用户名: 密码: 验证码:
TC21细晶钛合金超塑性变形行为与断裂特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了初始晶粒度分别为2μm、4μm和7μm TC21细晶钛合金的超塑性能及超塑性变形过程中的组织演变、断裂机制和变形机理,为合金的应用提供理论依据。
     在860℃~950℃温度范围和1×10~(-3)s~(-1)~5×10~(-4)s~(-1)应变速率范围内对合金进行了超塑性拉伸,拉伸结果表明TC21合金的超塑性能优异,晶粒度为2μm的试样在最佳变形温度(890℃)与最佳应变速率(5×10~(-4)s~(-1))条件下,断裂延伸率高达1400%。实验条件范围内,晶粒度为2μm和4μm试样的应力敏感指数m大于0.5,极值达到0.87,晶粒度7μm试样的m值在0.3~0.45之间。
     利用金相显微镜对变形组织进行观察,发现变形会诱发两相晶粒沿拉伸轴方向联接长大,变形主要在β相内。变形初期,晶粒间不断协调,力求达到平衡态,动态再结晶现象明显,静态晶粒长大占主导地位;当应变量达到一定值时,组织很快达到动态平衡,进入高度稳定状态,从而保证合金获得优异的超塑性能。
     扫描电镜对断裂表面的观察结果表明:晶粒度为2μm与4μm的试样因微小空洞的聚集连接而断裂,断口宏观形貌为“点状”,微观SEM形貌由大小、深浅不同的韧窝组成;晶粒度7μm的试样断口形式为“刀尖形”,可能因解理而开裂,最终以滑移方式分离,因而在断裂表面留下形貌学上的信息。
     晶粒度为2μm与4μm试样的主要变形机制为晶界滑动。高温低应变速率下,晶界原子扩散控制的位错蠕变是主要的变形协调机制。随着应变速率的升高,温度的降低,原子扩散能力减弱,位错运动协调机制逐渐占主导地位。利用透射电镜在变形α相内观察到规则排列的位错墙。晶粒度为7μm试样的变形激活能值远大于纯钛的体扩散激活能,其变形属于高温塑性变形范畴,以晶内变形为主。
In this study,the tensile tests of fine-grained TC21 alloy with grain size 2μm,4μm and 7μm have been performed.And the deformed microstructure,fracture and deformed mechanism also have been examined to provide scientific support for the application.
     The superplastic tensile tests have been performed at various temperature(860℃~950℃) and strain rate(1×10~(-3)s~(-1)~5×10~(-4)s~(-1)).The results show that fine-grained TC21 alloy has excellent superplasticity.On the optimal superplatic deformation condition(890℃,5×10~(-4)s~(-1)), the maximum of elongation for TC21 alloy is up to 1400%.The strain rate sensitive index m is more than 0.5 for TC21 alloy with grain size 2μm and 4μm,and the maximum ofm is 0.87, while m is between 0.3 and 0.5 for the alloy with grain size 0.7μm.
     The microstructure of fine-grained TC21 alloy as a function of deformed temperature and strain rate was examined.Deformation primarily occurred alongβ/βorβ/αgrain boundary.During the initial stage of superplastic deformation,grain group coordinate deformation to establish the equilibrium state.So the microstructure varies significantly,and static grain growth is dominant.When equilibrium state is established,the microstructure is highly stable,thus ensue excellent superplaticity of fine-grained TC21 alloy.Strain inducing gain connection and growth,which is clearly observed during superplastic deformation.
     The SEM morphology of the fracture surfaces is composed of various dimples.The macroscopic feature is punctiform.The alloy with grain size 2μm and 4μm submits to cavities rupture mechanism.The macroscopic feature of alloy with 7μm is knifepoint.The SEM morphology indicates the microstructure because of cleavage fracture and gliding fracture.
     The dominant deformed mechanism of TC21 alloy with grain size 2μm and 4μm is grain boundary gliding.In the condition of low strain rate,coordination mechanism is dislocation creep controlled by diffusion through atoms at grain boundaries.As the strain rate increase or temperature decrease,the diffusion of atoms is obviously weakened,thus dislocation creep becomes the dominant coordination mechanism.And a lot of dislocation wall arranged regularly are observed in deformedα.The deformation of TC21 alloy with grain size 7μm is non-superplastic,just high temperature plastic deformation.
引文
[1]颜鸣皋,吴学仁,朱知寿.航空材料技术的发展现状与展望.航空制造技术,2003,(12):19-25.
    [2]张颖楠,李辉,曲恒磊等.Ti-6-22-22S合金的研究进展.金属热处理,2002,27(12):14-16.
    [3]赵永庆,曲恒磊,冯亮等.高强高韧损伤容限型钛合金TC21研制.钛工业进展,2004,21(01):22-24.
    [4]张维.TC21和粗晶LC4的超塑性及微观组织演化:(硕士学位论文).西安:西北工业大学,2005.
    [5]赵永庆,奚正平,曲恒磊.我国航空用钛合金年材料研究现状.航空材料学报,2003,23(Suppl):215-219.
    [6]Wood,J.R.,P.A.Russo,M.F.Welter et al.Thermomechanical processing and heat treatment of Ti-6Al-2Sn-2Zr-2Cr-2Mo-Si for structural applications.Materials Science and Engineering A,1998,243(1-2):109-118.
    [7]李辉,赵永庆,曲恒磊等.不同工艺制备的Ti-6-22-22S合金棒材组织与性能研究.热加工工艺,2004,(12):33-35.
    [8]李辉,赵永庆,曲恒磊等.Ti-6-22-22S合金步进轧制工艺加工棒材研究.钛工业进展,2004,21(06):19-21.
    [9]张颖楠,赵永庆,曲恒磊等.Zr对Ti-6-22-22S合金显微组织和室温拉伸性能的影响.金属热处理,2003,28(11):31-34.
    [10]C.莱因斯,M.皮特尔斯.钛与钛合金.陈振华译.北京:化学工业出版社,2005.
    [11]E.A.鲍利索娃.钛合金金相学.陈石卿译.北京:国防工业出版社,1986.
    [12]Wood,J.R..Proceeding of Titanium'95 Science and Technology.1996:1500.
    [13]E.Crisr,P.R.,H.Phelps,L.Clark.Influnces of Chemisty and Processing on Microstructure and Mechanical Properties for Ti-6Al-2Sn-2Zr-2Cr-2Mo-0.15Si.Proceeding of the 10th World Conference on Titanium,3,1631-1638.
    [14]Y.V.R.K.Prasad,T.S.,S.C.Medeiros.Influnence of content on the forging response of equiaxed(α+β)perform of Ti-6Al-4V:Commercial vs.ELI grade.Journal of Materials Processing Technology,2001,108:320-327.
    [15]赵林若.钛合金超塑性机理及氢的作用:(硕士学位论文).北京:北京航空材料研究所,1988.
    [16]周宇.高强高韧损伤容限钛合金热机械处理工艺研究:(硕士学位论文).天津:天津大学,2005.
    [17]费玉环,周廉,曲恒磊等.两相区热处理对TC21钛合金显微结构的影响.稀有金属材料与工程,2007,36(11):1928-1932.
    [18]张颖楠,赵永庆,曲恒磊等.热处理对TC21合金显微组织和室温拉伸性能的影响.稀有金属,2004,28(01):34-37.
    [19]李辉,曲恒磊.片层厚度对损伤容限型TC21合金裂纹扩展速率的影响.材料工程,2006,26(4):21-23.
    [20]马少俊,吴学仁,刘建中等.TC21钛合金的微观组织对力学性能的影响.航空材料学报,2006,26(05):22-25.
    [21]曲恒磊,赵永庆,冯亮等.TC21钛合金不同变形条件下的显微组织研究.材料工程,2006,(S1):274-277
    [22]曲恒磊,周义刚,周廉等.Relationship among forging technology,structure and properties of TC21alloy bars.Transactions of Nonferrous Metals Society of China,2007,(05):93-98.
    [23]朱知寿,王新南,童路等.新型TC21钛合金热处理工艺参数与显微组织演变的关系研究.钛工业进展,2006,23(06):24-27.
    [24]郭鸿镇,张维,赵张龙等.TC21新型钛合金的超塑性拉伸行为及组织演化.稀有金属材料与工程,2005,34(12):1935-1939.
    [25]朱知寿,王新南,童路等.新型TC21钛合金相变行为和相组成研究.稀有金属快报,2006,25(12):23-27.
    [26]冯亮,曲恒磊,赵永庆等.TC21合金的高温变形行为.航空材料学报,2004,24(04):11-13.
    [27]汪建林.高强度β钛合金的发展与应用.上海钢研,2001,2:27-30.
    [28]曹春晓.航空用钛合金的发展概况.航空科学技术,2005,(04):3-6.
    [29]赵永庆.高温钛合金研究.钛工业进展,2001,(1):33-39.
    [30]J.Lindemann,L.W..Microtexture effects on mechannism properties of duplex microstructures in(α+β)titanium alloys.A263,1999,137-141.
    [31]Broun M,A.N.,Shakhanova G.Physical processes and regimes of thermo-mechanical processing controling development of regulated structure in the α+β titanium alloys.Materials Science and Engineering,1998,A243 77-81.
    [32]周义刚,曾卫东,李晓芹等.钛合金高温形变强韧化机理.金属学报,1999,35(01):45-48.
    [33]林兆荣.金属超塑性原理及应用.南京:航空工业出版社,1990.
    [34]吴诗惇.金属超塑性变形理论.北京:国防工业出版社,1997.
    [35]文九巴,杨永顺,陈拂晓等.超塑性应用技术.北京:机械工业出版社,2005.
    [36]崔约贤,王长利.金属断口分析.哈尔滨:哈尔滨工业大学出版社,1998.
    [37]钟群鹏,赵子华.断口学.北京:高等教育出版社,2005.
    [38]Chokshi,A.H..Cavity nucleation and growth in superplasticity.Materials Science and Engineering:A,2005,410-411 95-99.
    [39]雷力明,黄旭,吴学仁等.第二相对Ti-25V-15Cr-2Al-0.2C-x(X=0.2%Mo,2%Nb,0.2%Si)合金拉伸断裂行为的影响.稀有金属,2004,28(01):47-49.
    [40]宋美娟,王智祥,汪凌云.轧制镁合金板材超塑性变形时的空洞损伤行为.有色金属,2006,58(04):1-4.
    [41]J.P.Hirth.Some Current Topics in Dislocation Theory.Acta Materialia,2000,48:93-104.
    [42]N.E.Paton,C.H.H..Cavitation in Superplasticity-Superplastic Forming of Structural Alloys.N.E.Paton,C.Hamilton Eds.Warrendale.PA:TMS-AIME,1982,321-336.
    [43]M.Besterci,M.S.,L.Kovac.Influence of Strain Rate on Fracture of Dispersion Strengthened Al-A14C3 Systems.Scripta Materialia,1997,37(7):1077-1080.
    [44]M.J.Stowell,D.W.L.,N.Ridley.Cavity Coalescence in Superplastic Deformation.Acta Metall,1984,32(1):35-42.
    [45]D.M.Taplin,R.F.S..Fracture during Superplastic Flow of Industrial AI-Mg Alloy.Advances in Research on the Strength and Fracture of Materials,1977,N.Y.:Pergamon Press,1977:1541.
    [46]S.J.Lian,M.S..Effect of Strain Rate Sensitivity and Cavity Growth Rate on Failure of Superplastic Material.Materials Science and Technology,1986,2(11):1093-1098.
    [47]周大军,连建设,陈积伟.孔洞敏感超塑性材料变形的数值模拟.金属科学与工艺,1989,8(4):113-119.
    [48]Krishna,V.G.,Y.V.R.K.Prasad,N.C.Birla 等.Processing map for the hot working of near-[alpha]titanium alloy 685.Journal of Materials Processing Technology,1997,71(3):377-383.
    [49]李梁,孙建科,孟祥军.钛合金超塑性研究及应用现状.材料开发与应用,2004,12(06):34-38.
    [50]曾立英,赵永庆,李丹柯等.超塑性钛合金的研究进展.金属热处理,2005,30(05):28-33.
    [51]王明坤,张塑,丁泉,于天雄.钛合金环形气瓶超塑性成形工艺.航天制造技术,2002,126(1):34-37.
    [52]王刚,张凯峰,吴德忠等.钛合金波形膨胀节超塑性气胀成形技术研究.压力容器,2002,19(8):5-8.
    [53]侯冠群,李晓华,韩秀全.TB5钛合金超塑性成形和点焊.金属学报,2002,38(Suppl):378-381.
    [54]赵文娟,丁桦,曹富荣等.Ti-6Al-4V合金超塑性变形中的组织演变及变形机制.中国有色金属学报,2007,1973-1980(12):1973-1978.
    [55]Bao,R.-q.,X.Huang,C.-x.Cao.Deformation behavior and mechanisms of Ti-1023alloy.Transactions of Nonferrous Metals Society of China,2006,16(2):274-280.
    [56]汪立勤,周善佐.微细晶粒超塑变形模型.上海交通大学学报,1986,22(5):29-38.
    [57]Chakravartty,J.K.,R.Kapoor,S.Banerjee et al.Characterization of hot deformation behavior of Zr-1Nb-1Sn alloy.Journal of Nuclear Materials,2007,362(1):75-86.
    [58]祝汉良,辛志峰,李志强等.高应变速率超塑性研究的新进展.航空制造技术,2000,(05):13-16.
    [59]张自新,陈处恒.α+β型钛合金超塑性应变速率敏感指数m值的测定方法.上海钢研,1983,(6):19-21.
    [60]宋玉泉,管志平,李志刚等.应变速率敏感性指数的理论和测量规范.中国科学(E辑:技术科学),2007,37(11):1363-1382.
    [61]A.V.Sergueeva,V.V.S.,R.Z.Valiev,A.K.Mukherjee.Superplastic behaviour of ultrafine-grained Ti-6Al-4V alloys.Materials Science and Engineering,2002,323:318-325.
    [62]N.E.Paton,C.H.E.W.P.T.-A..The Strain Hardening Behavior of Superplastic Ti-6Al-4V.Scripta Metallurgical et Material,1990,24 331-336.
    [63]陈慧琴,林好转,郭灵等.钛合金热变形机制及微观组织演变规律的研究进展.材料工程,2007,(01):60-64.
    [64]韩德伟,张建新.金相试样制备与显示技术.长沙:中南大学出版社,2005.
    [65]Seshacharyulu T,M.S.,Morgan J T,etal.Hot deormation mechanism in EIL grade Ti-6Al-4V.Scripta Materialia,1999,41(3):283-288.
    [66]张志芳,刘占胜.关于TC6钛合金β转变组织的研究.材料工程,1991,(2):40-42.
    [67]C.S.Lee,S.B.L.J.S.K.e.a..Mechanical and Micro-structural Analysis on the Superplastic Deformation Behavior of Ti-6Al-4V Alloy.International Journal of Mechanical Sciences,2000,42:1555-1569.
    [68]赵张龙,郭鸿镇,姚泽坤等.应变速率对TC21钛合金超塑性拉伸微观组织的影响.热加工工艺,2007,38(8):28-30.
    [69]Seshacharyulu T,M.S.,Frazier W G,etal.Hot Woking of commercial Ti-6Al-4V with an equiaxed α+β microstructure:materials modeling consideration.Materials Science and Engineering,2000,A284:184-194.
    [70]查利.R.布鲁克斯,阿肖克.考霍莱.工程材料的失效分析.谢斐娟等译.北京:机械工业出版社,2002.
    [71]孙坚,刘润开,吴建生等.1073-1173K温度范围内TiAl合金的超塑性行为.金属学报,2001,37(01):95-98.
    [72]崔保坤.Ti-6Al-4V合金超塑性变位位错组织的观察与形变激活能.上海钢铁研究所,1989,25(05):17-19.
    [73]赵林若,张少卿,颜明皋.Ti-6Ai-4V合金超塑变形中α相的滑移系统及位错分布特征.金属学报,1990,26(01):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700