用户名: 密码: 验证码:
肝细胞癌AFPmRNA转染CD40配体活化的B细胞诱导抗肿瘤免疫的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     ①本研究拟构建AFP真核表达载体,体外转染CD40L活化的B淋巴细胞,制备AFP-B细胞瘤苗。诱导针对AFP特异性CTL免疫作用。初步探讨肿瘤非特异性抗原AFP作为靶点用于肝癌免疫治疗的可行性。
     ②利用肝癌细胞株Hepal-6总RNA转染CD40L活化的小鼠B细胞,探讨其诱导特异性细胞毒性T淋巴细胞(CTL)抗肿瘤免疫作用。
     方法
     ①利用密度梯度离心法从小鼠脾脏淋巴细胞悬液分离、纯化T、B淋巴细胞,并在CD40L和rmIL-4联合作用下活化B细胞。并利用流式细胞仪分析B淋巴细胞表面标志及主要组织相容性抗原的表达情况。
     ②利用RT-PCR克隆出目的基因AFPcDNA,定向插入pGEM4Z/A64质粒,从而制备成pGEM4Z/AFP/A64质粒。并经酶切,电泳鉴定。利用SpeI限制性内切酶使pGEM4Z/AFP/A64质粒进行线性化,在T7RNA聚合酶作用下,体外转录出AFPmRNA。
     ③随后将AFPmRNA转染入CD40L活化的B细胞,观察转染前后B细胞的表型变化。同时将转染的B淋巴细胞刺激T淋巴细胞诱导、扩增CTL,检测CTL杀伤活性及分泌IFN-γ的水平。
     ④提取肝癌细胞Hepal-6总RNA,然后转染活化B细胞,检测转染后各组B细胞表面APC标记及主要组织相容性抗原的表达情况。转染的B淋巴细胞刺激T淋巴细胞,诱导、扩增CTL,检测CTL杀伤活性及分泌IFN-γ的水平。
     结果
     ①CD40L和rmIL-4活化的B细胞表面分子CD40、CD86、CD80、H-2Kb及I-Ab表达流式检测阳性细胞数明显高于对照组,两组相比较p<0.05。活化的B细胞刺激T细胞的所测得光密度值高于对照组,两者比较p<0.05。
     ②成功构建AFP真核表达载体,酶切、电泳鉴定可见一清晰条带位于1800bp左右,与目的基因1818bp相符。利用Western blot方法可检测出有70kD左右的特异性蛋白条带,与目的基因蛋白分子量70kD相符。
     ③转染AFPmRNA的B细胞表面组织相容性分子及共刺激分子分别高于未转染组,两者比较(P<0.01)。转染活化的B细胞刺激T细胞增殖能力高于未转染组(P<0.01)。转染的B细胞诱导的特异性杀伤率高于未转染组,两者比较(P<0.01)。转染的B细胞刺激的T细胞产生的CTL分泌INF-γ的水平高于对照组(P<0.01)。
     ④提取的Hepal-6总RNA经琼脂糖凝胶电泳显示有28S、18S和5S三条带。转染总RNA的B细胞其表面组织相容性分子及共刺激分子表达高于小鼠肝细胞RNA组,两者相比较p<0.05;也明显高于脂质体对照组及空白对照组,与其相比较p<0.01。转染的B淋巴细胞刺激T细胞所测OD值高于对照组,与其比较有统计学意义。转染的B淋巴细胞诱导的特异性杀伤率高于对照组,两组比较(p<0.05)。转染的B细胞刺激产生CTL分泌INF-γ的水平显著高于对照组,两组相比较p<0.05。
     结论
     ①AFPmRNA转染活化的B淋巴细胞在体外能诱导产生针对AFP特异性CTL反应。
     ②以肝癌细胞Hepal-6总RNA转染的B淋巴细胞,也可有效诱导CTL杀伤肝癌细胞。为肝癌治疗提供了两种可能的新思路。
Objectives
     First, to construct AFP eukaryotic expression vector, then transcribe AFPmRNA and transfect it into B lymphocytes activated by CD40L in vitro for preparation of AFP-B cell vaccine. And induce specific CTL immunity against AFP.then discuss preliminary the feasibility of immunotherapy of hepatocellular carcinoma as a target for AFP.
     Second, Total RNA of Hepal-6,a hepatocelluar carcinoma cell line,were introduced into mouse B lymphocytes activated by CD40L,then study the antitumor effectivity of B lymphocytes in the context of inducing cytotoxic T lymphocytes (CTLs).
     Methods
     First, T and B lymphocytes were collected, isolated and purfied from mouse spleen lymphocytes by density gradient centrifugation method. B cells were initially activated by CD40L and rmIL-4. The expression of B cell markers and major histocomability complex (MHC) on cell surface were detected by FCM.
     Second, the goal gene AFPcDNA was cloned by RT-PCR. Insert cloned AFPcDNA into the plasmid pGEM4Z/A64 in the direction to create the plasmid pGEM4Z/AFP/A64. It was determined by enzyme digestion and electrophoretic analysis. Linearization of pGEM4Z/AFP/A64 with SpeI, then followed by in vitro transcription AFPmRNA with T7 RNA polymerase.
     Third, AFPmRNA was transfected into activated B lymphocytes. The expression of B cell surface markers was determined.CTL was obtained by stimulating T lymphocytes with transfected B lymphocytesd, and then the killing activity of CTL and the IFN-r secretion were quantified.
     Last, Total RNA was extracted from Hepal-6, and then it was transfected into B lymphocytes. The expressions of antigen presenting cell markers and major histocomability complex on cell surface were detected, and then the killing activity of CTL and the IFN-r secretion were quantified.
     Results
     First, The MHC and co-stimulating molecules(CD40,CD86,CD80,H-2Kb,I-Ab) expression of B lymphocytes activated by CD40L and rmIL-4 were higher than unactivated B cells(p<0.05). OD value of B cell activated stimulator T cell was higher than unactivated B cell group (p<0.05).
     Second, the vector pGEM4Z/AFP/A64 was constructed, and it was determined by enzyme digestion and electrophoretic analysis that a clear band at 1800bp position was showed, consistenting with the target gene 1818bp. A 70.0kD specific protein band was detected by Western blot; consistenting with molecular weight of the target protein.
     Third, the MHC and co-stimulating molecules expression of B lymphocytes transfected by AFPmRNA were higher than untransfected B cells, comparison between the two groups (p<0.01). OD value of transfected B cell stimulator T cell was higher than untransfected B cell group(p<0.05).The killing activity and IFN-y secretion of CTL after stimulation of AFPmRNA-transfected B lymphocyte was more significant than control group, comparison between the two groups (p<0.01).
     Last, Electrophoresis of the whole RNA extracted from Hepal-6 cells showed that 28s,18s and 5s bands. The MHC and co-stimulating molecules expression increased significantly higher than other groups after total RNA transfected, comparison with the concrol groups p<0.05. OD value of B lymphocyte transfected by total RNA stimulator T cell was higher than control groups.The killing activity and IFN-y secretion of CTL after stimulation of RNA-transfected B lymphocyte was more significant than control group (p<0.05).
     Conclusion
     First, B lymphocytes loaded with AFPmRNA can induce AFP-specific CTL in vitro.
     Second, HCC RNA-transfected B lymphocyte is capable of inducing anti-tumor effects through CTL response. It may present two potential pathways for future HCC treatment.
引文
1. Schultze JL, Grabbe S, von Berqwelt-Baildon MS.DCs and CD40-activated B cells:current and future avenues to cellular cancer immunotherapy.Trends [J] Immunol,2004,25(12):659~664.
    2. Svane IM,Soot ML,Buus S,et al.Clinical application of dendritic cells in cancer vaccination therapy[J].APMIS,2003,111 (7-8):818-834.
    3. Mu LJ, Gaudernack G, Saeboe-Larssen S, et al.Protocol for generation of clinical grade Mrna-transfected monocyte-derived dendritic cells for cancer vaccines [J].Scand J Immunol,2003,58(5):578-586.
    4. Holmoy T, Vartdal F. Cerebrospinal fluid T cells from multiple sclerosis patients recognize autologous Epstein-Barr virus-transformed B cells [J]. J Neurovirol, 2004,10(1):52-56.
    5. Eynon EE, Parker DC. Small B cells as antigen presenting cells in the induction of tolerance to soluble protein antigen [J].JExp Med,1992,175(1):131-138.
    6. Bennett SR, Carbone FR, Toy T, et al. B cells directly tolerize CD8+T cells [J]. J Exp Med,1998,188(11)1977-1983.
    7. Qin Z, Richter G, Schuler T, et al. B cells inhibit induction of T cell-dependent tumor immunity [J].Nat Med,1998,4(5):627-630.
    8. Lomo J, Blomhoff HK, Jacobsen S, et al.EInterleukin-13 in combination with CD40 ligand potently inhibits apoptosis in human B lymphocytes:upregulation of Bcl-xL and Mcl-1 [J].Blood,1997,89(12),4415-4424.
    9. Schultze JL, Michalak S, Seamon MJ, et al.CD40-activated human B cells:an alternative source of highly effcient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy [J].J Clin Invest, 1997,100(11):2757-2765.
    10. Lapointe R,Lapointe R,Bellemare-Pelletier A,et al.CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells[J].Cancer Res,2003,63(11):2836-2843.
    11. von Bergwelt-Baildon MS,Vonderheide RH,Maecker B, et al.Human primary and memory cytotoxic T lymphocyte responses are efficiently induced by means of CD40-activated B cells as antigen-presenting cells:potential for clinical application.Blood,2002,99(9):3319-3325.
    1. Yamashita T, Nakane A, Watanabe T, et al. Evidence that alpha-fetoprotein suppresses the immunological function in transgenic mice [J]. Biochem Biophys Res Commun,1994,201(3):1154-1159.
    2. Vollmer CM, Eilber FC, Butterfield LH, et al.Alpha-fetoprotein specific genetic immunotherapy for hepatocellular carcinoma[J]. Cancer Res,1999, 59(13):3064-3067.
    3. Butterfield LH, Ribas A, Meng WS, et al. T-Cell Responses to HLA-A*0201 Immunodominant Peptides Derived from alpha-fetoprotein in Patients with Hepatocellular Cancer [J]. Clinical Cancer Research,2003,9(1):5902-5908
    4. Hanke P, Rabe C, Serwe M, et al.Cirrhotic patients with or without hepatocellular carcinoma harbour AFP-specific T-lymphocytes that can be activated in vitro by human alpha-fetoprotein [J].Scand J Gastroenterol,2002,37(8):949-955.
    5. Butterfield LH, Koh A, Meng WS, et al.Generation of human T cell responses to an HLA-A2.1-restricted peptide epitope derived from alpha-fetoprotein [J].Cancer Res,1999,59(13):3134-3142.
    6. Meng WS, Butterfield LH, Ribas A, et al. Alpha-fetoprotein specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination [J]. Cancer Res,2001,61(24):8782-8786.
    7. Grimm CF, Ortmann D, Mohr L, et al.Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice[J].Gastroenterology,2000,119(4):1104-1112.
    8. Saenz Badillos J, Amin SPand Granstein RD.RNA as a tumor vacine:a review of the literature [J].Exp Dermatol,2001,10(3):143-154.
    9. Grunebach F,Muller MR,Nencioni A,et al.Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes [J].Gene Therapy,2003(5),10:367-374.
    10. Heiser A,Maurice MA,Yancey DR,et al.Human dendritic cells transfected with renal tumor RNA stimulate polyclonal Tcell responses against antigens expressed by primaryand metastatic tumors[J].Cancer Res,2001,61(8):3388-3393.
    11. Heiser A, Maurice MA, Yancey DR, et al.Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA [J].J Immunol,2001,166(5):2953-2960.
    12. Boczkowski D, Nair SK, Nam JH, et al, Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells [J].Cancer Res,2000,60(4):1028-1034.
    13. Kariko K,Kuo A,Barnathan ES,et al.Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA[J].Biochim Biophys Acta,1998,369(2):320-334.
    1. EI-Seraq HB, Rudolph KL.Hepatocellular carcinoma:epidemiology and molecular carcinogenesis [J].Gastroenterology,2007,132(7):2557-2576.
    2. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J].Cancer J Clin, 2005,55(2):74-108.
    3. Schultze JL, Grabbe S, von Berqwelt-Baildon MS.DCs and CD40-activated B cells:current and future avenues to cellular cancer immunotherapy.Trends [J] Immunol,2004,25(12):659~664.
    4. Svane IM,Soot ML,Buus S,et al.Clinical application of dendritic cells in cancer vaccination therapy[J].APMIS,2003,111 (7-8):818-834.
    5. Mu LJ, Gaudernack G, Saeboe-Larssen S, et al. A protocol for generation of clinical grade Mrna-transfected monocyte-derived dendritic cells for cancer vaccines [J].Scand J Immunol,2003,58(5):578-586.
    6. Schultze JL, Michalak S, Seamon MJ, et al. CD40-activated human B cells:an alternative source of highly effcient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy [J].J Clin Invest, 1997,100(11):2757-2765.
    7. Lapointe R,Lapointe R,Bellemare-Pelletier A,et al.CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells[J]. Cancer Res,2003,63(11):2836-2843.
    8. Saenz Badillos J, Amin SP and Granstein RD.RNA as a tumor vacine:a review of the literature [J].Exp Dermatol,2001,10(3):143-154.
    9. Grunebach F,Muller MR,Nencioni A,et al.Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes [J].Gene Therapy,2003(5),10:367-374.
    10. Heiser A,Maurice MA,Yancey DR,et al.Human dendritic cells transfected with renal tumor RNA stimulate polyclonal Tcell responses against antigens expressed by primaryand metastatic tumors[J].Cancer Res,2001,61(8):3388-3393.
    11. Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA [J]J Immunol,2001,166(5):2953-2960.
    12. Boczkowski D, Nair SK, Nam JH, et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells [J].Cancer Res,2000,60(4):1028-1034.
    13.Kariko K, Kuo A, Barnathan ES, et al. Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA[J].Biochim Biophys Acta,1998, 369(2):320-334.
    14. Yamashita T, Nakane A, Watanabe T, et al. Evidence that alpha-fetoprotein suppresses the immunological function in transgenic mice [J]. Biochem Biophys Res Commun,1994,201(3):1154-1159.
    15. Vollmer CM, Eilber FC, Butterfield LH, et al.Alpha-fetoprotein specific genetic immunotherapy for hepatocellular carcinoma[J]. Cancer Res,1999, 59(13):3064-3067.
    16. Butterfield LH, Ribas A, Meng WS, et al. T-Cell Responses to HLA-A*0201 Immunodominant Peptides Derived from alpha-fetoprotein in Patients with Hepatocellular Cancer [J]. Clinical Cancer Research,2003,9(1):5902-5908
    17. Hanke P, Rabe C, Serwe M, et al.Cirrhotic patients with or without hepatocellular carcinoma harbour AFP-specific T-lymphocytes that can be activated in vitro by human alpha-fetoprotein [J].Scand J Gastroenterol,2002,37(8):949-955.
    18. Butterfield LH, Koh A, Meng WS, et al.Generation of human T cell responses to an HL A-A2.1-restricted peptide epitope derived from alpha-fetoprotein [J].Cancer Res,1999,59(13):3134-3142.
    19. Meng WS, Butterfield LH, Ribas A, et al. Alpha-fetoprotein specific tumor immunity induced by plasmid prime-adenovirus boost genetic vaccination [J]. Cancer Res,2001,61(24):8782-8786.
    20. Grimm CF, Ortmann D, Mohr L, et al.Mouse alpha-fetoprotein-specific DNA-based immunotherapy of hepatocellular carcinoma leads to tumor regression in mice[J].Gastroenterology,2000,119(4):1104-1112.
    21. Xue Gang,Cheng Ying,Cao Yongkuan,et al. The effect of INF-γ gene modified dendritic cells on T cell proliferation and eradication of tumor cells[J]. Chinese Journal of General Surgery,2008,17(4):340-345.
    1. Ponsaerts p,Van Tendeloo VF,Berneman ZN.Cancer immunotherapy using RNA-loaded dendritic cells [J].Clin Exp Immunol,2003,134(3)378-384.
    2. Banchereau J, Steinman RM.Dendritic cells and the control of immunity [J].Nature,1998,392(19):245-252.
    3. Boczkowski D, Nair SK, Snyder D, et al. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo [J]. J Exp Med,1996, 184(2):465-472.
    4. EI-Seraq HB, Rudolph KL.Hepatocellular carcinoma:epidemiology and molecular carcinogenesis [J].Gastroenterology,2007,132(7):2557-2576.
    5. Parkin DM, Bray F, Ferlay J, et al. Global cancer statistics,2002[J].Cancer J Clin, 2005,55(2):74-108.
    6. Schultze JL, Grabbe S, von Berqwelt-Baildon MS.DCs and CD40-activated B cells:current and future avenues to cellular cancer immunotherapy.Trends [J] Immunol,2004,25(12):659~664.
    7. Svane IM,Soot ML,Buus S,et al.Clinical application of dendritic cells in cancer vaccination therapy[J].APMIS,2003,111 (7-8):818-834.
    8. Mu LJ, Gaudernack G, Saeboe-Larssen S, et al. A protocol for generation of clinical grade Mrna-transfected monocyte-derived dendritic cells for cancer vaccines [J].Scand J Immunol,2003,58(5):578-586.
    9. Schultze JL, Michalak S, Seamon MJ, et al. CD40-activated human B cells:an alternative source of highly effcient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy [J].J Clin Invest, 1997,100(11):2757-2765.
    10. Lapointe R,Lapointe R,Bellemare-Pelletier A,et al.CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen-presenting cells that can generate specific T cells[J].Cancer Res,2003,63(11):2836-2843.
    11. Saenz Badillos J, Amin SP and Granstein RD.RNA as a tumor vacine:a review of the literature [J].Exp Dermatol,2001,10(3):143-154.
    12. Grunebach F,Muller MR,Nencioni A,et al.Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes [J].Gene Therapy,2003(5),10:367-374.
    13. Heiser A,Maurice MA,Yancey DR,et al.Human dendritic cells transfected with renal tumor RNA stimulate polyclonal Tcell responses against antigens expressed by primaryand metastatic tumors[J].Cancer Res,2001,61(8):3388-3393.
    14. Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA [J].J Immunol,2001,166(5):2953-2960.
    15. Boczkowski D, Nair SK, Nam JH, et al. Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells [J].Cancer Res,2000,60(4):1028-1034.
    16. Kariko K, Kuo A, Barnathan ES, et al. Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA[J].Biochim Biophys Acta,1998, 369(2):320-334.
    17. Xue Gang,Cheng Ying,Cao Yongkuan,et al.The effect of INF-γ gene modified dendritic cells on T cell proliferation and eradication of tumor cells[J]. Chinese Journal of General Surgery,2008,17(4):340-345.
    1. Gong FL, Shen GX, Li ZY, et al. Medical Immunology.6th Edition. Beijing: Science Press,2004,374-394.
    2. Morgan EL, Weigle WO.The immune response in aged C57BL/6 mice.II.Characterization and reversal of a defect in the ability of aged spleen cells to respond to the adjuvant properties of Fc fragments [J]. J Immunol,1982, 129(1):36-39.
    3. Rosenberg SA,Eberlein TJ,Grimm EA,et al. Development of long-term cell lines and lymphoid clones reactive against murine and human tumors:a new approach to the adoptive immunotherapy of cancer[J]. Surgery,1982,92 (2):328-336.
    4. Rosenberg SA,Lotze MT,Muul LM,et al.A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone[J].N Engl J Med.1987,361(15):889-897.
    5. Rosenberg SA. Immunotherapy of cancer using interleukin 2:current status and future prospects [J]. Immunol Today,1988,9 (2):58-62.
    6. Dillman RO, Duma CM, Schiltz PM, et al. Intracavitary placement of autologous lymphokine-activated killer(LAK) cells after resection of recurrent gliblastoma[J].J Immunother,2004,27(5):398-404.
    7. Vujanovic NL, Herberman RB, Maghazachi AA, et al. Lymphokine-activated killer cells in rats.III.A simple method for the purification of large granular lymphocytes and their rapid expansion and conversion into lymphokine-activated killer cells [J].J Exp Med,1988,167(1):15-29.
    8. Wang ZH, Shen BZ, Shi L.IL-4 enhances antitumor effect of IL-2 induced A-NK Cells on human colon carcinoma [J]. World Chin JDigestol,2003, 11(9):1375-1377.
    9. Wang ZH, Zhao DL, Zhang CY, et al. Killing effect of IL-12-activated A-NK cells on human hepatocellular carcinoma HepG-2 cells in vitro [J].Chin J Oncol,2007,29(6):423-424.
    10. Rosenberg S A, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes [J].Science,1986, 233(4770):1318-1321.
    11. Santin AD, Hermonal PL, Ravngsl, et al. A Phenotypic and functional analysis of tumor-infiltrating lymphocytes compared with tumor-associated lymphocytes from ascitic fluid and peripheral blood lymphocytes in patients with advanced ovarian cancer [J].Gynecol Obstet Invest,2001,51(4):254-261.
    12. Terheyden P, Straten P, Brocher EB, et al.CD40-ligated dendritic cells effectively expand melanoma-specific CD8+CTLs and CD4+IFN-gamma-producing T cells from tumor-infiltrating lymphocytes[J].J Immunol,2000,164(12):6633-6639.
    13. Whiteside TL, Miescher S, MacDonald HR, et al. Separation of tumor-infiltrating lymphocytes from tumor cells in human solid tumors. A comparison between velocity sedimentation and discontinuous density gradients [J] J Immunol Methods, 1986,90(2):221-233.
    14. Friedl J, Stift A, Paolini P, et al. Tumor antigen pulsed dendritic cells enhance the cytolytic activity of tumor infiltrating lymphocytes in human hepatocellular cancer [J]. Cancer Biother Radiopharm,2000,15(5):477-486.
    15. Topalian SL, Muul LM, Solomon D, et al. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials[J]. J Immunol Methods,1987, 102(1):127-141.
    16. Fabbri M, Ridolfi R, Maltoni R, et al. Tumor infiltrating lymphocytes and continuous infusion interleukin-2 after metastasectomy in 61 patients with melanoma, colorectal and renal carcinoma[J].Tumori,2000,86(1):46-52.
    17. Wang ZY, Yu M, Zhang LG, et al. Effects of local immunotherapy against bladder carcinoma by tumor-infiltrating lymphocytes combined with interleukin (IL)-2 and/or IL-4[J].Chin JExp Surg,2004,21(3):275-277.
    18. Lu LQ, Liu JY, Zhang ZM, et al. A study of anti-mouse breast cancer activities of tumor infiltrating lymphocytes stimulated by dendritic cells in vitro [J].J Guangxi Med Uni,2008,25(3):364-367.
    19. Schmidt Wolf IG, Negrin RS, Kiem HP, et al. Use of a SGID mouse/human lymphoma model to evaluate cytokine induced killer cells with potent antitumor cell activity [J].J Exp Med,1991,174(1):139-149.
    20. Wang FS, Liu MX, Zhang B, et al. Antitumor activies of autologous cytokine-induced killer cells against hepatocellular carcinoma cells in vitro and in vivo [J].World J Gastroenterol,2002,8(3):464-468.
    21. Mehta BA, Schmidt-Wolf IG, Weissman IL, et al. Two pathway of exocytosis of cytoplasmic granule contents and target cell killing by cytokine induced CD3+CD56+killer cells [J]. Blood,1995,86(9):3493-3499.
    22. Linn YC, Wang SM, Hui KM. Comparative gene expression profiling of cytokine-induced killer cells in response to acute myloid leukemic and acute lymphoblastic leukemic stimulators using oligonucleotide arrays [J].Exp Hematol, 2005,33(6):671-681.
    23. Verneris MR, Kornacker M, Mailander V, et al. Resistance of ex vivo expanded CD3+CD56+T cell to Fas-mediated apoptosis [J].Cancer immunol immunothr, 2000,49(6):335-345.
    24. Ren H, Xing SX, Xu HW, et al. The proliferation profile in vitro and antitumor effects of CIK cells in vivo and in vitro [J].Chin J Cancer Biother,1999, 6(1):17-21.
    25. Shi M, Zhang B, Tang ZR, et al. Autologous cytokine-induced killer cell therapy in clinical trial phase I is safe in patients with primary hepatocellular carcinoma [J]. World J Gastroenterol,2004,10(8):1146-1151.
    26. Wang FS, Liu MX, Zhang B, et al. Antitumor activities of human autologous cytokine-induced killer (CIK) cells against hepatocellular carcinoma cells in vitro and in vivo[J]. World J Gastroenterol,2002,8(3):464-468.
    27. Yang XJ, Huang JA, Lei W, et al. Antitumor effects of co cultured dendritic cells and cytokine-induced killer cells on lung cancer in vitro and in vivo[J].Cancer,2006,25(11):1329-1333.
    28. Nagaraj S, Ziske C, Schmidt-Wolf IG Human cytokine-induced killer cells have enhanced in vitro cytolytic activity via non-viral interleukin-2 gene transfer [J]. Genet Vaccines Ther,2004,2(1):12.
    29. Marten A, Renoth S, von Lilienfeld-Toal M, et al. Enhanced lytic activity of cytokine-induced killer cells against multiple myeloma cells after co-culture with idiotype-pulsed dendritic cells [J].Haematologica,2001,86(10):1029-1037.
    30. French AR, Yokoyama WM. Natural killer cells and viral infections [J]. Curr Opin Immunol,2003,15(1):45-51.
    31. Smyth MJ, Hayakawa Y, Takeda K, et al. New aspects of natural killer cell surveillance and therapy of cancer [J].Nat Rev Cancer,2002,2(11):850-861.
    32. Tian ZG. NK cells in the new theory to explain major new disease [J].Chin J Immunol,2002,18(2):75-78.
    33. Raulet DH, Vance RE. Self-tolerance of natural killer cells [J]. Nat Rev Immunol, 2006,6(7):520-531.
    34. Yokoyama WM, Plougastel BF. Immune functions encoded by the natural killer gene complex [J]. Nat Rev Immunol,2003,3(4):304-316.
    35. Lanier L.NK cell recognition [J].Annu Rev Immunol,2005,23(1):225-274.
    36. O'Leary JG, Goodarzi M, Drayton DL, et al. T cell and B cell independent adaptive immunity mediated by natural killer cells [J].Nat Immnol,2006, 7(5):507-516.
    37. Cooper MA, Fehniger TA, Caligiuri MA. The biology of human natural killer cell substes [J].Trends Immunol,2001,22(11):633-640.
    38. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway [J].Nat Revimmunol.2002,2(10):735-747.
    39. Bellone G, Trinchieri G. Dual stimulatory and inhibitory effect of NK cell stimulatory factor/IL-12 on human hematopiesis [J].J Immunol,1994, 153(3):930-937.
    40. Fricese MA, Platten M, Lutx SZ, et al.MICA/NKG2D-mediated immunogene therapy of experimental gliomas[J]. Cancer Res,2003,63(24):8996-9006.
    41. Koh CY, Blamar BR, Geoge T, et al. Augmentation of antitumor effecta by NK cell inhibitory receptor blockade vitro and in vivo[J].Blood,2001, 97(10):3132-3137.
    42. Wang LX, Xu JX, Tan JP, et al. CD3AK cells and its antitumor mechanism of induction of a preliminary study [J]. Shanghai J Immunol,1997,17(6):350-351.
    43. Qin JG, Han LB, Han M, et al. CD3AK cells in vivo distribution by different infusion channels [J]. Chin J Cancer Biother,2001,8(2):146-147.
    44. Mo HS, Zhou ZW, Zeng QA, et al. Effect and Clinical Significance of Early Immune Function of Patients with Colorectal Cancer of Pre-operative chemotherapy Combination With Interferon and CD3AK Cells [J]. Cancer research and clinic.2002,14(6):382-383.
    45. Zhou GY, Zhao QY, Qin M, et al. A clinical observation of CD3AK cell adoptive immunotherapy of 76 cases advanced cancer [J].Shandong Med J, 2007,47(33):54-55.
    46. Takayama T, Sekine T, Makuuchi M, et al. Adoptive immunotherapy to lower postsurgical recurrence rates of hepatocelluar carcinoma:a randomized trial[J].Lancet,2000,356(9232):784-785.
    47. Feng DQ, Hang GH. The research of aCD3 AK injection in tumor cavity on human glioma treatment [J].J Guangxi Med Uni,2000,17(5):768-769.
    48. Zhang Z. Study on the treatment of head and neck cancer with CD3AK cell [J]. J Guangxi Med Uni,2000,17(6):1020-1022.
    49. Svane IM, Soot ML, Buus S, et al. Clinical application of dendritic cells in cancer vaccination therapy[J].APMIS,2003,111(7/8):818-834.
    50. Mu LJ, Gaudernack G, Saeboe-Larssen S, et al. A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines [J].Scand J Immunol,2003,58(5):578-586.
    51. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice.I.Morphology, quantization, and tissue distribution [J].J Exp Med, 1973,137(5):1142-1162.
    52. Santiago, Schwarz F, Positive and negative regulation of the myeloid dendritic cell lineage [J].JLeukoc Biol,1999,66(2):209-216.
    53. Caux C, Massacri C, Vanbervliet B, et al. CD34+hematopoietic progenitors from human cord blood differentiate along two independent dendritic cell pathways in response to granulocyte-macrophage colony-stimulating factor plus tumor necrosis factor alpha:II functional analysis [J]. Blood,1997,90(4):1458-1470.
    54. Hammond SA, Horohov D, Montelaro RC. Functional characterization of equine dendritic cells propagated ex vivo using recombinant human GM-CSF and recombinant equine IL-4[J]. Vet Immunol Immunopathol,1999,71 (3/4):197-214.
    55. Amold-Schild D, Hanau D and Spehner D, et al. Cutting edge:receptor-mediated endocytosis of heat shock proteins by professional antigen presenting cells [J].J Immunol,1999,162(7):3757-3760.
    56. Fujii S, Fujimoto K, Shimizu K, et al. Presentation of tumor antigens by phagocytic dendritic cell clusters generated from human CD34+hematopoietic progenitor cells induction of autologous cytotoxic T lymphocytes against leukemic cells in acute myelogenous leukemia patients[J]. Cancer Res, 1999,59(9):2150-2158.
    57. Ju DW, Tao Q, Lou G, et al. Interleukin 18 transfection enhances antitumor immunity induced by dendritic cell-tumor cell conjugates[J]. Cancer Res,2001,61(9):3735-3740.
    58. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class Ⅰ-restricted CTLs. Nature,1998,392(6671):86-89.
    59. Manjunath N, Shankar P, Wan J, et al. Effector differentiation is not prerequisite for generation of memory cytotoxic T lymphocytes [J].J Clin Invest,2001, 108(6):805-806.
    60. Scheicher C, Mehlig M and Zecher R, et al. Dendritic cells from mouse bone marrow:in vitro differentiation using low doses of recombinant granulocyte-macrophage colony-stimulating factor [J].J Immunol Methods,1992, 154(2):253-264.
    61. Inaba K, Inaba M, Romani N, et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophagecolony-stimulating factor[J]. J Immunol Med,1992, 176(6):1693-1702.
    62. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha [J].JExp Med,1994,179(4):1109-1118.
    63. Fujii S, Shimizu K, Smith C, et al. Activation of natural killer T cells by alpha-galactosylceramide rapidly induces the full maturation of dendritic cells in vivo and thereby acts as an adjuvant for combined CD4 and CD8 T cell immunity to a coadministered protein [J].JExp Med,2003,198(2):267-279.
    64. Murphy G, Tjoa B and Ragde H, et al. Phase I clinical trial:T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen [J].Prostate,1996, 29(6):371-380.
    65. Itoh T, Ueda Y, Kawashima I, et al. Immunotherapy of solid cancer using dendritic cells pulsed with the HLA-A24-restricted peptide of carcinoembryonic antigen [J].Cancer Immunother,2002,51(2):99-106.
    66. Brossart P, Wirths S, Stuhler G, et al. Induction of cytotoxic T lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells[J].Blood,2000,96(9):3102-3108.
    67. Li YL, Wu YG, Wang YQ, et al. Bone marrow-derived dendritic cells pulsed with tumor lysates induce anti-tumor immunity against gastric cancer ex vivo [J].World J Gastroenterol,2008,14(46):7127-7132.
    68. Fry TJ, Shand JL, Milliron M, et al. Antigen loading of DCs with irradiated apoptotic tumor cells induces improved anti-tumor immunity compared to other approaches [J].Cancer ImmunolImmunother,2009,58(8):1257-1264.
    69. Parkhurst MR, Depan C, Riley JP, et al. Hybrids of dendritic cells and thmor cells generated by electrofusion simultaneously present immunodominant epitopes from multiple human tumor-associated antigens in the context of MHC-I and class II molecules[J]J Immunol,2003,170(10):5317-5325.
    70. Gabrijel M, Repnik U, Kreft M, et al. Quantification of cell hybridoma yields with confocal microscopy and flow cytometry[J].Biochem Biophys Res Commun,2004,314(3):717-723.
    71. Saenz BJ, Amin SP and Granstein RD.RNA as a tumor vacine:a review of the literature [J].Exp Dermatol,2001,10(3):143-154.
    72. Grunebach F, Muller MR and Nencioni A, et al. Delivery of tumor-derived RNA for the induction of cytotoxic T-lymphocytes [J].Gene Therapy,2003(5), 10:367-374.
    73. Heiser A, Maurice MA, Yancey DR, et al. Human dendritic cells transfected with renal tumor RNA stimulate polyclonal T cell responses against antigens expressed by primaryand metastatic tumors[J].Cancer Res,2001,61(8):3388-3393.
    74. Heiser A, Maurice MA, Yancey DR, et al. Induction of polyclonal prostate cancer-specific CTL using dendritic cells transfected with amplified tumor RNA [J].J Immunol,2001,166(5):2953-2960.
    75. Boczkowski D, Nair SK, Nam JH, et al, Induction of tumor immunity and cytotoxic T lymphocyte responses using dendritic cells transfected with messenger RNA amplified from tumor cells [J].Cancer Res,2000,60(4):1028-1034.
    76. Kariko K, Kuo A, Barnathan ES, et al. Phosphate-enhanced transfection of cationic lipid-complexed mRNA and plasmid DNA [J]. Biochim Biophys Acta, 1998,369(2):320-334.
    77. Eynon EE, Parker DC. Small B cells as antigen presenting cells in the induction of tolerance to soluble protein antigen [J].J Exp Med,1992,175(1):131-138.
    78. Bennett SR, Carbone FR, Toy T, et al. B cells directly tolerize CD8+T cells [J]. J Exp Med,1998,188(11)1977-1983.
    79. Qin Z, Richter G, Schuler T, et al. B cells inhibit induction of T cell-dependent tumor immunity [J].Nat Med,1998,4(5):627-630.
    80. Schultze JL, Michalak S, Seamon MJ, et al. CD40-activated human B cells:an alternative source of highly effcient antigen presenting cells to generate autologous antigen-specific T cells for adoptive immunotherapy [J].J Clin Invest, 1997,100:2757-2765.
    81. Schultze JL, Grabbe S, von Berqwelt-Baildon MS. DCs and CD40-activated B cells:current and future avenues to cellular cancer immunotherapy [J].Trends J Immunol,2004,25(12):659~664.
    82. Lapointe R, Bellemare PA, Housseau F, et al.CD40-stimulated B lymphocytes pulsed with tumor antigens are effective antigen presenting cells that can generate specific T cells [J].Cancer Res,2003,63(11):2836-2843.
    83. Kondo E, Topp MS, Kiem HP, et al. Efficient Generation of Antigen-Specific Cytotoxic T Cells Using Retrovirally Transduced CD40-Activated B Cells [J].J Immunol,2002,169(4):2164-2171.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700