M. Materials processing by simple shear. Materials Science and Engineering A, 1995, 197 (2):157-164.
    [33] Cao W Q, Godf rey A, Liu W. Annealing behavior of aluminium deformed by equal channel angular pressing. Materials Let ters, 2003, 57 (24/25):3767-3774
    [34] Langdon T G, Horita Z, Yamashita A. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation . Materials Science and Engineering A, 2001, 300 (1/2):142-147
    [35] Liu Z Y, Liang G X , Wang E D. The effect of cumulative large plastic strain on the structure and properties of a Cu2Zn alloy.Materials Science and Engineering A,1998, 242(1/2):137-140
    [36] Iwahash i Y, Wang J, Horita Z, et al. Principle of equal-channel angular pressing for the processing of ultrafine grained materials. Scripta Materialia, 1996, 35(2): 143-146
    [37] Nakashima K, Horita Z, Nemoto M, et al. Influence of channel angle on the development of ultrafine grains in equal channel angular pressing. Acta Mater., 1998, 46(5):1589-1599
    [38] Shin D H, Kim I, Kim J , et al. Grain refinement mechanism during equal channel angular pressing of a low carbon steel. Acta Mater., 2001, 49(7):1285-1292
    [39] Shin D H, Seo C W, Kim J, et al. Microstructure and mechanical properties of equal channel angular pressed low carbon steel. Scripta Materialia, 2000, 42: 695-699.
    [40] Zhang X M, Du Y X, Tang J G. Development of cube texture in multistage annealing of high purity aluminum foils. Trans Nonferrous Met Soc China, 2003, 13(6): 1389-1393
    [41]卢柯.金属纳米材料力学性能的研究进展,金属学报, 2000, 36(8):785-788
    [42]周怀存. ECAP模具设计与制造及ECAP工艺对铜性能的影响,[兰州理工大学硕士学位论文].兰州:2008
    [43] Jin H, Lloyd D J. The reduction of planar anisotropy by texture modification through asymmetric rolling and annealing in AA5754. Materials Science and Engineering A, 2005, 399: 358-367
    [44] Kim S H, You B S, Yim C D, Seo Y M. Texture and microstructure changes inasymmetrically hot rolled AZ31 magnesium alloy sheets. Materials Letters, 2005, 59(29/30): 3876-3880
    [45]吴廷坤,刘伟.铜单晶体冷轧形变微观组织结构.清华大学学报(自然科学版), 2005, 45(6):792-794
    [46] Kommel L, Hussainova I, Volobuev O. Microstructure and properties development of copper during severe plastic deformation. Materials & Design, 2007, 28(7):2121-2128
    [47]吴世丁,李强,姜传斌,等.铜单晶ECAE过程的剪切特征.金属学报, 2000, 36(6):602-607
    [48] Berbon B, Furukawa M, Horita Z, et al. Influence of pressing speed on microstructural development in equal channel angular pressing. Metall Mater Trans A, 1999, 30(8):1989-1997
    [49] Liu Z Y, Liu G, Wang Z R. Finite element simulation of a new deformation type occruuing in changing channel extrusion. Journal of Materials Processing Technology, 2000, 12(1):30-32
    [50] Nieh T G, Hsiung L M. High strain rate superplasticity in a continuously recrytallized AL-6% Mg-0.3%Sc alloy. Acta Mater,1998, 46(8):2789-2800
    [51]魏伟,陈光.块体纳米结构金属制备新工艺.材料导报, 2002, 16(10):22-24
    [52]魏伟.块体超细晶铜的制备与组织性能研究.[南京理工大学博士学位论文].南京:南京理工大学, 2004
    [53]张忠明,田景来,徐春杰,等.退火处理对ECAP纯铝L2的影响.铸造技术,2005, 26(10):916-917
    [54]汪建敏,陆晋,许晓静,等.中碳钢在等通道角挤压过程中的组织演化.中国机械工程, 2006, 17(8):383-387
    [55]潘清林,张小刚,李文斌,等. Al-Mg-Sc合金热压缩变形的流变应力行为.中南大学学报(自然版), 2009, 40(4):926-931
    [56]程永奇,陈振华,夏伟军,等. AZ31镁合金板材等径角轧制变形规律研究.塑性工程学报, 14 (4):127-131
    [57] Mabuchi M, Iwasaki H, Yanase K, et al. Low temperature superplasticity in an AZ91 Magnesium alloy processed by ECAE. Scripta Materialia, 1997, 36 (6):681-686
    [58] Kim W J, Hong S I, Kim Y S, et al. Texture development and its effect on mechanical properties of an AZ61 Mg alloy fabricated by equal channel angular pressing. Acta Materialia, 2003, 51(11), 3293-3307 [59 ] Horita Z, Furukawa M, Nemoto M, et al. Superplastic forming at high st rain rates af ter severe plastic deformation. Acta Materialia, 2000,48 (14):3633-3640 [60 ] Yoshida Y, Cisar L, Kamado S, et al. Effect of Microst ructural Factors onTensile Properties of an ECAE Processed AZ31 Magnesium Alloy. Materialia Transaction, 2003, 44 (4):468-475
    [61]程永奇,陈振华,夏伟军.镁合金等径角挤压的研究与进展.机械工程材料, 2005, 29(9):1-5
    [62] Mabuchi M, Iwasaki H, Yanase K, et al. Low temperature superplasticity in an AZ91 Magnesium alloy processed by ECAE. Scripta Materialia, 1997, 36(6):681- 686
    [63] Komura S, Berbon P B, Furukawa M, et al. High st rain rate superplasticity in an Al2Mg alloy containing scandium. Scripta Materialia, 1998, 38(12):1851-1856
    [64] Hiroyuki W, Toshiji M, Koichi I. Low temperature superplasticity of a fine grained ZK60 magnesium alloy processed by equal-channel angular extrusion. cripta Materialia, 2002, 46(12):851-856
    [65] Xia K, Wang J. Metallurgical and Materials Transactions, 2001, 32A: 2639
    [66] Iwahashi Y, Wang J, Horita Z, et al. Scripta Materialia, 1996, 35(2): 143
    [67] Mishra A, Kad B K, Gregoric F. Microstructural evolution in copper subjected to severe plastic deformation:Experiments and analysis. Acta Materialia, 2007, 55:13-28
    [68] Yamashita A, Horita Z, Langdon T G. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering A, 2001, 300(1/2):142-147
    [69] Horita Z, Fujinami T, Langdon T G. Materials Science and Engineering, 2001, A318: 34
    [70]汪建敏,周孔亢,陆晋,等.层错能在剧烈剪切变形时对晶粒细化的影响.机械工程学报, 2008, 44(11):126-131
    [71] Segal V M. Severe Plastic Deformation:Simple Shear Versus Pure Shear. Materials Science and Engineering A, 2002, 338:331-334
    [72] Vladimir V S,Yuntian T Z,Terry C L, et al.Microstructure and Properties of Pure Ti processed by ECAP and Cold Extrusion.Materials Science and Engineering A, 2001, 303: 82-89
    [73] Su C W, Chua B W, Lu L, et al. Properties of Severe Plastically Deformed Mg Alloys.Materials Science and Engineering A, 2005, 402:163-169
    [74] Akihiro Y, Zenji H, Terence G.. Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Materials Science and Engineering A, 2001, 300:142-147
    [75] Furukawa M, Horita Z, Nemoto M, Langdon T G.. Jounal Mater Sci, 2001, 36:2835-2843
    [76] Langdon T G, Furukawa M, Nemoto M,Horita Z.JOM, 2000,4:30-33
    [77]程先华,江学明.摩擦阻力对纯铝在等径弯角挤压过程中变形的影响.上海交通大学学报, 2005, 39(1):10-13
    [78] Lee S C, Ha S Y, Kim K T. Finite element a nalysis for deformation behavior of an aluminum alloy composite containing SiC particles and porosities during ECAP. Materials Science and Engineering A, 2004, 371:306-312
    [79] Alkorta J, Sevillano J G. A comparison of FEM and upper-bound type analysis of equal-channel angular pressing (ECAP).Journal of Materials Processing Technology, 2003,141:313-318
    [80] Cholinia A, Prangnell P B, Markushey M V. The effect of strain path on the development of deformation structures in severely deformed aluminium alloys processed by ECAE. Acta Mater., 2000, 48(5): 1115-1130
    [81] Iwahashi Y, Horita Z, Nemoto M, et al. An investigation of microstructural evolution during equalchannel angular pressing. Acta Materilia,1997, 45(11):4 733-4741
    [82] Segal V M, Reznikov V I, DrobyshevskiyA E, et al. Plastic metalworking by simple shear. Russia Metallurgy, 1981(1): 99-105.
    [83]刘庆,姚宗勇, A Godfrey,刘伟.中低应变量冷轧AA1050铝合金中晶粒取向与形变位错界面的演变[J],金属学报,2009,45(6):641-646.
    [84]汪建敏,许晓静,石凤健,姜银方.侧向等径挤压过程中的材料组织演化规律.锻压技术, 2005, 2:41-43
    [85] Iwahashi Y, Horita Z. The process of grain refinement in equal-channel angular pressing. Acta Materilia, 1998, 46(9): 3317-3331
    [86] Chinh N Q, Horvath G, Horita Z, Langdon T G. Acta Mater, 2004; 52: 3555
    [87] Nashima K, Horita Z, Nemoto M et al. Influence of channel angle on the development ultrafine grains in equal-channel angular pressing. Acta Mater. 1998,46(5): 1598-1599
    [88]丁雨田,斯志军,周怀存.等径角挤压对纯铜组织与性能的影响[J].兰州理工大学学报, 2007, 33(6):10-15
    [89] Mishra A, Kad B K, Gregori F. Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis. Acta Materialia 2007, 55:13-28
    [90] Tench D, White J. Enhanced tensile strength for electrodeposited nickel-copper multiplayer composites. Metall Mater Trans A.,1984, 15 (11): 2039-2040
    [91]方晓强,李淼泉,林莺莺.应用等通道转角挤压( ECAP)技术制备超细晶钛合金.材料导报, 2006,20(10):107-110
    [92] Iwahashi Y, Wang J, Horita Z et al. Principle of equal channel angular pressing of ultra-fine grained materials. Scripta Materialia. 1996,35: 143
    [93] Fukuda Y, Ohishi K, HoritaZ, et al. Processing of a Low-carbon steel by equal-channel angular pressing. Acta Materialia, 2002, 50:1359-1368
    [94]王雷,李凡,蒋建清.冷轧纯铜微观组织及织构演变的特征,理化检验.物理分册,2008, 44(8):405-407
    [95] Mishra A, Richard V, Gregori F. Microstructural evolution in copper processed by severe plastic deformation. Materials Science and Engineering A, 2005,410/411: 290-298
    [96] Beyerlein IJ, Li S, Necker C T, Alexander D J, ToméC N. Non-uniform microstructure and texture evolution during equal channel angular extrusion. Phil Mag 2005, 85:1359-1394
    [97] Li S, Gazder A, Beyerlein I J, Pereloma E V, Davies C H J. Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel. Acta Mater, 2006, 54:1087-1097
    [98] Li S, Beyerlein I J, Necker C T, Alexander D J, Bourke M A M. Heterogeneity of deformation texture in equal channel angular extrusion of copper. Acta Mater 2004, 52(16):4859-4875
    [99]尤世武. Al-Li合金板〈111〉织构的形成及晶体空间取向分布特征.上海有色金属, 2003, 24(2):64-67
    [100] De M J, Verlinden B, Van H J. Texture of IF steel after equal channel angular pressing (ECAP). Acta Mater, 2005, 53(15):4245-4257
    [101] Kommel L, Hussainova I, Volobuev O. Microstructure and properties development of copper during severe plastic deformation. Materials & Design, 2007, 28(7):2121-2128
    [102] Tabachnikova E D, Bengus V Z ,Stolyarov V V , et al. The contribution of grain boundary dislocation to the plastic deformation of nanostructured titanium from the SD effect of the yield stress. Mater Sci Eng A, 2001, 309: 524-534
    [103]姜巨福,罗守靖,王迎.等径道角挤压AZ91D镁合金的半固态组织演变.中国有色金属学报, 2004, 14(5):752-758.
    [104]张焱,郑立静,曾梅光,等. ECAP制备的亚微米7050铝合金的力学性能和微观结构.中国有色金属学报, 2002, 12(5):1012-1015
    [105] S .Suresh,材料的疲劳,王中光等译,国防工业出版社,1993.
    [106]田景来,张忠明,王锦程,等.等通道转角挤压对纯铝L2阻尼性能的影响.材料热处理学报, 2005, 26(2):43-46
    [107]丁胜,李宁,文玉华,等.等通道转角挤压及后续退火处理对Fe-Mn阻尼合金的影响.铸造技术, 2007, 6:800-803
    [108] Song D, Ma A B,Jiang J H, et al. Corrosion behavior of ultra-grained industrial pure AL fabricated by ECAP. Transactions of Nonferrous Metals Society of China, 2009,19:1065-1070
    [109] Segal V M .Materials processing by simple shear ,Mater Sci Eng 2004; A386:269.
    [110]刘睿,孙康宁.等径角挤压法制备块体超细晶材料的研究现状及展望.锻压技术, 2005, 33(6):85-89
    [111]唐志洪,黄伯云.超细晶材料制备新工艺.材料导报, 2001, 15(8):16-19
    [112] Furukawa M, Iwahashi Y, Horita Z. The shearing characteristics associated with equal-channel angular pressing. Mater Sci Eng A, 1998, 257 (2): 328-332
    [113] Dumoulin S, Roven H.J, Werenskiold J C , Valberg H S. Finite element modeling of equal channel angular pressing: Effect of material properties, friction and die geometry. Materials Science and Engineering A, 2005, 410–411:248-251
    [114]王广春,管婧,马新武.金属塑性成形过程的微观组织模拟与优化技术研究现状.塑性工程学报, 2002, 9(1):1-5
    [115]崔振山,徐秉业,刘才.金属热成形过程的综合数值模拟.工程力学, 2001, 19(1):42-46
    [116]刘东,罗子健.基于显微组织演化的本构关系的建立方法.塑性工程学报, 2005, 12(1):54-57
    [117]陈明和.热成形过程微观组织模拟研究进展.塑性工程学报, 2005, 12(4):1-6
    [118]康永林,董洪波.热轧过程组织性能数值模拟研究现状.轧钢,2004,21(2):42-44
    [119]张继祥等.晶粒长大过程微观组织演变MonteCarlo方法模拟.山东大学学报(工学版),2005,35(4):1-5
    [120]毕见强,孙康宁,刘睿,等.等径角挤压过程的计算机模拟.塑性工程学报,2005, 12(4):85-87
    [121]徐淑波,赵国群.等通道弯角挤压变形机理模拟与工艺参数优化.塑性工程学报, 2004,11(3):22-26
    [122]赵美荣,许树勤,边丽萍,等.等通道转角挤压工艺有限元分析.热加工工艺,2005, 16(1):31-33
    [123]运新兵,宋宝韫.连续等径角挤压及其成形过程的三维数值模拟.塑性工程学报, 2006, 13(4):38-42
    [124]刘咏,唐志宏,周科朝,等.纯铝等径角挤技术(Ⅱ)变形行为模拟.中国有色金属学报, 2003,13(2):251-256
    [125]吴炬,向国权,程先华.模具外接圆弧角对纯铝ECAE影响的有限元分析.上海交通大学学报, 2005, 39(7):1063-1065
    [126]刘祖岩,刘钢,王尔德.等径侧向挤压等效应变分布的有限元模拟[J].哈尔滨工业大学学报, 1999, 31(3):65-67
    [127]郝南海,王全聪.等径侧向挤压变形均匀程度的有限元分析.中国有色金属学报, 2001, 11(3):230-233
    [128]谢玲玲,宋宝韫,李明典.铜材接触线扩展挤压成形的三维有限元数值模拟.有色金属(冶炼部分), 2005(3):49-54
    [129]林新波. DEFORM-2D和DEFORM-3D CAE软件在模拟金属塑性变形过程中的应用.模具技术, 2000(3):75-80
    [130]郑艳霞,赵西成,杨西荣.等径弯曲通道变形的有限元模拟现状.材料导报,2007,21(3):97-99
    [131]曹鹏,方刚,雷丽萍,曾攀.多晶铜压缩过程中晶粒取向演化的塑性理论分析[J],2007,43(9):913-919.
    [132]毛卫民,张新明.材料织构分析原理与检测技术[M].北京:冶金工业出版社, 2008
    [133]刘楚明.高纯铝箔形变和再结晶行为及织构的研究.[中南大学博士学位论文].长沙:中南大学, 2007
    [134]唐向前.纯铜等径角挤压过程计算机模拟研究.[兰州理工大学硕士学位论文].兰州,2009
    [135]皮华春,韩静涛,章传国.面心纯铝轧制织构的晶体塑性有限元模拟[J],北京科技大学学报,2007,29(9):920-924.
    [136]彭渝丽.等通道挤压后镁合金的微观结构研究[J],加工工艺,2007,36(17): 46-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700