用户名: 密码: 验证码:
基于炎性疾病组织重建的食品营养学与疾病病理学机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在肥胖与静脉曲张等慢性炎性疾病的发病机制中,包含着血管化、脂肪沉积和蛋白水解等组织重建事件。基于这些组织重建事件,开展疾病病理学和食品营养学研究,有利于这些疾病的诊断与防治。本论文以此为出发点,针对农产品加工及贮藏工程领域的重要科学问题,深入研究了食品功能因子—木犀草素在肥胖与相关代谢疾病中的作用;此外,研究了半胱氨酰组织蛋白酶在与肥胖相关的静脉曲张发病机制中的作用。
     第一部分:木犀草素改善小鼠肥胖与胰岛素抵抗的机制研究
     肥大细胞(MCs)在饮食诱导的肥胖和糖尿病的发展中起着至关重要的作用,它可以通过增强血管化作用直接参与肥胖代谢的调控。一些合成的MCs稳定剂,色甘酸钠(DSCG)和酮替芬可以改善相关的小鼠代谢失调。作为一种天然黄酮类MCs稳定剂,木犀草素能够比DSCG和酮替芬更加有效地阻止MCs的脱颗粒和细胞因子释放。
     本研究中,我们以正常饮食C57BL/6雄鼠作为对照,采用高脂饮食诱导的方式建立肥胖小鼠模型,并在高脂饮食中添加0.002%或0.01%的木犀草素,来考察两种低剂量木犀草素干预对饮食诱导的小鼠肥胖和胰岛素抵抗的影响。根据研究内容,主要采用组织化学、Real-time PCR、ELISA和Western Blot等技术,得到以下研究结果:1)饮食补充0.002%或0.01%木犀草素,显著抑制了高脂饮食诱导的小鼠体重增加、脂肪沉积和脂肪细胞肥大。2)木犀草素饮食干预,改善了小鼠的葡萄糖不耐受性和胰岛素敏感性。3)木犀草素饮食干预,减少了小鼠附睾脂肪组织的血管生成和相关的组织蛋白酶表达和活性,并且激活了细胞凋亡。4)木犀草素饮食干预,降低了小鼠附睾脂肪组织中巨噬细胞的浸润,以及组织和循环中的炎性细胞因子水平。5)进一步研究表明,木犀草素在小鼠体内,能够抑制MCs向附睾脂肪组织的浸润,以及其特异蛋白酶的表达。
     总之,本论文研究结果证明,木犀草素作为一种食品源天然黄酮化合物,其低剂量饮食补充能显著改善小鼠饮食诱导的肥胖和胰岛素抵抗,提示这一方式可以作为一种新型的饮食营养干预和治疗方式而缓解上述常见的代谢疾病。
     第二部分:溶酶体半胱氨酰组织蛋白酶在静脉曲张中的作用:一个组织学的研究
     静脉曲张是一种主要的慢性炎性静脉疾病。原发性静脉曲张的形成是一个复杂的、多中心的病理过程,其病因和发病机制至今仍未能明确,而肥胖是其风险因子之一。病理研究显示,静脉曲张血管壁中存在着特征性的胞外基质重建和蛋白水解事件,其中基质金属蛋白酶家族成员己被认为参与了曲张静脉壁的组织重建。但是,对于其他家族蛋白酶成员,例如在动脉疾病组织重建中起重要作用的溶酶体半胱氨酰组织蛋白酶,是否也具有相应的作用却知之甚少。
     在本研究中,我们收集了18位静脉曲张病人和9位创伤性截肢病人的大隐静脉分别作为静脉曲张组和正常静脉组,主要采用化学、免疫化学和免疫荧光组织学技术,系统地研究了几种主要的溶酶体半胱氨酸蛋白酶,组织蛋白酶B、L、K、S以及它们的内源性抑制剂胱蛋白酶抑制剂C在静脉中的分布和表达。主要研究结果如下:1)利用HE染色和Van Gieson-orcein染色,比较了正常静脉和曲张静脉的结构差异,显示曲张静脉在内膜、中膜和外膜均存在不同程度的组织重建和基质蛋白紊乱,提示着大量蛋白水解事件的发生。2)采用免疫组织化学技术,证明在曲张静脉壁中组织蛋白酶B、L、K和S含量增加,而胱蛋白酶抑制剂C的含量减少;从而,打破了正常静脉组织中组织蛋白酶与其内源性抑制剂间的平衡关系,并可能由此导致曲张静脉壁的组织重建。3)为了探讨这些蛋白酶表达的炎性机制,我们详细研究了曲张静脉壁组成细胞(内皮细胞、平滑肌细胞)和炎性细胞(巨噬细胞、MCs、T淋巴细胞)的组织蛋白酶表达模式。研究显示曲张静脉中升高表达的组织蛋白酶,来源于平滑肌细胞、内皮细胞、T淋巴细胞、巨噬细胞和肥大细胞。4)在静脉曲张脉壁中,淋巴脉管的显著增生加重了炎性细胞向组织的浸润。
     总之,在静脉曲张壁中组织蛋白酶水平升高,并与血管壁炎性细胞共定位。这些特性提示了,溶酶体半胱氨酰组织蛋白酶可能响应炎性反应而参与了静脉曲张的胞外基质重建过程。
In the pathogenesis of chronic inflammatory diseases, such as obesity and varicose veins, extensive tissue remodeling events are involved. Based on these events, such as angiogenesis, adipogenesis and proteolysis, preforming pathological and food nutritional studies will help the development of new related diagnostic and therapeutic approaches. Aimed on the important scientific problems in the field of agricultural products processing and storage engineering, this paper study of the functional food factor-luteolin action on obesity and related metabolic diseases; in addition, research on cysteinyl cathepsin role in obesity-related varicose veins pathogenesis.
     Part One:mechanism studies of luteolin on ameliorating diet-induced obesity and insulin resistance in mice
     Mast cells play important roles in diet-induced obesity and diabetes, and some synthetic mast cell stabilizers such as DSCG and ketotifen can improve related metabolic disturbances in mice. As a potent natural mast cells stabilizer, luteolin possess multiple biological activities benefit for human healthy and more effective than DSCG and ketotifen in blocking mast cells degranulation and cytokine release.
     The male C57BL/6mice were fed low fat diet, high fat diet (HFD), HFD with0.002%and0.01%luteolin for12weeks, respectively. Dietary luteolin suppressed HFD-induced body weight gain, fat deposition and adipocyte hypertrophy. Meanwhile, glucose intolerance and insulin sensitivity was also improved. Interestingly, dietary luteolin ameliorated angiogenesis and associated cell apoptosis and cathepsin activity in epididymis adipose tissues (EAT), which is a critical mechanism that mast cells are involved in diet-induced obesity and diabetes. Further, we showed dietary luteolin reduced macrophage infiltrations in EAT and inflammatory cytokine levels in EAT and serum. Finally, luteolin inhibited mast cell infiltrations and mast cell specific protease expression in EAT.
     As a natural flavonoid, low-dose diet supplement of luteolin ameliorates diet-induced obesity and insulin resistance in mice, suggesting a new therapeutic and nutrition interventional approach for these diseases.
     Part Two:functions of lysosomal cysteinyl cathepsins in human varicose veins:a histology study
     Varicose veins (VVs) are a major chronic venous disease characterized by extensive remodeling of the extracellular matrix (ECM) architecture and proteolytic events in the vascular wall, which may be important in VVs development—though direct evidence is still missing. Primary VVs formation is a complex and multicentric pathological process. Although the aetiology and pathogenesis of varicose vein remain unclear, obesity is one of the risk factors for varicose vein development. Among proteolysis events, matrix metalloproteinases and their tissue inhibitors have garnered the most attention and been linked with the pathological events of VVs, but little is known about the functional relevance of other protease family members. Whether a cysteinyl cathepsin expression regulatory profile similar to that in arteries occurs in veins, however, remains unknown.
     Here, we studied the distribution of lysosomal cysteine proteases, cathepsin B, L, K, and S, and their endogenous inhibitor, cystatin C, in long saphenous vein specimens from9normal donors and18patients with Ws. Immunohistochemical analysis demonstrated increased levels of cathepsin L, K, B, and S and reduced levels of cystatin C in Ws. This imbalance between cathepsins and cystatin C may favor Ws remodeling. To investigate the inflammatory mechanism of their expression, we examined a detailed inflammatory cell profile in Ws, including macrophages, T lymphocytes, and mast cells. Increased numbers of CD3-positive T cells and tryptase-positive mast cells were found in Ws, and enhanced levels of cathepsins were detected from lesion T cells、 mast cells、 endothelial cells、 macrophage and smooth-muscle cells. In varicose vein wall, lymphatic vasa significantly hyperplasia aggravated inflammatory cell infiltration into vascular wall.
     Elevated cathepsins, and their co-localization to infiltrated inflammatory cells and to vascular cells, suggest that these proteases participate in ECM degradation in response to inflammation during W pathogenesis.
引文
[1]Chuang, C.C. and McIntosh, M.K. Potential mechanisms by which polyphenol-rich grapes prevent obesity-mediated inflammation and metabolic diseases. Annu Rev Nutr,2011,31:155-176.
    [2]James, P.T., Leach, R., Kalamara, E., et al. The worldwide obesity epidemic. Obes Res,2001,9 Suppl 4:228S-233S.
    [3]Wu, Y. Overweight and obesity in China BMJ,2006,333(7564):362-363.
    [4]Lefterova, M.I. and Lazar, M.A. New developments in adipogenesis. Trends Endocrinol Metab, 2009,20(3):107-114.
    [5]Tontonoz, P. and Spiegelman, B.M. Fat and beyond:the diverse biology of PPARgamma. Annu Rev Biochem,2008,77:289-312.
    [6]Rosen, E.D. and Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature,2006,444(7121):847-853.
    [7]Daquinag, A.C., Zhang, Y., and Kolonin, M.G. Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci,2011,32(5):300-307.
    [8]Grundy, S.M., Brewer, H.B., Jr., Cleeman, J.I., et al. Definition of metabolic syndrome:Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation,2004,109(3):433-438.
    [9]Despres, J.P. and Lemieux, I. Abdominal obesity and metabolic syndrome. Nature,2006, 444(7121):881-887.
    [10]Lemieux, I., Pascot, A., Couillard, C., et al. Hypertriglyceridemic waist:A marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men? Circulation,2000,102(2):179-184.
    [11]Zeyda, M. and Stulnig, T.M. Obesity, inflammation, and insulin resistance--a mini-review. Gerontology,2009,55(4):379-386.
    [12]Hotamisligil, GS. Inflammation and metabolic disorders. Nature,2006,444(7121):860-867.
    [13]Kalupahana, N.S. and Moustaid-Moussa, N. The renin-angiotensin system:a link between obesity, inflammation and insulin resistance. Obes Rev,2012,13(2):136-149.
    [14]Sato, C, Shikata, K., Hirota, D., et al. P-selectin glycoprotein Iigand-1 deficiency is protective against obesity-related insulin resistance. Diabetes,2011,60(1):189-199.
    [15]Lindsay, R.S., Funahashi, T, Hanson, R.L., et al. Adiponectin and development of type 2 diabetes in the Pima Indian population. Lancet,2002,360(9326):57-58.
    [16]Vazquez-Vela, M.E., Torres, N., and Tovar, A.R. White adipose tissue as endocrine organ and its role in obesity. Arch Med Res,2008,39(8):715-728.
    [17]Bluher, M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract Res Clin Endocrinol Metab,2013,27(2):163-177.
    [18]Corvera, S. and Gealekman, O. Adipose tissue angiogenesis:Impact on obesity and type-2 diabetes. Biochim Biophys Acta,2013.
    [19]Hausman, G.J. and Richardson, R.L. Adipose tissue angiogenesis. J Anim Sci,2004,82(3):925-934.
    [20]Hausman, G. J. and Kauffman, R.G. The histology of developing porcine adipose tissue. J Anim Sci, 1986,63(2):642-658.
    [21]Bukowiecki, L., Lupien, J., Follea, N., et al. Mechanism of enhanced lipolysis in adipose tissue of exercise-trained rats. Am J Physiol,1980,239(6):E422-429.
    [22]Weis, S.M. and Cheresh, D.A. Tumor angiogenesis:molecular pathways and therapeutic targets. Nat Med,2011,17(11):1359-1370.
    [23]Germain, S., Monnot, C., Muller, L., et al. Hypoxia-driven angiogenesis:role of tip cells and extracellular matrix scaffolding. Curr Opin Hematol,2010,17(3):245-251.
    [24]Cao, Y, Arbiser, J., D'Amato, R.J., et al. Forty-year journey of angiogenesis translational research. Sci Transl Med,2011,3(114):114rv113.
    [25]Christiaens, V. and Lijnen, H.R. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol,2010,318(1-2):2-9.
    [26]Sung, H.K., Doh, K.O., Son, J.E., et al. Adipose vascular endothelial growth factor regulates metabolic homeostasis through angiogenesis. Cell Metab,2013,17(1):61-72.
    [27]Tran, K.V., Gealekman, O., Frontini, A., et al. The vascular endothelium of the adipose tissue gives rise to both white and brown fat cells. Cell Metab,2012,15(2):222-229.
    [28]Roy, R., Zhang, B., and Moses, M.A. Making the cut:protease-mediated regulation of angiogenesis. Exp Cell Res,2006,312(5):608-622.
    [29]Koblinski, J.E., Dosescu, J., Sameni, M., et al. Interaction of human breast fibroblasts with collagen Ⅰ increases secretion of procathepsin B. J Biol Chem,2002,277(35):32220-32227.
    [30]Joyce, J.A., Baruch, A., Chehade, K., et al. Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell,2004,5(5):443-453.
    [31]Im, E., Venkatakrishnan, A., and Kazlauskas, A. Cathepsin B regulates the intrinsic angiogenic threshold of endothelial cells. Mol Biol Cell,2005,16(8):3488-3500.
    [32]Hotamisligil, G.S., Shargill, N.S., and Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science,1993,259(5091):87-91.
    [33]Kanda, H., Tateya, S., Tamori, Y., et al. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest,2006,116(6):1494-1505.
    [34]Yuan, M., Konstantopoulos, N., Lee, J., et al. Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science,2001,293(5535):1673-1677.
    [35]Weisberg, S.P., Hunter, D., Huber, R., et al. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest,2006,116(1):115-124.
    [36]Nishimura, S., Manabe, I., Nagasaki, M., et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med,2009,15(8):914-920.
    [37]Liu, J., Divoux, A., Sun, J., et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med,2009,15(8):940-945.
    [38]Winer, D.A., Winer, S., Shen, L., et al. B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med,2011,17(5):610-617.
    [39]Winer, S., Chan, Y., Paltser, G., et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med,2009,15(8):921-929.
    [40]Feuerer, M., Herrero, L., Cipolletta, D., et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med,2009,15(8):930-939.
    [41]Wu, D., Molofsky, A.B., Liang, H.E., et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science,2011,332(6026):243-247.
    [42]Talukdar, S., Oh da, Y., Bandyopadhyay, G., et al. Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med,2012,18(9):1407-1412.
    [43]Lynch, L., Nowak, M., Varghese, B., et al. Adipose tissue invariant NKT cells protect against diet-induced obesity and metabolic disorder through regulatory cytokine production. Immunity, 2012,37(3):574-587.
    [44]Metcalfe, D.D., Baram, D., and Mekori, Y.A. Mast cells. Physiol Rev,1997,77(4):1033-1079.
    [45]Galli, S.J., Kalesnikoff, J., Grimbaldeston, M.A., et al. Mast cells as "tunable" effector and immunoregulatory cells:recent advances. Annu Rev Immunol,2005,23:749-786.
    [46]Eady, R.A., Cowen, T., Marshall, T.F., et al. Mast cell population density, blood vessel density and histamine content in normal human skin. Br J Dermatol,1979,100(6):623-633.
    [47]Rakusan, K., Sarkar, K., Turek, Z., et al. Mast cells in the rat heart during normal growth and in cardiac hypertrophy. Circ Res,1990,66(2):511-516.
    [48]Sawatsubashi, M., Yamada, T., Fukushima, N., et al. Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma Virchows Arch, 2000,436(3):243-248.
    [49]Qu, Z., Huang, X., Ahmadi, P., et al. Synthesis of basic fibroblast growth factor by murine mast cells. Regulation by transforming growth factor beta, tumor necrosis factor alpha, and stem cell factor. Int Arch Allergy Immunol,1998,115(1):47-54.
    [50]Maltby, S., Khazaie, K., and McNagny, K.M. Mast cells in tumor growth:angiogenesis, tissue remodelling and immune-modulation. Biochim Biophys Acta,2009,1796(1):19-26.
    [51]Hebda, P.A., Collins, M.A., and Tharp, M.D. Mast cell and myofibroblast in wound healing. Dermatol Clin,1993,11(4):685-696.
    [52]Shin, K., Nigrovic, P.A., Crish, J., et al. Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol,2009,182(1):647-656.
    [53]Coussens, L.M. and Werb, Z. Matrix metalloproteinases and the development of cancer. Chem Biol, 1996,3(11):895-904.
    [54]Grutzkau, A., Kruger-Krasagakes, S., Baumeister, H., et al. Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells:implications for the biological significance of VEGF206. Mol Biol Cell,1998, 9(4):875-884.
    [55]Nakayama, T., Yao, L., and Tosato, G. Mast cell-derived angiopoietin-1 plays a critical role in the growth of plasma cell tumors. J Clin Invest,2004,114(9):1317-1325.
    [56]Jorpes, J.E. Heparin:a mucopolysaccharide and an active antithrombotic drug. Circulation,1959, 19(1):87-91.
    [57]Theoharides, T.C., Bondy, P.K., Tsakalos, N.D., et al. Differential release of serotonin and histamine from mast cells. Nature,1982,297(5863):229-231.
    [58]Okayama, Y., Ono, Y, Nakazawa, T., et al. Human skin mast cells produce TNF-alpha by substance P. Int Arch Allergy Immunol,1998,117 Suppl 1:48-51.
    [59]Coussens, L.M., Raymond, W.W., Bergers, G., et al. Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev,1999,13(11):1382-1397.
    [60]Huang, B., Lei, Z., Zhang, G.M., et al. SCF-mediated mast cell infiltration and activation exacerbate the inflammation and immunosuppression in tumor microenvironment. Blood,2008, 112(4):1269-1279.
    [61]Altintas, M.M., Rossetti, M.A., Nayer, B., et al. Apoptosis, mastocytosis, and diminished adipocytokine gene expression accompany reduced epididymal fat mass in long-standing diet-induced obese mice. Lipids Health Dis,2011,10:198.
    [62]Xu, J.M. and Shi, G.P. Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev,2012,33(1):71-108.
    [63]Mekori, Y.A. The mastocyte:the "other" inflammatory cell in immunopathogenesis. J Allergy Clin Immunol,2004,114(1):52-57.
    [64]Kalesnikoff, J. and Galli, S.J. New developments in mast cell biology. Nat Immunol,2008, 9(11):1215-1223.
    [65]Baram, D., Vaday, G.G., Salamon, P., et al. Human mast cells release metalloproteinase-9 on contact with activated T cells:juxtacrine regulation by TNF-alpha J Immunol,2001,167(7):4008-4016.
    [66]Salamon, P., Shoham, N.G, Puxeddu, I., et al. Human mast cells release oncostatin M on contact with activated T cells:possible biologic relevance. J Allergy Clin Immunol,2008, 121(2):448-455 e445.
    [67]Inamura, N., Mekori, Y.A., Bhattacharyya, S.P., et al. Induction and enhancement of Fc(epsilon)RI-dependent mast cell degranulation following coculture with activated T cells: dependency on ICAM-1- and leukocyte function-associated antigen (LFA)-1-mediated heterotypic aggregation. J Immunol,1998,160(8):4026-4033.
    [68]Shefler, I., Salamon, P., Reshef, T., et al. T cell-induced mast cell activation:a role for microparticles released from activated T cells. J Immunol,2010,185(7):4206-4212.
    [69]Sayed, B.A. and Brown, M.A. Mast cells as modulators of T-cell responses. Immunol Rev,2007, 217:53-64.
    [70]Gri, G., Piconese, S., Frossi, B., et al. CD4+CD25+regulatory T cells suppress mast cell degranulation and allergic responses through OX40-OX40L interaction. Immunity,2008, 29(5):771-781.
    [71]Piconese, S., Gri, G., Tripodo, C., et al. Mast cells counteract regulatory T-cell suppression through interleukin-6 and OX40/OX40L axis toward Thl7-cell differentiation. Blood,2009, 114(13):2639-2648.
    [72]St John, A.L., Rathore, A.P., Yap, H., et al. Immune surveillance by mast cells during dengue infection promotes natural killer (NK) and NKT-cell recruitment and viral clearance. Proc Natl Acad Sci U S A,2011,108(22):9190-9195.
    [73]Kashyap, M., Thornton, A.M., Norton, S.K., et al. Cutting edge:CD4 T cell-mast cell interactions alter IgE receptor expression and signaling. J Immunol,2008,180(4):2039-2043.
    [74]Stelekati, E., Bahri, R., D'Orlando, O., et al. Mast cell-mediated antigen presentation regulates CD8+T cell effector functions. Immunity,2009,31(4):665-676.
    [75]Shi, M.A. and Shi, G.P. Different roles of mast cells in obesity and diabetes:lessons from experimental animals and humans. Front Immunol,2012,3:7.
    [76]Sun, J., Sukhova, GK., Wolters, P.J., et al. Mast cells promote atherosclerosis by releasing proinflammatory cytokines. Nat Med,2007,13(6):719-724.
    [77]Sun, J., Sukhova, G.K., Yang, M., et al. Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest,2007,117(11):3359-3368.
    [78]Woolley, D.E. The mast cell in inflammatory arthritis. N Engl J Med,2003,348(17):1709-1711.
    [79]Ozdamar, S.O., Seckin, D., Kandemir, B., et al. Mast cells in psoriasis. Dermatology,1996, 192(2):190.
    [80]Theoharides, T.C. Mast cells:the immune gate to the brain. Life Sci,1990,46(9):607-617.
    [81]Theoharides, T.C., Kempuraj, D., Tagen, M., et al. Differential release of mast cell mediators and the pathogenesis of inflammation. Immunol Rev,2007,217:65-78.
    [82]Theoharides, T.C. and Douglas, W.W. Secretion in mast cells induced by calcium entrapped within phospholipid vesicles. Science,1978,201(4361):1143-1145.
    [83]Van Loveren, H., Kraeuter-Kops, S., and Askenase, P.W. Different mechanisms of release of vasoactive amines by mast cells occur in T cell-dependent compared to IgE-dependent cutaneous hypersensitivity responses. Eur J Immunol,1984,14(1):40-47.
    [84]Dimitriadou, V., Buzzi, M.G., Moskowitz, M.A., et al. Trigeminal sensory fiber stimulation induces morphological changes reflecting secretion in rat dura mater mast cells. Neuroscience,1991, 44(1):97-112.
    [85]Letourneau, R., Pang, X., Sant, G.R., et al. Intragranular activation of bladder mast cells and their association with nerve processes in interstitial cystitis. Br J Urol,1996,77(1):41-54.
    [86]Kandere-Grzybowska, K., Letourneau, R., Kempuraj, D., et al. IL-1 induces vesicular secretion of IL-6 without degranulation from human mast cells. J Immunol,2003,171(9):4830-4836.
    [87]Di Girolamo, N., Indoh, I., Jackson, N., et al. Human mast cell-derived gelatinase B (matrix metalloproteinase-9) is regulated by inflammatory cytokines:role in cell migration. J Immunol, 2006,177(4):2638-2650.
    [88]Mallen-St Clair, J., Shi, G.P., Sutherland, R.E., et al. Cathepsins L and S are not required for activation of dipeptidyl peptidase I (cathepsin C) in mice. Biol Chem,2006,387(8):1143-1146.
    [89]Dell'Italia, L.J. and Husain, A. Dissecting the role of chymase in angiotensin H formation and heart and blood vessel diseases. Curr Opin Cardiol,2002,17(4):374-379.
    [90]Lazaar, A.L., Plotnick, M.I., Kucich, U., et al. Mast cell chymase modifies cell-matrix interactions and inhibits mitogen-induced proliferation of human airway smooth muscle cells. J Immunol, 2002,169(2):1014-1020.
    [91]Taipale, J., Lohi, J., Saarinen, J., et al. Human mast cell chymase and leukocyte elastase release latent transforming growth factor-beta 1 from the extracellular matrix of cultured human epithelial and endothelial cells. J Biol Chem,1995,270(9):4689-4696.
    [92]Kofford, M.W., Schwartz, L.B., Schechter, N.M., et al. Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide. J Biol Chem,1997,272(11):7127-7131.
    [93]Fang, K.C., Raymond, W.W., Lazarus, S.C., et al. Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase. J Clin Invest,1996,97(7):1589-1596.
    [94]Kido, H., Nakano, A., Okishima, N., et al. Human chymase, an enzyme forming novel bioactive 31-amino acid length endothelins. Biol Chem,1998,379(7):885-891.
    [95]Mizutani, H., Schechter, N., Lazarus, G., et al. Rapid and specific conversion of precursor interleukin 1 beta (IL-1 beta) to an active IL-1 species by human mast cell chymase. J Exp Med, 1991,174(4):821-825.
    [96]Omoto, Y., Tokime, K., Yamanaka, K., et al. Human mast cell chymase cleaves pro-IL-18 and generates a novel and biologically active IL-18 fragment J Immunol,2006,177(12):8315-8319.
    [97]Lee-Rueckert, M. and Kovanen, P.T. Mast cell proteases:physiological tools to study functional significance of high density lipoproteins in the initiation of reverse cholesterol transport Atherosclerosis,2006,189(1):8-18.
    [98]Shi, G.P., Villadangos, J.A., Dranoff, G., et al. Cathepsin S required for normal MHC class II peptide loading and germinal center development Immunity,1999,10(2):197-206.
    [99]Yang, M., Zhang, Y., Pan, J., et al. Cathepsin L activity controls adipogenesis and glucose tolerance Nat Cell Biol,2007,9(8):970-977.
    [100]Shi, G.P., Munger, J.S., Meara, J.P., et al. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem,1992, 267(11):7258-7262.
    [101]Kitamoto, S., Sukhova, G.K., Sun, J., et al. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation,2007, 115(15):2065-2075.
    [102]Wang, B., Sun, J., Kitamoto, S., et al. Cathepsin S controls angiogenesis and tumor growth via matrix-derived angiogenic factors. J Biol Chem,2006,281(9):6020-6029.
    [103]Sukhova, G.K., Zhang, Y., Pan, J.H., et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest,2003,111(6):897-906.
    [104]Maehr, R., Mintern, J.D., Herman, A.E., et al. Cathepsin L is essential for onset of autoimmune diabetes in NOD mice. J Clin Invest,2005,115(10):2934-2943.
    [105]Yang, H., Kala, M., Scott, B.G., et al. Cathepsin S is required for murine autoimmune myasthenia gravis pathogenesis. J Immunol,2005,174(3):1729-1737.
    [106]Lutgens, E., Lutgens, S.P., Faber, B.C., et al. Disruption of the cathepsin K gene reduces atherosclerosis progression and induces plaque fibrosis but accelerates macrophage foam cell formation. Circulation,2006,113(1):98-107.
    [107]Salminen-Mankonen, H.J., Morko, J., and Vuorio, E. Role of cathepsin K in normal joints and in the development of arthritis. Curr Drug Targets,2007,8(2):315-323.
    [108]Sismanopoulos, N., Delivanis, D.A., Alysandratos, K.D., et al. Mast cells in allergic and inflammatory diseases. Curr Pharm Des,2012,18(16):2261-2277.
    [109]Jones, S.E., Gilbert, R.E., and Kelly, D.J. Tranilast reduces mesenteric vascular collagen deposition and chymase-positive mast cells in experimental diabetes. J Diabetes Complications, 2004,18(5):309-315.
    [110]Patalano, F. and Ruggieri, F. Sodium cromoglycate:a review. Eur Respir J Suppl,1989, 6:556s-560s.
    [111]Pearce, F.L., Befus, A.D., Gauldie, J., et al. Mucosal mast cells. Ⅱ. Effects of anti-allergic compounds on histamine secretion by isolated intestinal mast cells. J Immunol,1982, 128(6):2481-2486.
    [112]Befus, A.D., Dyck, N., Goodacre, R., et al. Mast cells from the human intestinal lamina propria. Isolation, histochemical subtypes, and functional characterization. J Immunol,1987, 138(8):2604-2610.
    [113]De Filippis, D., D'Amico, A., and Iuvone, T. Cannabinomimetic control of mast cell mediator release:new perspective in chronic inflammation. J Neuroendocrinol,2008,20 Suppl 1:20-25.
    [114]Bot, I., de Jager, S.C., Zernecke, A., et al. Perivascular mast cells promote atherogenesis and induce plaque destabilization in apolipoprotein E-deficient mice. Circulation,2007, 115(19):2516-2525.
    [115]Rumore, M.M. and Kim, K.S. Potential role of salicylates in type 2 diabetes. Ann Pharmacother, 2010,44(7-8):1207-1221.
    [116]Gardner, M., Palmer, J., Manrique, C., et al. Utility of aspirin therapy in patients with the cardiometabolic syndrome and diabetes. J Cardiometab Syndr,2009,4(2):96-101.
    [117]Natarajan, P. and Cannon, C.P. Could direct inhibition of inflammation be the "next big thing" in treating atherosclerosis? Arterioscler Thromb Vasc Biol,2010,30(11):2081-2083.
    [118]Okayama, Y., Benyon, R.C., Rees, P.H., et al. Inhibition profiles of sodium cromoglycate and nedocromil sodium on mediator release from mast cells of human skin, lung, tonsil, adenoid and intestine. Clin Exp Allergy,1992,22(3):401-409.
    [119]Theoharides, T.C., Patra, P., Boucher, W., et al. Chondroitin sulphate inhibits connective tissue mast cells. Br J Pharmacol,2000,131(6):1039-1049.
    [120]Kempuraj, D., Huang, M., Kandere-Grzybowska, K., et al. Azelastine inhibits secretion of IL-6, TNF-alpha and IL-8 as well as NF-kappaB activation and intracellular calcium ion levels in normal human mast cells. Int Arch Allergy Immunol,2003,132(3):231-239.
    [121]Criado, P.R., Criado, R.F., Maruta, C.W., et al. Histamine, histamine receptors and antihistamines: new concepts. An Bras Dermatol,2010,85(2):195-210.
    [122]Klooker, T.K., Braak, B., Koopman, K.E., et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut,2010,59(9):1213-1221.
    [123]Takai, S., Jin, D., and Miyazaki, M. Targets of chymase inhibitors. Expert Opin Ther Targets,2011, 15(4):519-527.
    [124]Guay, C., Laviolette, M., and Tremblay, G.M. Targeting serine proteases in asthma. Curr Top Med Chem,2006,6(4):393-402.
    [125]Cairns, J.A. Inhibitors of mast cell tryptase beta as therapeutics for the treatment of asthma and inflammatory disorders. Pulm Pharmacol Ther,2005,18(1):55-66.
    [126]Lopez-Lazaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem,2009,9(1):31-59.
    [127]Benavente-Garcia, O. and Castillo, J. Update on uses and properties of citrus flavonoids:new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem,2008, 56(15):6185-6205.
    [128]Depeint, F., Gee, J.M., Williamson, G., et al. Evidence for consistent patterns between flavonoid structures and cellular activities. Proc Nutr Soc,2002,61 (1):97-103.
    [129]Middleton, E., Jr., Kandaswami, C., and Theoharides, T.C. The effects of plant flavonoids on mammalian cells:implications for inflammation, heart disease, and cancer. Pharmacol Rev,2000, 52(4):673-751.
    [130]Kempuraj, D., Madhappan, B., Christodoulou, S., et al. Flavonols inhibit proinflammatory mediator release, intracellular calcium ion levels and protein kinase C theta phosphorylation in human mast cells. Br J Pharmacol,2005,145(7):934-944.
    [131]Shichijo, M., Yamamoto, N., Tsujishita, H., et al. Inhibition of syk activity and degranulation of human mast cells by flavonoids. Biol Pharm Bull,2003,26(12):1685-1690.
    [132]Kandere-Grzybowska, K., Kempuraj, D., Cao, J., et al. Regulation of IL-1-induced selective IL-6 release from human mast cells and inhibition by quercetin. Br J Pharmacol,2006, 148(2):208-215.
    [133]Fiorani, M., Guidarelli, A., Blasa, M., et al. Mitochondria accumulate large amounts of quercetin: prevention of mitochondrial damage and release upon oxidation of the extramitochondrial fraction of the flavonoid J Nutr Biochem,2010,21(5):397-404.
    [134]Kempuraj, D., Tagen, M., Iliopoulou, B.P., et al. Luteolin inhibits myelin basic protein-induced human mast cell activation and mast cell-dependent stimulation of Jurkat T cells. Br J Pharmacol, 2008,155(7):1076-1084.
    [135]Kimata, Shichijo, Miura, et al. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clinical & Experimental Allergy, 2000,30(4):501-508.
    [136]Bagli, E., Stefaniotou, M., Morbidelli, L., et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity. Cancer Res,2004,64(21):7936-7946.
    [137]Kim, J.H., Lee, E.O., Lee, H.J., et al. Caspase activation and extracellular signal-regulated kinase/Akt inhibition were involved in luteolin-induced apoptosis in Lewis lung carcinoma cells. Ann N Y Acad Sci,2006,1090:147-160.
    [138]Karrasch, T., Kim, J.S., Jang, B.I., et al. The flavonoid luteolin worsens chemical-induced colitis in NF-kappaB(EGFP) transgenic mice through blockade of NF-kappaB-dependent protective molecules. PLoS One,2007,2(7):e596.
    [139]Mamiemi, J., Alanen, E., Impivaara, O., et al. Dietary and serum vitamins and minerals as predictors of myocardial infarction and stroke in elderly subjects. Nutr Metab Cardiovasc Dis, 2005,15(3):188-197.
    [140]Garcia-Closas, R., Gonzalez, C.A., Agudo, A., et al. Intake of specific carotenoids and flavonoids and the risk of gastric cancer in Spaia Cancer Causes Control,1999,10(1):71-75.
    [141]Lin, Y., Shi, R., Wang, X., et al. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr Cancer Drug Targets,2008,8(7):634-646.
    [142]Shimoi, K., Saka, N., Nozawa, R., et al. Deglucuronidation of a flavonoid, luteolin monoglucuronide, during inflammation. Drug Metab Dispos,2001,29(12):1521-1524.
    [143]Shimoi, K., Okada, H., Furugori, M., et al. Intestinal absorption of luteolin and luteolin 7-O-beta-glucoside in rats and humans. FEBS Lett,1998,438(3):220-224.
    [144]Zhou, P., Li, L.P., Luo, S.Q., et al. Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin. J Agric Food Chem,2008,56(1):296-300.
    [145]Eckel, R.H., Grundy, S.M., and Zimmet, P.Z. The metabolic syndrome. Lancet,2005, 365(9468):1415-1428.
    [146]Eckel, R.H. Obesity. Circulation,2005, 111(15):e257-259.
    [147]Lijnen, H.R. Angiogenesis and obesity. Cardiovasc Res,2008,78(2):286-293.
    [148]Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov,2010,9(2):107-115.
    [149]Ando, C., Takahashi, N., Hirai, S., et al. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett,2009, 583(22):3649-3654.
    [150]Deqiu, Z., Kang, L., Jiali, Y., et al. Luteolin inhibits inflammatory response and improves insulin sensitivity in the endothelium. Biochimie,2011,93(3):506-512.
    [1]Barnes, S. and Prasain, J. Current progress in the use of traditional medicines and nutraceuticals. Curr Opin Plant Biol,2005,8(3):324-328.
    [2]Tormakangas, L., Vuorela, P., Saario, E., et al. In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochem Pharmacol,2005,70(8):1222-1230.
    [3]Lopez-Lazaro, M. Distribution and biological activities of the flavonoid luteolin. Mini Rev Med Chem,2009,9(1):31-59.
    [4]Harborne, J.B. and Williams, C.A. Advances in flavonoid research since 1992. Phytochemistry,2000, 55(6):481-504.
    [5]Zhou, P., Li, L.P., Luo, S.Q., et al. Intestinal absorption of luteolin from peanut hull extract is more efficient than that from individual pure luteolin. J Agric Food Chem,2008,56(1):296-300.
    [6]Kopelman, P.G. Obesity as a medical problem. Nature,2000,404(6778):635-643.
    [7]Schuster, D.P. Obesity and the development of type 2 diabetes:the effects of fatty tissue inflammation. Diabetes Metab Syndr Obes,2010,3:253-262.
    [8]Sismanopoulos, N., Delivanis, D.A., Alysandratos, K.D., et al. Mast cells in allergic and inflammatory diseases. Curr Pharm Des,2012,18(16):2261-2277.
    [9]Theoharides, T.C., Sismanopoulos, N., Delivanis, D.A., et al. Mast cells squeeze the heart and stretch the gird:their role in atherosclerosis and obesity. Trends Pharmacol Sci,2011, 32(9):534-542.
    [10]Bagli, E., Stefaniotou, M., Morbidelli, L., et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity. Cancer Res,2004,64(21):7936-7946.
    [11]Kim, J.H., Lee, E.O., Lee, H.J., et al. Caspase activation and extracellular signal-regulated kinase/Akt inhibition were involved in luteolin-induced apoptosis in Lewis lung carcinoma cells. Ann N Y Acad Sci,2006,1090:147-160.
    [12]Karrasch, T., Kim, J.S., Jang, B.I., et al. The flavonoid luteolin worsens chemical-induced colitis in NF-kappaB(EGFP) transgenic mice through blockade of NF-kappaB-dependent protective molecules. PLoS One,2007,2(7):e596.
    [13]Huang, S. and Czech, M.P. The GLUT4 glucose transporter. Cell Metab,2007,5(4):237-252.
    [14]Leto, D. and Saltiel, A.R. Regulation of glucose transport by insulin:traffic control of GLUT4. Nat Rev Mol Cell Biol,2012,13(6):383-396.
    [15]Wu, Z., Xie, Y., Morrison, R.F., et al. PPARgamma induces the insulin-dependent glucose transporter GLUT4 in the absence of C/EBPalpha during the conversion of 3T3 fibroblasts into adipocytes. J Clin Invest,1998,101(1):22-32.
    [16]Jiang, Z.Y., Zhou, Q.L., Coleman, K.A., et al. Insulin signaling through Akt/protein kinase B analyzed by small interfering RNA-mediated gene silencing. Proc Natl Acad Sci U S A,2003, 100(13):7569-7574.
    [17]Ding, L., Jin, D., and Chen, X. Luteolin enhances insulin sensitivity via activation of PPARgamma transcriptional activity in adipocytes. J Nutr Biochem,2010,21(10):941-947.
    [1]McTigue, K.M., Hess, R., and Ziouras, J. Obesity in older adults:a systematic review of the evidence for diagnosis and treatment Obesity (Silver Spring),2006,14(9):1485-1497.
    [2]Aaron, D.J., Jekal, Y.S., and LaPorte, R.E. Epidemiology of physical activity from adolescence to young adulthood. World Rev Nutr Diet,2005,94:36-41.
    [3]Chinn, S. Definitions of childhood obesity:current practice. Eur J Clin Nutr,2006, 60(10):1189-1194.
    [4]Couillard, C., Mauriege, P., Imbeault, P., et al. Hyperleptinemia is more closely associated with adipose cell hypertrophy than with adipose tissue hyperplasia Int J Obes Relat Metab Disord,2000, 24(6):782-788.
    [5]Crandall, D.L., Hausman, G.J., and Kral, J.G. A review of the microcirculation of adipose tissue: anatomic, metabolic, and angiogenic perspectives. Microcirculation,1997,4(2):211-232.
    [6]Lijnen, H.R. Angiogenesis and obesity. Cardiovasc Res,2008,78(2):286-293.
    [7]Cao, Y. Adipose tissue angiogenesis as a therapeutic target for obesity and metabolic diseases. Nat Rev Drug Discov,2010,9(2):107-115.
    [8]Corvera, S. and Gealekman, O. Adipose tissue angiogenesis:Impact on obesity and type-2 diabetes. Biochim Biophys Acta,2013.
    [9]Daquinag, A.C., Zhang, Y., and Kolonin, M.G. Vascular targeting of adipose tissue as an anti-obesity approach. Trends Pharmacol Sci,2011,32(5):300-307.
    [10]Folkman, J. Angiogenesis. Annu Rev Med,2006,57:1-18.
    [11]Lamalice, L., Le Boeuf, F., and Huot, J. Endothelial cell migration during angiogenesis. Circ Res, 2007,100(6):782-794.
    [12]Christiaens, V. and Lijnen, H.R. Angiogenesis and development of adipose tissue. Mol Cell Endocrinol,2010,318(1-2):2-9.
    [13]Joussen, A.M., Rohrschneider, K., Reichling, J., et al. Treatment of corneal neovascularization with dietary isoflavonoids and flavonoids. Exp Eye Res,2000,71(5):483-487.
    [14]Bagli, E., Stefaniotou, M., Morbidelli, L., et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity. Cancer Res,2004,64(21):7936-7946.
    [15]Liu, J., Sukhova, G.K., Yang, J.T., et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis,2006,184(2):302-311.
    [16]Trochon, V, Mabilat-Pragnon, C., Bertrand, P., et al. Hyaluronectin blocks the stimulatory effect of hyaluronan-derived fragments on endothelial cells during angiogenesis in vitro. FEBS Lett,1997, 418(l-2):6-10.
    [17]Ende, C. and Gebhardt, R. Inhibition of matrix metalloproteinase-2 and -9 activities by selected flavonoids. Planta Med,2004,70(10):1006-1008.
    [18]Rupnick, M.A., Panigrahy, D., Zhang, C.Y., et al. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A,2002,99(16):10730-10735.
    [19]Sato, K., Tsuchihara, K., Fujii, S., et al. Autophagy is activated in colorectal cancer cells and contributes to the tolerance to nutrient deprivation. Cancer Res,2007,67(20):9677-9684.
    [20]Xu, J., Rodriguez, D., Petitclerc, E., et al. Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol,2001,154(5):1069-1079.
    [21]Yang, M., Sun, J., Zhang, T., et al. Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler Thromb Vasc Biol,2008, 28(12):2202-2208.
    [22]Shi, GP., Sukhova, G.K., Kuzuya, M., et al. Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ Res,2003,92(5):493-500.
    [1]Xu, H., Barnes, G.T., Yang, Q., et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest,2003,112(12):1821-1830.
    [2]Schuster, D.P. Obesity and the development of type 2 diabetes:the effects of fatty tissue inflammation. Diabetes Metab Syndr Obes,2010,3:253-262.
    [3]Zick, Y. Ser/Thr phosphorylation of IRS proteins:a molecular basis for insulin resistance. Sci STKE, 2005,2005(268):pe4.
    [4]Pang, C., Gao, Z., Yin, J., et al. Macrophage infiltration into adipose tissue may promote angiogenesis for adipose tissue remodeling in obesity. Am J Physiol Endocrinol Metab,2008,295(2):E313-322.
    [5]Kintscher, U., Hartge, M., Hess, K., et al. T-lymphocyte infiltration in visceral adipose tissue:a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol,2008,28(7):1304-1310.
    [6]Skoura, A., Sanchez, T., Claffey, K., et al. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J Clin Invest,2007,117(9):2506-2516.
    [7]Osborn, O. and Olefsky, J.M. The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med,2012,18(3):363-374.
    [8]Sica, A. and Mantovani, A. Macrophage plasticity and polarization:in vivo veritas. J Clin Invest,2012, 122(3):787-795.
    [9]Lumeng, C.N., Bodzin, J.L., and Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest,2007, 117(1):175-184.
    [10]Ouchi, N., Parker, J.L., Lugus, J.J., et al. Adipokines in inflammation and metabolic disease. Nat Rev Immunol,2011,11(2):85-97.
    [11]Eckel, R.H. Obesity. Circulation,2005, 111(15):e257-259.
    [12]Sun, S., Ji, Y., Kersten, S., et al. Mechanisms of inflammatory responses in obese adipose tissue. Annu Rev Nutr,2012,32:261-286.
    [1]Liu, J., Divoux, A., Sun, J., et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med,2009,15(8):940-945.
    [2]Reynolds, J.E.F., Prasad, A.B. (eds.) Martindale-The Extra Pharmacopoeia.28th ed. London:The Pharmaceutical Press,1982,1448.
    [3]USP Convention, (eds.) USPDI-Drug Information for the Health Care Professional.16th ed. Volume I. Rockville, MD:U.S. Pharmaceutical Convention, Inc.1996 (Plus updates),1106.
    [4]Okayama, Y., Benyon, R.C., Rees, P.H., et al. Inhibition profiles of sodium cromoglycate and nedocromil sodium on mediator release from mast cells of human skin, lung, tonsil, adenoid and intestine. Clin Exp Allergy,1992,22(3):401-409.
    [5]Theoharides, T.C., Patra, P., Boucher, W., et al. Chondroitin sulphate inhibits connective tissue mast cells. Br J Pharmacol,2000,131(6):1039-1049.
    [6]Weng, Z., Zhang, B., Asadi, S., et al. Quercetin is more effective than cromolyn in blocking human mast cell cytokine release and inhibits contact dermatitis and photosensitivity in humans. PLoS One, 2012,7(3):e33805.
    [7]Theoharides, T.C., Sismanopoulos, N., Delivanis, D.A., et al. Mast cells squeeze the heart and stretch the gird:their role in atherosclerosis and obesity. Trends Pharmacol Sci,2011,32(9):534-542.
    [8]Sismanopoulos, N., Delivanis, D.A., Alysandratos, K.D., et al. Mast cells in allergic and inflammatory diseases. Curr Pharm Des,2012,18(16):2261-2277.
    [9]Liu, J., Sukhova, G.K., Yang, J.T.,et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis,2006,184(2):302-311.
    [10]Rottem, M. and Mekori, Y.A. Mast cells and autoimmunity. Autoimmun Rev,2005,4(1):21-27.
    [11]Artuc, M., Hermes, B., Steckelings, U.M., et al. Mast cells and their mediators in cutaneous wound healing--active participants or innocent bystanders? Exp Dermatol,1999,8(1):1-16.
    [12]Crivellato, E., Nico, B., and Ribatti, D. Mast cells and tumour angiogenesis:new insight from experimental carcinogenesis. Cancer Lett,2008,269(1):1-6.
    [13]Nechushtan, H. The complexity of the complicity of mast cells in cancer. Int J Biochem Cell Biol, 2010,42(5):551-554.
    [14]Sun J, Zhang J, Lindholt JS, et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 2009; 120:973-982.
    [15]Johnson JL, Jackson CL, Angelini GD, et al. Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 1998; 18:1707-1715.
    [16]Saunders WB, Bayless KJ, Davis GE. MMP-1 activation by serine proteases and MMP-10 induces human capillary tubular network collapse and regression in 3D collagen matrices. J Cell Sci 2005; 118:2325-2340.
    [17]Yang, M., Zhang, Y., Pan, J., et al. Cathepsin L activity controls adipogenesis and glucose tolerance. Nat Cell Biol,2007,9(8):970-977.
    [18]Yang, M., Sun, J., Zhang, T., et al. Deficiency and inhibition of cathepsin K reduce body weight gain and increase glucose metabolism in mice. Arterioscler Thromb Vasc Biol,2008,28(12):2202-2208.
    [19]Shi, G.P., Sukhova, G.K., Kuzuya, M., et al. Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ Res,2003,92(5):493-500.
    [1]Reporting standards in venous disease. Prepared by the Subcommittee on Reporting Standards in Venous Disease, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery/North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg,1988, 8(2):172-181.
    [2]Meissner, M.H., Gloviczki, P., Bergan, J., et al. Primary chronic venous disorders. J Vasc Surg,2007, 46 Suppl S:54S-67S.
    [3]Hume, M. A venous renaissance? J Vasc Surg,1992,15(6):947-951.
    [4]Carpentier, P.H., Maricq, H.R., Biro, C., et al. Prevalence, risk factors, and clinical patterns of chronic venous disorders of lower limbs:a population-based study in France. J Vasc Surg,2004, 40(4):650-659.
    [5]Thomas, P.R., Nash, G.B., and Dormandy, J.A. White cell accumulation in dependent legs of patients with venous hypertension:a possible mechanism for trophic changes in the skin. Br Med J (Clin Res Ed),1988,296(6638):1693-1695.
    [6]Burnand, K.G., Whimster, I., Naidoo, A., et al. Pericapillary fibrin in the ulcer-bearing skin of the leg: the cause of lipodermatosclerosis and venous ulceration. Br Med J (Clin Res Ed),1982, 285(6348):1071-1072.
    [7]Herrick, S.E., Sloan, P., McGurk, M., et al. Sequential changes in histologic pattern and extracellular matrix deposition during the healing of chronic venous ulcers. Am J Pathol,1992,141(5):1085-1095.
    [8]Pappas, P.J., DeFouw, D.O., Venezio, L.M., et al. Morphometric assessment of the dermal microcirculation in patients with chronic venous insufficiency. J Vasc Surg,1997,26(5):784-795.
    [9]Higley, H.R., Ksander, G.A., Gerhardt, C.O., et al. Extravasation of macromolecules and possible trapping of transforming growth factor-beta in venous ulceration. Br J Dermatol,1995,132(1):79-85.
    [10]Leu, H.J. Morphology of chronic venous insufficiency--light and electron microscopic examinations. Vasa,1991,20(4):330-342.
    [11]Leu, A.J., Leu, H.J., Franzeck, U.K., et al. Microvascular changes in chronic venous insufficiency--a review. Cardiovasc Surg,1995,3(3):237-245.
    [12]Wilkinson, L.S., Bunker, C., Edwards, J.C., et al. Leukocytes:their role in the etiopathogenesis of skin damage in venous disease. J Vasc Surg,1993,17(4):669-675.
    [13]Bishop, J.E. Regulation of cardiovascular collagen deposition by mechanical forces. Mol Med Today, 1998,4(2):69-75.
    [14]Eklof, B., Rutherford, R.B., Bergan, J.J., et al. Revision of the CEAP classification for chronic venous disorders:consensus statement. J Vasc Surg,2004,40(6):1248-1252.
    [15]Lim, C.S. and Davies, A.H. Pathogenesis of primary varicose veins. Br J Surg,2009, 96(11):1231-1242.
    [16]Evans, C.J., Fowkes, F.G, Ruckley, C.V., et al. Prevalence of varicose veins and chronic venous insufficiency in men and women in the general population:Edinburgh Vein Study. J Epidemiol Community Health,1999,53(3):149-153.
    [17]Lee, A.J., Evans, C.J., Allan, P.L., et al. Lifestyle factors and the risk of varicose veins:Edinburgh Vein Study. J Clin Epidemiol,2003,56(2):171-179.
    [18]Robertson, L., Evans, C., and Fowkes, F.G Epidemiology of chronic venous disease. Phlebology, 2008,23(3):103-111.
    [19]Raffetto, J.D. and Khalil, R.A. Mechanisms of varicose vein formation:valve dysfunction and wall dilation. Phlebology,2008,23(2):85-98.
    [20]Alexander, C.J. The theoretical basis of varicose vein formation. Med J Aust,1972,1 (6):258-261.
    [21]Cotton, L.T. Varicose veins. Gross anatomy and development. Br J Surg,1961,48:589-598.
    [22]Labropoulos, N., Giannoukas, A.D., Delis, K., et al. Where does venous reflux start? J Vasc Surg, 1997,26(5):736-742.
    [23]Clarke, G.H., Vasdekis, S.N., Hobbs, J.T., et al. Venous wall function in the pathogenesis of varicose veins. Surgery,1992, 111(4):402-408.
    [24]Leu, H.J., Vogt, M., and Pfrunder, H. Morphological alterations of non-varicose and varicose veins. (A morphological contribution to the discussion on pathogenesis of varicose veins). Basic Res Cardiol,1979,74(4):435-444.
    [25]Vanhoutte, P.M., Corcaud, S., and de Montrion, C. Venous disease:from pathophysiology to quality of life. Angiology,1997,48(7):559-567.
    [26]Ascher, E., Jacob, T., Hingorani, A., et al. Expression of molecular mediators of apoptosis and their role in the pathogenesis of lower-extremity varicose veins. J Vasc Surg,2001,33(5):1080-1086.
    [27]Goldman, M.P. and Fronek, A. Anatomy and pathophysiology of varicose veins. J Dermatol Surg Oncol,1989,15(2):138-145.
    [28]Jones, G.T., Solomon, C., Moaveni, A., et al. Venous morphology predicts class of chronic venous insufficiency. Eur J Vasc Endovasc Surg,1999,18(4):349-354.
    [29]Lowell, R.C., Gloviczki, P., and Miller, V.M. In vitro evaluation of endothelial and smooth muscle function of primary varicose veins. J Vasc Surg,1992,16(5):679-686.
    [30]Porto, L.C., Azizi, M.A., Pelajo-Machado, M., et al. Elastic fibers in saphenous varicose veins. Angiology,2002,53(2):131-140.
    [31]Gandhi, R.H., Irizarry, E., Nackman, GB., et al. Analysis of the connective tissue matrix and proteolytic activity of primary varicose veins. J Vasc Surg,1993,18(5):814-820.
    [32]Travers, J.P., Brookes, C.E., Evans, J., et al. Assessment of wall structure and composition of varicose veins with reference to collagen, elastin and smooth muscle content. Eur J Vasc Endovasc Surg,1996,11 (2):230-237.
    [33]Barber, D.A., Wang, X., Gloviczki, P., et al. Characterization of endothelin receptors in human varicose veins. J Vasc Surg,1997,26(1):61-69.
    [34]Michiels, C., Arnould, T., Thibaut-Vercruyssen, R., et al. Perfused human saphenous veins for the study of the origin of varicose veins:role of the endothelium and of hypoxia. Int Angiol,1997, 16(2):134-141.
    [35]Laurikka, J.O., Sisto, T, Tarkka, M.R., et al. Risk indicators for varicose veins in forty-to sixty-year-olds in the Tampere varicose vein study. World J Surg,2002,26(6):648-651.
    [36]Bradbury, A., Evans, C., Allan, P., et al. What are the symptoms of varicose veins? Edinburgh vein study cross sectional population survey. BMJ,1999,318(7180):353-356.
    [37]Brand, F.N., Dannenberg, A.L., Abbott, R.D., et al. The epidemiology of varicose veins:the Framingham Study. Am J Prev Med,1988,4(2):96-101.
    [38]Naoum, J.J., Hunter, G.C., Woodside, K.J., et al. Current advances in the pathogenesis of varicose veins. J Surg Res,2007,141 (2):311-316.
    [39]Scott, T.E., LaMorte, W.W., Gorin, D.R., et al. Risk factors for chronic venous insufficiency:a dual case-control study. J Vasc Surg,1995,22(5):622-628.
    [40]Danielsson, G, Eklof, B., Grandinetti, A., et al. The influence of obesity on chronic venous disease. Vasc Endovascular Surg,2002,36(4):271-276.
    [41]Stvrtinova, V, Kolesar, J., and Wimmer, G Prevalence of varicose veins of the lower limbs in the women working at a department store. Int Angiol,1991,10(1):2-5.
    [42]Lee, A., Driscoll, D., Gloviczki, P., et al. Evaluation and management of pain in patients with Klippel-Trenaunay syndrome:a review. Pediatrics,2005,115(3):744-749.
    [43]Kihiczak, GG, Meine, J.G., Schwartz, R.A., et al. Klippel-Trenaunay syndrome:a multisystem disorder possibly resulting from a pathogenic gene for vascular and tissue overgrowth. Int J Dermatol, 2006,45(8):883-890.
    [44]Jacob, A.G, Driscoll, D.J., Shaughnessy, W.J., et al. Klippel-Trenaunay syndrome:spectrum and management. Mayo Clin Proc,1998,73(1):28-36.
    [45]Gordeuk, V.R., Sergueeva, A.I., Miasnikova, G.Y., et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood,2004,103(10):3924-3932.
    [46]Saiki, S., Sakai, K., Saiki, M., et al. Varicose veins associated with CADASIL result from a novel mutation in the Notch3 gene. Neurology,2006,67(2):337-339.
    [47]Mellor, R.H., Brice, G., Stanton, A.W., et al. Mutations in FOXC2 are strongly associated with primary valve failure in veins of the lower limb. Circulation,2007,115(14):1912-1920.
    [48]Aelvoet, G.E., Jorens, P.G., and Roelen, L.M. Genetic aspects of the Klippel-Trenaunay syndrome. Br J Dermatol,1992,126(6):603-607.
    [49]Perrotta, S., Nobili, B., Ferraro, M., et al. Von Hippel-Lindau-dependent polycythemia is endemic on the island of Ischia:identification of a novel cluster. Blood,2006,107(2):514-519.
    [50]Raffetto, J.D. and Khalil, R.A. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr Vasc Pharmacol,2008,6(3):158-172.
    [51]Pollack, A.A. and Wood, E.H. Venous pressure in the saphenous vein at the ankle in man during exercise and changes in posture. J Appl Physiol,1949, 1(9):649-662.
    [52]Recek, C. Conception of the venous hemodynamics in the lower extremity. Angiology,2006, 57(5):556-563.
    [53]Corcos, L., De Anna, D., Dini, M., et al. Proximal long saphenous vein valves in primary venous insufficiency. J Mal Vasc,2000,25(1):27-36.
    [54]Blanchemaison, P. [Significance of venous endoscopy in the exploration and the treatment of venous insufficiency of the legs]. J Mal Vasc,1992,17 Suppl B:109-112.
    [55]Van Cleef, J.F., Hugentobler, J.P., Desvaux, P., et al. [Endoscopic study of reflux of the saphenous valve]. J Mal Vasc,1992,17 Suppl B:113-116.
    [56]Corcos, L., Procacci, T., Peruzzi, G, et al. Sapheno-femoral valves. Histopathological observations and diagnostic approach before surgery. Dermatol Surg,1996,22(10):873-880.
    [57]Ono, T., Bergan, J.J., Schmid-Schonbein, G.W., et al. Monocyte infiltration into venous valves. J Vase Surg,1998,27(1):158-166.
    [58]Psaila, J.V. and Melhuish, J. Viscoelastic properties and collagen content of the long saphenous vein in normal and varicose veins. Br J Surg,1989,76(1):37-40.
    [59]Somers, P. and Knaapen, M. The histopathology of varicose vein disease. Angiology,2006, 57(5):546-555.
    [60]Michiels, C., Bouaziz, N., and Remacle, J. Role of the endothelium and blood stasis in the development of varicose veins. Int Angiol,2002,21(2 Suppl 1):18-25.
    [61]Wali, M.A., Dewan, M., and Eid, R.A. Histopathological changes in the wall of varicose veins. Int Angiol,2003,22(2):188-193.
    [62]Elsharawy, M.A., Naim, M.M., Abdelmaguid, E.M., et al. Role of saphenous vein wall in the pathogenesis of primary varicose veins. Interact Cardiovasc Thorac Surg,2007,6(2):219-224.
    [63]Wali, M.A. and Eid, R.A. Intimal changes in varicose veins:an ultrastructural study. J Smooth Muscle Res,2002,38(3):63-74.
    [64]London, N.J. and Nash, R. ABC of arterial and venous disease. Varicose veins. BMJ,2000, 320(7246):1391-1394.
    [65]Milroy, C.M., Scott, D.J., Beard, J.D., et al. Histological appearances of the long saphenous vein. J Pathol,1989,159(4):311-316.
    [66]Aunapuu, M. and Arend, A. Histopathological changes and expression of adhesion molecules and laminin in varicose veins. Vasa,2005,34(3):170-175.
    [67]Lee, S., Lee, W., Choe, Y., et al. Gene expression profiles in varicose veins using complementary DNA microarray. Dermatol Surg,2005,31(4):391-395.
    [68]Kim, D.I., Eo, H.S., and Joh, J.H. Identification of differentially expressed genes in primary varicose veins. J Surg Res,2005,123(2):222-226.
    [69]Hobeika, M.J., Thompson, R.W., Muhs, B.E., et al. Matrix metalloproteinases in peripheral vascular disease. J Vasc Surg,2007,45(4):849-857.
    [70]Libby, P. and Lee, R.T. Matrix matters. Circulation,2000,102(16):1874-1876.
    [71]Parks, W.C. Who are the proteolytic culprits in vascular disease? J Clin Invest,1999, 104(9):1167-1168.
    [72]Weber, A.J. and De Bandt, M. Angiogenesis:general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine,2000,67(5):366-383.
    [73]Ohtani, H. Stromal reaction in cancer tissue:pathophysiologic significance of the expression of matrix-degrading enzymes in relation to matrix turnover and immune/inflammatory reactions. Pathol Int,1998,48(1):1-9.
    [74]Halloran, B.G. and Baxter, B.T. Pathogenesis of aneurysms. Semin Vasc Surg,1995,8(2):85-92.
    [75]Libby, P. Molecular bases of the acute coronary syndromes. Circulation,1995,91(11):2844-2850.
    [76]Wali, M.A. and Eid, R.A. Changes of elastic and collagen fibers in varicose veins. Int Angiol,2002, 21(4):337-343.
    [77]Venturi, M., Bonavina, L., Annoni, F., et al. Biochemical assay of collagen and elastin in the normal and varicose vein wall. J Surg Res,1996,60(1):245-248.
    [78]Andreotti, L. and Cammelli, D. Connective tissue in varicose veins. Angiology,1979, 30(12):798-805.
    [79]Sansilvestri-Morel, P., Rupin, A., Badier-Commander, C., et al. Imbalance in the synthesis of collagen type Ⅰ and collagen type III in smooth muscle cells derived from human varicose veins. J Vasc Res,2001,38(6):560-568.
    [80]Jeanneret, C., Baldi, T., Hailemariam, S., et al. Selective loss of extracellular matrix proteins is linked to biophysical properties of varicose veins assessed by ultrasonography. Br J Surg,2007, 94(4):449-456.
    [81]Visse, R. and Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res,2003,92(8):827-839.
    [82]Galis, Z.S. and Khatri, J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis:the good, the bad, and the ugly. Circ Res,2002,90(3):251-262.
    [83]Raffetto, J.D. and Khalil, R.A. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol,2008,75(2):346-359.
    [84]Vartak, D.G and Gemeinhart, R.A. Matrix metalloproteases:underutilized targets for drug delivery. J Drug Target,2007,15(1):1-20.
    [85]Lim, C.S., Shalhoub, J., Gohel, M.S., et al. Matrix metalloproteinases in vascular disease--a potential therapeutic target? Curr Vasc Pharmacol,8(1):75-85.
    [86]Sansilvestri-Morel, P., Fioretti, F., Rupin, A., et al. Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins:does the skin reflect venous matrix changes? Clin Sci (Lond),2007,112(4):229-239.
    [87]Sansilvestri-Morel, P., Rupin, A., Jullien, N.D., et al. Decreased production of collagen Type Ⅲ in cultured smooth muscle cells from varicose vein patients is due to a degradation by MMPs:possible implication of MMP-3. J Vasc Res,2005,42(5):388-398.
    [88]Kowalewski, R., Sobolewski, K., Wolanska, M., et al. Matrix metalloproteinases in the vein wall. Int Angiol,2004,23(2):164-169.
    [89]Woodside, K.J., Hu, M., Burke, A., et al. Morphologic characteristics of varicose veins:possible role of metalloproteinases. J Vasc Surg,2003,38(1):162-169.
    [90]Kosugi, I., Urayama, H., Kasashima, F., et al. Matrix metalloproteinase-9 and urokinase-type plasminogen activator in varicose veins. Ann Vasc Surg,2003,17(3):234-238.
    [91]Gillespie, D.L., Patel, A., Fileta, B., et al. Varicose veins possess greater quantities of MMP-1 than normal veins and demonstrate regional variation in MMP-1 and MMP-13. J Surg Res,2002, 106(2):233-238.
    [92]Jacob, M.P., Cazaubon, M., Scemama, A., et al. Plasma matrix metalloproteinase-9 as a marker of blood stasis in varicose veins. Circulation,2002,106(5):535-538.
    [93]Badier-Commander, C, Verbeuren, T., Lebard, C., et al. Increased TIMP/MMP ratio in varicose veins:a possible explanation for extracellular matrix accumulation. J Pathol,2000,192(1):105-112.
    [94]Ishikawa, Y., Asuwa, N., Ishii, T., et al. Collagen alteration in vascular remodeling by hemodynamic factors. Virchows Arch,2000,437(2):138-148.
    [95]Parra, J.R., Cambria, R.A., Hower, C.D., et al. Tissue inhibitor of metalloproteinase-1 is increased in the saphenofemoral junction of patients with varices in the leg. J Vasc Surg,1998,28(4):669-675.
    [96]Sansilvestri-Morel, P., Nonotte, I., Fournet-Bourguignon, M.P., et al. Abnormal deposition of extracellular matrix proteins by cultured smooth muscle cells from human varicose veins. J Vasc Res, 1998,35(2):115-123.
    [97]Sayer, G.L. and Smith, P.D. Immunocytochemical characterisation of the inflammatory cell infiltrate of varicose veins. Eur J Vasc Endovasc Surg,2004,28(5):479-483.
    [98]Kakkos, S.K., Zolota, V.G., Peristeropoulou, P., et al. Increased mast cell infiltration in familial varicose veins:pathogenetic implications? Int Angiol,2003,22(1):43-49.
    [99]Yamada, T., Tomita, S., Mori, M., et al. Increased mast cell infiltration in varicose veins of the lower limbs:a possible role in the development of varices. Surgery,1996,119(5):494-497.
    [100]Badier-Commander, C., Couvelard, A., Henin, D., et al. Smooth muscle cell modulation and cytokine overproduction in varicose veins. An in situ study. J Pathol,2001,193(3):398-407.
    [101]Thulesius, O., Said, S., Shuhaiber, H., et al. Endothelial mediated enhancement of noradrenaline induced vasoconstriction in normal and varicose veins. Clin Physiol,1991,11(2):153-159.
    [102]Agu, O., Hamilton, G., Baker, D.M., et al. Endothelin receptors in the aetiology and pathophysiology of varicose veins. Eur J Vasc Endovasc Surg,2002,23(2):165-171.
    [103]Boisseau, M.R. Leukocyte involvement in the signs and symptoms of chronic venous disease. Perspectives for therapy. Clin Hemorheol Microcirc,2007,37(3):277-290.
    [104]Bergan, J.J., Schmid-Schonbein, G.W., Smith, P.D., et al. Chronic venous disease. N Engl J Med, 2006,355(5):488-498.
    [105]Saharay, M., Shields, D.A., Georgiannos, S.N., et al. Endothelial activation in patients with chronic venous disease. Eur J Vasc Endovasc Surg,1998,15(4):342-349.
    [106]Peschen, M., Lahaye, T., Hennig, B., et al. Expression of the adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insufficiency. Acta Derm Venereol,1999,79(1):27-32.
    [107]Pappas, P.J., Fallek, S.R., Garcia, A., et al. Role of leukocyte activation in patients with venous stasis ulcers. J Surg Res,1995,59(5):553-559.
    [108]Michiels, C., Arnould, T., and Remacle, J. Endothelial cell responses to hypoxia:initiation of a cascade of cellular interactions. Biochim Biophys Acta,2000,1497(1):1-10.
    [109]Takase, S., Bergan, J.J., and Schmid-Schonbein, G. Expression of adhesion molecules and cytokines on saphenous veins in chronic venous insufficiency. Ann Vasc Surg,2000,14(5):427-435.
    [110]Satoh, T., Sugama, K., Matsuo, A., et al. Histamine as an activator of cell growth and extracellular matrix reconstruction for human vascular smooth muscle cells. Atherosclerosis,1994,110(1):53-61.
    [111]Wali, M.A. and Eid, R.A. Smooth muscle changes in varicose veins:an ultrastructural study. J Smooth Muscle Res,2001,37(5-6):123-135.
    [112]Kockx, M.M., Knaapen, M.W., Bortier, H.E., et al. Vascular remodeling in varicose veins. Angiology,1998,49(11):871-877.
    [113]Brunner, F., Hoffmann, C., and Schuller-Petrovic, S. Responsiveness of human varicose saphenous veins to vasoactive agents. Br J Clin Pharmacol,2001,51(3):219-224.
    [114]Cario-Toumaniantz, C., Evellin, S., Maury, S., et al. Role of Rho kinase signalling in healthy and varicose human saphenous veins. Br J Pharmacol,2002,137(2):205-212.
    [115]Ducasse, E., Giannakakis, K., Chevalier, J., et al. Dysregulated apoptosis in primary varicose veins. Eur J Vase Endovasc Surg,2005,29(3):316-323.
    [116]Ducasse, E., Giannakakis, K., Speziale, F., et al. Association of primary varicose veins with dysregulated vein wall apoptosis. Eur J Vase Endovasc Surg,2008,35(2):224-229.
    [117]Ascher, E., Jacob, T., Hingorani, A., et al. Programmed cell death (Apoptosis) and its role in the pathogenesis of lower extremity varicose veins. Ann Vase Surg,2000,14(1):24-30.
    [118]Urbanek, T., Skop, B., Wiaderkiewicz, R., et al. Smooth muscle cell apoptosis in primary varicose veins. Eur J Vase Endovasc Surg,2004,28(6):600-611.
    [119]Bujan, J., Jimenez-Cossio, J.A., Jurado, F., et al. Evaluation of the smooth muscle cell component and apoptosis in the varicose vein wall. Histol Histopathol,2000,15(3):745-752.
    [120]Jurukova, Z. and Milenkov, C. Ultrastructural evidence for collagen degradation in the walls of varicose veins. Exp Mol Pathol,1982,37(1):37-47.
    [121]Horner, J., Fernandes, J., Fernandes, E., et al. Value of graduated compression stockings in deep venous insufficiency. Br Med J,1980,280(6217):820-821.
    [122]Geerts, W.H., Pineo, G.F., Heit, J.A., et al. Prevention of venous thromboembolism:the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest,2004,126(3 Suppl):338S-400S.
    [123]Mayberry, J.C., Moneta, GL., DeFrang, R.D., et al. The influence of elastic compression stockings on deep venous hemodynamics. J Vase Surg,1991,13(1):91-99; discussion 99-100.
    [124]Labropoulos, N., Leon, M., Nicolaides, A.N., et al. Superficial venous insufficiency:correlation of anatomic extent of reflux with clinical symptoms and signs. J Vase Surg,1994,20(6):953-958.
    [125]Fischer, R., Linde, N., Duff, C., et al. Late recurrent saphenofemoral junction reflux after ligation and stripping of the greater saphenous vein. J Vase Surg,2001,34(2):236-240.
    [126]Fischer, R., Chandler, J.G., De Maeseneer, M.G., et al. The unresolved problem of recurrent saphenofemoral reflux. J Am Coll Surg,2002,195(1):80-94.
    [127]Tessari, L., Cavezzi, A., and Frullini, A. Preliminary experience with a new sclerosing foam in the treatment of varicose veins. Dermatol Surg,2001,27(1):58-60.
    [128]Frullini, A. and Cavezzi, A. Sclerosing foam in the treatment of varicose veins and telangiectases: history and analysis of safety and complications. Dermatol Surg,2002,28(1):11-15.
    [129]Proebstle, T.M., Gul, D., Lehr, H.A., et al. Infrequent early recanalization of greater saphenous vein after endovenous laser treatment. J Vase Surg,2003,38(3):511-516.
    [130]Merchant, R.F., DePalma, R.G, and Kabnick, L.S. Endovascular obliteration of saphenous reflux:a multicenter study. J Vase Surg,2002,35(6):1190-1196.
    [131]Weiss, R.A. and Weiss, M.A. Controlled radiofrequency endovenous occlusion using a unique radiofrequency catheter under duplex guidance to eliminate saphenous varicose vein reflux:a 2-year follow-up. Dermatol Surg,2002,28(l):38-42.
    [132]Martinez, M.J., Bonfill, X., Moreno, R.M., et al. Phlebotonics for venous insufficiency. Cochrane Database Syst Rev,2005(3):CD003229.
    [133]Guilhou, J.J., Dereure, O., Marzin, L., et al. Efficacy of Daflon 500 mg in venous leg ulcer healing: a double-blind, randomized, controlled versus placebo trial in 107 patients. Angiology,1997, 48(1):77-85.
    [134]Struckmann, J.R. Clinical efficacy of micronized purified flavonoid fraction:an overview. J Vasc Res,1999,36 Suppl 1:37-41.
    [135]MacKay, D. Hemorrhoids and varicose veins:a review of treatment options. Altern Med Rev,2001, 6(2):126-140.
    [136]Nicolaides, A.N. From symptoms to leg edema:efficacy of Daflon 500 mg. Angiology,2003,54 Suppl 1:S33-44.
    [137]Canali, R., Comitato, R., Schonlau, F., et al. The anti-inflammatory pharmacology of Pycnogenol in humans involves COX-2 and 5-LOX mRNA expression in leukocytes. Int Immunopharmacol,2009, 9(10):1145-1149.
    [138]Andreozzi, G.M. Effectiveness of mesoglycan in patients with previous deep venous thrombosis and chronic venous insufficiency. Minerva Cardioangiol,2007,55(6):741-753.
    [139]Evans, J., Powell, J.T., Schwalbe, E., et al. Simvastatin attenuates the activity of matrix metalloprotease-9 in aneurysmal aortic tissue. Eur J Vasc Endovasc Surg,2007,34(3):302-303.
    [140]Treharne, G.D., Boyle, J.R., Goodall, S., et al. Marimastat inhibits elastin degradation and matrix metalloproteinase 2 activity in a model of aneurysm disease. Br J Surg,1999,86(8):1053-1058.
    [141]Abdul-Hussien, H., Hanemaaijer, R., Verheijen, J.H., et al. Doxycycline therapy for abdominal aneurysm:Improved proteolytic balance through reduced neutrophil content. J Vasc Surg,2009, 49(3):741-749.
    [142]Berti, P.J. and Storer, A.C. Alignment/phylogeny of the papain superfamily of cysteine proteases. J Mol Biol,1995,246(2):273-283.
    [143]Musil, D., Zucic, D., Turk, D., et al. The refined 2.15 A X-ray crystal structure of human liver cathepsin B:the structural basis for its specificity. EMBO J,1991,10(9):2321-2330.
    [144]Karrer, K.M., Peiffer, S.L., and DiTomas, M.E. Two distinct gene subfamilies within the family of cysteine protease genes. Proc Natl Acad Sci U S A,1993,90(7):3063-3067.
    [145]Wex, T., Levy, B., Wex, H., et al. Human cathepsins F and W:A new subgroup of cathepsins. Biochem Biophys Res Commun,1999,259(2):401-407.
    [146]Kominami, E., Ueno, T., Muno, D., et al. The selective role of cathepsins B and D in the lysosomal degradation of endogenous and exogenous proteins. FEBS Lett,1991,287(1-2):189-192.
    [147]Shi, G.P., Munger, J.S., Meara, J.P., et al. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. Journal of Biological Chemistry,1992, 267(11):7258-7262.
    [148]Authier, F., Mort, J.S., Bell, A.W., et al. Proteolysis of glucagon within hepatic endosomes by membrane-associated cathepsins B and D. J Biol Chem,1995,270(26):15798-15807.
    [149]Wang, P.H., Do, Y.S., Macaulay, L., et al. Identification of renal cathepsin B as a human prorenin-processing enzyme. J Biol Chem,1991,266(19):12633-12638.
    [150]Jutras, I. and Reudelhuber, T.L. Prorenin processing by cathepsin B in vitro and in transfected cells. FEBS Lett,1999,443(1):48-52.
    [151]Dunn, A.D., Crutchfield, H.E., and Dunn, J.T. Thyroglobulin processing by thyroidal proteases. Major sites of cleavage by cathepsins B, D, and L. J Biol Chem,1991,266(30):20198-20204.
    [152]Brix, K., Lemansky, P., and Herzog, V. Evidence for extracellularly acting cathepsins mediating thyroid hormone liberation in thyroid epithelial cells. Endocrinology,1996,137(5):1963-1974.
    [153]Nagaya, T., Murata, Y., Yamaguchi, S., et al. Intracellular proteolytic cleavage of 9-cis-retinoic acid receptor alpha by cathepsin L-type protease is a potential mechanism for modulating thyroid hormone action. J Biol Chem,1998,273(50):33166-33173.
    [154]Mort, J.S., Recklies, A.D., and Poole, A.R. Extracellular presence of the lysosomal proteinase cathepsin B in rheumatoid synovium and its activity at neutral pH. Arthritis Rheum,1984, 27(5):509-515.
    [155]Kominami, E., Kunio, I., and Katunuma, N. Activation of the intramyofibral autophagic-lysosomal system in muscular dystrophy. Am J Pathol,1987,127(3):461-466.
    [156]Baici, A., Lang, A., Horler, D., et al. Cathepsin B as a marker of the dedifferentiated chondrocyte phenotype. Ann Rheum Dis,1988,47(8):684-691.
    [157]Cataldo, A.M. and Nixon, R.A. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc Natl Acad Sci U S A,1990,87(10):3861-3865.
    [158]Takeda, A., Jimi, T., Wakayama, Y., et al. Demonstration of cathepsins B, H and L in xenografts of normal and Duchenne-muscular-dystrophy muscles transplanted into nude mice. Biochem J,1992, 288(Pt2):643-648.
    [159]Baici, A., Horler, D., Lang, A., et al. Cathepsin B in osteoarthritis:zonal variation of enzyme activity in human femoral head cartilage. Ann Rheum Dis,1995,54(4):281-288.
    [160]Libby, P. Changing concepts of atherogenesis. J Intern Med,2000,247(3):349-358.
    [161]Weisman, H.F. and Bulkley, B.H. Pathophysiology of atherosclerotic heart disease. Cardiol Clin, 1984,2(4):555-569.
    [162]Suzuki, K., Enghild, J.J., Morodomi, T., et al. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry,1990,29(44):10261-10270.
    [163]Henney, A.M., Wakeley, P.R., Davies, M.J., et al. Localization of stromelysin gene expression in atherosclerotic plaques by in situ hybridization. Proc Natl Acad Sci U S A,1991,88(18):8154-8158.
    [164]Woessner, J.F., Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodeling. FASEB J,1991,5(8):2145-2154.
    [165]Galis, Z.S., Muszynski, M., Sukhova, GK., et al. Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res,1994,75(1):181-189.
    [166]Liu, J., Sukhova, GK., Sun, J.S., et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol,2004,24(8):1359-1366.
    [167]Turk, V, Turk, B., and Turk, D. Lysosomal cysteine proteases:facts and opportunities. EMBO J, 2001,20(17):4629-4633.
    [168]Palermo, C. and Joyce, J.A. Cysteine cathepsin proteases as pharmacological targets in cancer. Trends Pharmacol Sci,2008,29(1):22-28.
    [169]Turk, B. Targeting proteases:successes, failures and future prospects. Nat Rev Drug Discov,2006, 5(9):785-799.
    [170]Lee, K.K. Discontinued drugs in 2005:pulmonary-allergy, dermatological, gastrointestinal and arthritis drugs. Expert Opin Investig Drugs,2006,15(12):1497-1505.
    [171]Kim, M.K., Kim, H.D., Park, J.H., et al. An orally active cathepsin K inhibitor, furan-2-carboxylic acid, 1-{1-[4-fluoro-2-(2-oxo-pyrrolidin-1-y1)-phenyl]-3-oxo-piperidin-4-ylcarbamoyl}-cyclohexyl)-amide (OST-4077), inhibits osteoclast activity in vitro and bone loss in ovariectomized rats. J Pharmacol Exp Ther,2006,318(2):555-562.
    [172]Aravind, B., Saunders, B., Navin, T., et al. Inhibitory effect of TIMP influences the morphology of varicose veins. Eur J Vasc Endovasc Surg,40(6):754-765.
    [173]Garcia-Touchard, A., Henry, T.D., Sangiorgi, G., et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vasc Biol,2005,25(6):1119-1127.
    [174]Lutgens, S.P., Cleutjens, K.B., Daemen, M.J., et al. Cathepsin cysteine proteases in cardiovascular disease. Faseb J,2007,21(12):3029-3041.
    [175]Cheng, X.W., Huang, Z., Kuzuya, M., et al. Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications. Hypertension,58(6):978-986.
    [176]Aikawa, E., Aikawa, M., Libby, P., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation,2009,119(13):1785-1794.
    [177]Sukhova, G.K., Zhang, Y., Pan, J.H., et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest,2003, 111(6):897-906.
    [178]Kitamoto, S., Sukhova, GK., Sun, J., et al. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation,2007, 115(15):2065-2075.
    [179]Liu, J., Sukhova, G.K., Yang, J.T., et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis,2006,184(2):302-311.
    [180]Jaffer, F.A., Kim, D.E., Quinti, L., et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation,2007, 115(17):2292-2298.
    [181]Platt, M.O., Ankeny, R.F., Shi, G.P., et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol,2007,292(3):H1479-1486.
    [182]Shi, G.P., Sukhova, G.K., Grubb, A., et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest,1999,104(9):1191-1197.
    [1]Meissner MH, Gloviczki P, Bergan J, et al. Primary chronic venous disorders. J Vasc Surg 2007; 46 Suppl S:54S-67S.
    [2]Lim CS, Davies AH. Pathogenesis of primary varicose veins. Br J Surg 2009; 96:1231-1242.
    [3]Alexander CJ. The theoretical basis of varicose vein formation. Med J Aust 1972; 1:258-261.
    [4]Labropoulos N, Giannoukas AD, Delis K, et al. Where does venous reflux start? J Vasc Surg 1997; 26: 736-742.
    [5]Raffetto JD, Khalil RA. Mechanisms of varicose vein formation:Valve dysfunction and wall dilation. Phlebology 2008; 23:85-98.
    [6]Libby P, Lee RT. Matrix matters. Circulation 2000; 102:1874-1876.
    [7]Aravind B, Saunders B, Navin T, et al. Inhibitory effect of TIMP influences the morphology of varicose veins. Eur J Vasc Endovasc Surg 2010; 40:754-765.
    [8]Raffetto JD, Khalil RA. Mechanisms of varicose vein formation:Valve dysfunction and wall dilation. Phlebology 2008; 23:85-98.
    [1]Libby, P. and Lee, R.T. Matrix matters. Circulation,2000,102(16):1874-1876.
    [2]Parks, W.C. Who are the proteolytic culprits in vascular disease? J Clin Invest,1999, 104(9):1167-1168.
    [3]Weber, A.J. and De Bandt, M. Angiogenesis:general mechanisms and implications for rheumatoid arthritis. Joint Bone Spine,2000,67(5):366-383.
    [4]Ohtani, H. Stromal reaction in cancer tissue:pathophysiologic significance of the expression of matrix-degrading enzymes in relation to matrix turnover and immune/inflammatory reactions. Pathol Int,1998,48(1):1-9.
    [5]Halloran, B.G. and Baxter, B.T. Pathogenesis of aneurysms. Semin Vasc Surg,1995,8(2):85-92.
    [6]MacSweeney, ST., Powell, J.T., and Greenhalgh, R.M. Pathogenesis of abdominal aortic aneurysm. Br J Surg,1994,81(7):935-941.
    [7]Libby, P. Molecular bases of the acute coronary syndromes. Circulation,1995,91(11):2844-2850.
    [8]Libby, P. Changing concepts of atherogenesis. J Intern Med,2000,247(3):349-358.
    [9]Sprague, A.H. and Khalil, R.A. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol,2009,78(6):539-552.
    [10]Sansilvestri-Morel, P., Rupin, A., Jullien, N.D., et al. Decreased production of collagen Type III in cultured smooth muscle cells from varicose vein patients is due to a degradation by MMPs:possible implication of MMP-3. J Vasc Res,2005,42(5):388-398.
    [11]Raffetto, J.D. and Khalil, R.A. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr Vasc Pharmacol,2008,6(3):158-172.
    [12]Sansilvestri-Morel, P., Fioretti, F., Rupin, A., et al. Comparison of extracellular matrix in skin and saphenous veins from patients with varicose veins:does the skin reflect venous matrix changes? Clin Sci (Lond),2007,112(4):229-239.
    [13]Ishikawa, Y., Asuwa, N., Ishii, T., et al. Collagen alteration in vascular remodeling by hemodynamic factors. Virchows Arch,2000,437(2):138-148.
    [14]Kowalewski, R., Sobolewski, K., Wolanska, M., et al. Matrix metalloproteinases in the vein wall. Int Angiol,2004,23(2):164-169.
    [15]Woodside, K.J., Hu, M., Burke, A., et al. Morphologic characteristics of varicose veins:possible role of metalloproteinases. J Vase Surg,2003,38(1):162-169.
    [16]Aravind, B., Saunders, B., Navin, T., et al. Inhibitory effect of TIMP influences the morphology of varicose veins. Eur J Vase Endovasc Surg,40(6):754-765.
    [17]Liu, J., Sukhova, GK., Sun, J.S., et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vase Biol,2004,24(8):1359-1366.
    [18]Garcia-Touchard, A., Henry, T.D., Sangiorgi, G., et al. Extracellular proteases in atherosclerosis and restenosis. Arterioscler Thromb Vase Biol,2005,25(6):1119-1127.
    [19]Lutgens, S.P., Cleutjens, K.B., Daemen, M.J., et al. Cathepsin cysteine proteases in cardiovascular disease. Faseb J,2007,21(12):3029-3041.
    [20]Cheng, X.W., Huang, Z., Kuzuya, M., et al. Cysteine protease cathepsins in atherosclerosis-based vascular disease and its complications. Hypertension,58(6):978-986.
    [21]Aikawa, E., Aikawa, M., Libby, P., et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation,2009,119(13):1785-1794.
    [22]Sukhova, G.K., Zhang, Y, Pan, J.H., et al. Deficiency of cathepsin S reduces atherosclerosis in LDL receptor-deficient mice. J Clin Invest,2003,111 (6):897-906.
    [23]Kitamoto, S., Sukhova, G.K., Sun, J., et al. Cathepsin L deficiency reduces diet-induced atherosclerosis in low-density lipoprotein receptor-knockout mice. Circulation,2007, 115(15):2065-2075.
    [24]Liu, J., Sukhova, GK., Yang, J.T., et al. Cathepsin L expression and regulation in human abdominal aortic aneurysm, atherosclerosis, and vascular cells. Atherosclerosis,2006,184(2):302-311.
    [25]Jaffer, F.A., Kim, D.E., Quinti, L., et al. Optical visualization of cathepsin K activity in atherosclerosis with a novel, protease-activatable fluorescence sensor. Circulation,2007, 115(17):2292-2298.
    [26]Platt, M.O., Ankeny, R.F., Shi, G.P., et al. Expression of cathepsin K is regulated by shear stress in cultured endothelial cells and is increased in endothelium in human atherosclerosis. Am J Physiol Heart Circ Physiol,2007,292(3):H1479-1486.
    [27]Shi, GP., Sukhova, GK., Grubb, A., et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J Clin Invest,1999,104(9):1191-1197.
    [28]Liu, J., Divoux, A., Sun, J., et al. Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med,2009,15(8):940-945.
    [29]Cheng, X.W., Kuzuya, M., Sasaki, T., et al. Increased expression of elastolytic cysteine proteases, cathepsins S and K, in the neointima of balloon-injured rat carotid arteries. Am J Pathol,2004, 164(1):243-251.
    [30]Cheng, X.W., Murohara, T., Kuzuya, M., et al. Superoxide-dependent cathepsin activation is associated with hypertensive myocardial remodeling and represents a target for angiotensin II type 1 receptor blocker treatment. Am J Pathol,2008,173(2):358-369.
    [1]Sayer GL, Smith PD. Immunocytochemical characterisation of the inflammatory cell infiltrate of varicose veins. Eur J Vasc Endovasc Surg 2004; 28:479-483.
    [2]Boisseau MR. Leukocyte involvement in the signs and symptoms of chronic venous disease. Perspectives for therapy. Clin Hemorheol Microcirc 2007; 37:277-290.
    [3]Sukhova GK, Shi GP, Simon DI, et al. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest 1998; 102: 576-583.
    [4]Signorelli, S.S., Malaponte, M.G., Di Pino, L., et al., Venous stasis causes release of interleukin 1 beta (IL-lbeta), interleukin 6 (IL-6) and tumor necrosis factor alpha (TNFalpha) by monocyte-macrophage. Clin Hemorheol Microcirc,2000.22(4):311-6.
    [5]Whiston, R.J., Hallett, M.B., Davies, E.V., et al., Inappropriate neutrophil activation in venous disease. Br J Surg,1994.81(5):695-8.
    [6]Bergan, J.J., Schmid-Schonbein, G.W., Smith, P.D., et al., Chronic venous disease. N EngI J Med, 2006.355(5):488-98.
    [7]Saharay, M., Shields, D.A., Georgiannos, S.N., et al., Endothelial activation in patients with chronic venous disease. Eur J Vasc Endovasc Surg,1998.15(4):342-9.
    [8]Peschen, M., Lahaye, T., Hennig, B., et al., Expression of the adhesion molecules ICAM-1, VCAM-1, LFA-1 and VLA-4 in the skin is modulated in progressing stages of chronic venous insufficiency. Acta Derm Venereol,1999.79(1):27-32.
    [9]Pappas, P.J., Fallek, S.R., Garcia, A., et al., Role of leukocyte activation in patients with venous stasis ulcers. J Surg Res,1995.59(5):553-9.
    [10]Jacob, M.P., Cazaubon, M., Scemama, A., et al., Plasma matrix metalloproteinase-9 as a marker of blood stasis in varicose veins. Circulation,2002.106(5):535-8.
    [11]Liu, J., Divoux, A., Sun, J., et al., Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med,2009.15(8):940-5.
    [12]Xu, J.M. and Shi, G.P., Emerging role of mast cells and macrophages in cardiovascular and metabolic diseases. Endocr Rev,2012.33(1):71-108.
    [13]Cheng XW, Kuzuya M, Sasaki T, et al. Increased expression of elastolytic cysteine proteases, cathepsins s and k, in the neointima of balloon-injured rat carotid arteries. Am J Pathol 2004; 164: 243-251.
    [14]Cheng XW, Obata K, Kuzuya M, et al. Elastolytic cathepsin induction/activation system exists in myocardium and is upregulated in hypertensive heart failure. Hypertension 2006; 48:979-987.
    [15]Sun J, Sukhova GK, Zhang J, et al. Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 2011; 31:2500-2508.
    [16]Libby P, Shi GP. Mast cells as mediators and modulators of atherogenesis. Circulation 2007; 115: 2471-2473.
    [17]Qin Y, Cao X, Guo J, et al. Deficiency of cathepsin S attenuates angiotensin II-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Cardiovasc Res 2012; 96:401-410.
    [18]Sun J, Sukhova GK, Zhang J, et al. Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice. Arterioscler Thromb Vasc Biol 2012; 32:15-23.
    [19]Ojdana D, Safiejko K, Milewski R, et al. Evaluation of the memory CD4+ and CD8+ T cells homeostasis during chronic venous disease of lower limbs. Folia Histochem Cytobiol 2009; 47: 471-477.
    [20]Pascual G, Mendieta C, Garcia-Honduvilla N, et al. TGF-betal upregulation in the aging varicose vein. J Vasc Res 2007; 44:192-201.
    [21]Libby P, Lee RT. Matrix matters. Circulation 2000; 102:1874-1876.
    [22]Michiels C, Arnould T, Janssens D, et al. Interactions between endothelial cells and smooth muscle cells after their activation by hypoxia. A possible etiology for venous disease. Int Angiol 1996; 15: 124-130.
    [23]Saarinen J, Kalkkinen N, Welgus HG, et al. Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase. J Biol Chem 1994; 269: 18134-18140.
    [24]Ghaderian SM, Lindsey NJ, Graham AM, et al. Pathogenic mechanisms in varicose vein disease:The role of hypoxia and inflammation. Pathology 2010; 42:446-453.
    [1]Liu, J., Sukhova, GK., Sun, J.S., et al., Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol,2004.24(8):1359-66.
    [2]Sun, J., Sukhova, GK., Yang, M., et al., Mast cells modulate the pathogenesis of elastase-induced abdominal aortic aneurysms in mice. J Clin Invest,2007.117(11):3359-68.
    [3]Shi, G.P., Sukhova, GK., Kuzuya, M., et al., Deficiency of the cysteine protease cathepsin S impairs microvessel growth. Circ Res,2003.92(5):493-500.
    [4]Qin Y, Cao X, Guo J, et al. Deficiency of cathepsin S attenuates angiotensin Ⅱ-induced abdominal aortic aneurysm formation in apolipoprotein E-deficient mice. Cardiovasc Res 2012; 96:401-410.
    [5]Huttunen M, Harvima IT. Mast cell tryptase and chymase in chronic leg ulcers:Chymase is potentially destructive to epithelium and is controlled by proteinase inhibitors. Br J Dermatol 2005; 152:1149-1160.
    [6]Sun J, Zhang J, Lindholt JS, et al. Critical role of mast cell chymase in mouse abdominal aortic aneurysm formation. Circulation 2009; 120:973-982.
    [7]Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78:539-552.
    [8]Liu J, Sukhova GK, Sun JS, et al. Lysosomal cysteine proteases in atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24:1359-1366.
    [9]Sansilvestri-Morel P, Rupin A, Jaisson S, et al. Synthesis of collagen is dysregulated in cultured fibroblasts derived from skin of subjects with varicose veins as it is in venous smooth muscle cells. Circulation 2002; 106:479-483.
    [10]Sansilvestri-Morel P, Rupin A, Jullien ND, et al. Decreased production of collagen type III in cultured smooth muscle cells from varicose vein patients is due to a degradation by MMPs:Possible implication of MMP-3. J Vasc Res 2005; 42:388-398.
    [11]Tchougounova E, Forsberg E, Angelborg G, et al. Altered processing of fibronectin in mice lacking heparin. A role for heparin-dependent mast cell chymase in fibronectin degradation. J Biol Chem 2001; 276:3772-3777.
    [12]Keski-Oja J, Lohi J, Tuuttila A, et al. Proteolytic processing of the 72,000-Da type IV collagenase by urokinase plasminogen activator. Exp Cell Res 1992; 202:471-476.
    [13]Zhang J, Sun J, Lindholt JS, et al. Mast cell tryptase deficiency attenuates mouse abdominal aortic aneurysm formation. Circ Res 2011; 108:1316-1327.
    [1]James, P.T., Leach, R., Kalamara, E., et al. The worldwide obesity epidemic. Obes Res,2001,9 Suppl 4:228S-233S.
    [2]Wu, Y. Overweight and obesity in China. BMJ,2006,333(7564):362-363.
    [3]Ferrante, A.W., Jr. Obesity-induced inflammation:a metabolic dialogue in the language of inflammation. J Intern Med,2007,262(4):408-414.
    [4]Barnes, S. and Prasain, J. Current progress in the use of traditional medicines and nutraceuticals. Curr Opin Plant Biol,2005,8(3):324-328.
    [5]Tormakangas, L., Vuorela, P., Saario, E., et al. In vivo treatment of acute Chlamydia pneumoniae infection with the flavonoids quercetin and luteolin and an alkyl gallate, octyl gallate, in a mouse model. Biochem Pharmacol,2005,70(8):1222-1230.
    [6]Chen, Y.K., Cheung, C., Reuhl, K.R., et al. Effects of green tea polyphenol (-)-epigallocatechin-3-gallate on newly developed high-fat/Westem-style diet-induced obesity and metabolic syndrome in mice. J Agric Food Chem,2011,59(21):11862-11871.
    [7]Ohyama, K., Furuta, C., Nogusa, Y., et al. Catechin-rich grape seed extract supplementation attenuates diet-induced obesity in C57BL/6J mice. Ann Nutr Metab,2011,58(3):250-258.
    [8]Babu, P.V., Si, H., Fu, Z., et al. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J Nutr,2012,142(4):724-730.
    [9]Kang, S.I., Shin, H.S., Kim, H.M., et al. Immature Citrus sunki peel extract exhibits antiobesity effects by beta-oxidation and lipolysis in high-fat diet-induced obese mice. Biol Pharm Bull,2012, 35(2):223-230.
    [10]Kim, O.Y., Lee, S.M., Do, H., et al. Influence of quercetin-rich onion peel extracts on adipokine expression in the visceral adipose tissue of rats. Phytother Res,2012,26(3):432-437.
    [11]Kobori, M., Masumoto, S., Akimoto, Y., et al. Chronic dietary intake of quercetin alleviates hepatic fat accumulation associated with consumption of a Western-style diet in C57/BL6J mice. Mol Nun-Food Res,2011,55(4):530-540.
    [12]Panchal, S.K., Poudyal, H., and Brown, L. Quercetin ameliorates cardiovascular, hepatic, and metabolic changes in diet-induced metabolic syndrome in rats. J Nutr,2012,142(6):1026-1032.
    [13]Kim, J.E., Son, J.E., Jang, Y.J., et al. Luteolin, a novel natural inhibitor of tumor progression locus 2 serine/threonine kinase, inhibits tumor necrosis factor-alpha-induced cyclooxygenase-2 expression in JB6 mouse epidermis cells. J Pharmacol Exp Ther,2011,338(3):1013-1022.
    [14]Mueller, M., Lukas, B., Novak, J., et al. Oregano:a source for peroxisome proliferator-activated receptor gamma antagonists. J Agric Food Chem,2008,56(24):11621-11630.
    [15]Puhl, A. C., Bernardes, A., Silveira, R. L., Yuan, J. et al., Mode of peroxisome proliferator-activated receptor gamma activation by luteolin. Mol. Pharmacol.2012,81,788-799.
    [16]Ding, L., Jin, D., and Chen, X. Luteolin enhances insulin sensitivity via activation of PPARgamma transcriptional activity in adipocytes. J Nutr Biochem,2010,21(10):941-947.
    [17]Ando, C., Takahashi, N., Hirai, S., et al. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett,2009, 583(22):3649-3654.
    [18]Lee, J.K., Kim, S.Y., Kim, Y.S., et al. Suppression of the TRIF-dependent signaling pathway of Toll-like receptors by luteolin. Biochem Pharmacol,2009,77(8):1391-1400.
    [19]Park, C.M., Jin, K.S., Lee, Y.W., et al. Luteolin and chicoric acid synergistically inhibited inflammatory responses via inactivation of PI3K-Akt pathway and impairment of NF-kappaB translocation in LPS stimulated RAW 264.7 cells. Eur J Pharmacol,2011,660(2-3):454-459.
    [20]Shao, L., Liu, K., Huang, F., et al. Opposite effects of quercetin, luteolin, and epigallocatechin gallate on insulin sensitivity under normal and inflammatory conditions in mice. Inflammation,2013, 36(1):1-14.
    [21]Gohel, M.S. and Davies, A.H., Choosing between varicose vein treatments:looking beyond occlusion rates. Phlebology,2008.23(2):51-2.
    [22]Raffetto JD, Khalil RA. Matrix metalloproteinases in venous tissue remodeling and varicose vein formation. Curr Vasc Pharmacol 2008; 6:158-172.
    [23]Qin Y, Shi GP. Cysteinyl cathepsins and mast cell proteases in the pathogenesis and therapeutics of cardiovascular diseases. Pharmacol Ther 2011; 131:338-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700