用户名: 密码: 验证码:
基于形状记忆合金棒的脊柱侧凸矫形系列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     到目前为止,对于僵硬的脊柱侧凸患者,节段内全椎弓根螺钉技术的三维矫形效果已获得大大提高。但是,如果采用僵硬的钛棒,在严重脊柱侧凸患者的顶椎区域,容易出现一些并发症,如很难将僵硬的钛棒与椎弓根钉相连,应力集中,椎弓根钉拔出等并发症。另一方面,形状记忆合金在低温时较柔软,而当给予适当的温度,高于其相变温度时,将恢复到原始形状。该形变过程可用于辅助脊柱侧凸的矫形。尽管我们于2002年五月就开始采用形状记忆合金来行脊柱侧凸矫形手术,但目前尚无相关的生物力学分析,对既往的病例的临床及影像学效果也没有进行系统的回顾分析,对椎体的去旋转效果也没有进行量化研究。
     目的
     1.采用有限元分析的方法,对基于形状记忆合金脊柱侧凸矫形进行生物力学分析。
     2.对在我院采用形状记忆合金矫形的脊柱侧凸患者进行回顾性研究,评价该技术的临床及影像学结果;在矫治严重脊柱侧凸患者时,通过与传统僵硬的钛棒进行比较,探讨形状记忆合金的优势。
     3.前瞻性研究基于形状记忆合金的脊柱侧凸矫形方法在去旋转方面的效果
     方法
     1.采用患者脊柱的三维有限元模型模拟形状记忆合金棒矫治1例特发性脊柱侧凸病例。有限元模型的几何模型摘自三维CT重建,力学性能及参数通过查阅文献所得。基于形状记忆合金棒脊柱侧凸矫形的主要步骤都进行模拟,并将模拟计算结果与术后真实的CT重建结果进行比对。
     2.从2002年5月到2006年9月,在我院采用形状记忆合金矫治的38例脊柱侧凸患者(弯曲范围:50°到120°,其中22例患者超过70°)进行回顾性分析。在矫形过程中,形状记忆合金棒作为临时矫形工具,完成矫形后,用坚硬的钛合金棒进行替换。矫治效果,手术时间,出血量,并发症等均一一登记。对于严重的脊柱侧凸患者病例,选取弯曲类型,手术时的年龄,手术方法,融合节段与之相匹配的病例进行比较,SMA组14例,传统矫形技术16例。
     3.自2007年9月到2009年3月,前瞻性研究采用节段椎弓根钉内固定的患者30例,其中第一组(n=14)采用形状合金棒进行矫治,该组患者中主弯位于胸段的8例,腰段6例。第二组(n=16)采用单纯转棒技术,该组患者主弯位于胸段的9例,位于腰段的7例。所有患者均行术前术后CT检查评估顶椎椎体旋转。
     结果
     1.模拟结果显示基于形状记忆合金的脊柱侧凸矫形是一个真正的三维矫形技术,在该技术中,椎体被矫形的方向包括,冠状面、矢状面和轴向面。
     2.主弯Cobb角由术前的平均78.4°矫正到24.3°(整体矫正率为71.4%),16例主弯<70°,柔软系数为52.7%,术前Cobb角平均58.4°矫正到12.3°(矫正率78.9%);在22例主弯大于70°的患者,其柔软系统为25.6%,术前Cobb角平均94.1°矫正到30.1°(矫正率68.1%);在队列研究中,在SMA组,术前Cobb角平均92.6°,柔软系数25.5%,被矫正到29.4°,矫正率为68.4%。传统组,术前Cobb角平均88.6°,柔软系数29.3%,被矫正到37.2°,矫正率为57.8%。两组之间在冠状面上具有统计学差异。
     3.对主弯位于胸椎的患者,其中SMA组,术前AVR为16.2°矫正到7.5°,矫正率为50.4%。而转棒组从15.3°矫正到9.9°(34.8%),两组之间具有统计学差异(p<0.05);对主弯位于腰椎的患者,其中SMA组,术前AVR为26.2°矫正到13.7°,矫正率为47.6%。而转棒组从25.4°矫正到14.5°(42.8%),两组之间没有统计学差异(p>0.05);
     结论
     1.基于形状记忆合金棒的脊柱侧凸矫形是一个真正的三维矫形技术。
     2.术中临时应用形状记忆合金棒是一个安全有效的矫正脊柱侧凸的方法。术中临时应用记忆棒可减少手术时间,减少出血量,降低椎弓根失败的风险,同时提高在冠状面上的矫正率。
     3.基于形状记忆合金的脊柱侧凸矫形可提高胸椎的去旋转效果,而不能提高腰椎的去旋转效果。
Background
     Till now, the 3-demetional correction effects of severe rigid scoliosis were improved by whole segmental pedicle screws instruments. But, some shortcomings relate to the regular rigid rod, especially in the apex region of severe scoliosis, are obviously, such as the difficult of placing rigid rod into whole segmental pedicle screws, the concentration of stress, the pull-out of pedicle screws etc. On the other hand, shape memory spinal rod is characterized by its mallealbility at low temperatures and its ability to return to a preconfigured shape above its activation temperature. This process can be utilized to assist in the scoliosis correction. Though serial scoliosis patients were performed spinal correction with shape memory alloy from May,2002, no in vitro biomechanical analysis of the technique was performed, no systematic review was performed to envalue the clinical and radiographic effects, and no quantitative study was performed to evaluate the derotation effect.
     Objectives.
     1. A biomechanical analysis of shape memory alloy based scoliosis correction was performed by finite element analysis.
     2. A retrospective study of scoliosis patients that underwent shape memory alloy rod assisted correction was performed to evaluate the clinical and radiographic results of a temporary shape memory alloy rod in the correction of scoliosis, and the advantages of shape memory alloy rod were evaluated by comparing the clinical and radiographic results obtained from temporary using of shape memory alloy rod and those from rigid rod in the correction of severe scoliosis.
     3. A prospective study of shape memory alloy based scoliosis correction was performed to envaluate the derotation effects by comparing to single rod derotation.
     Methods.
     1. Shape memory alloy based scoliosis correction was simulated for 1 patient with idiopathic scoliosis using 3D finite element model (FEM) of the patient's entire spine. The geometry of the FEM was extracted from a 3D CT scan reconstruction, and mechanical properties were personalized from literatures. The main step of shape memory based scoliosis correction was simulated and the results were compared with the postoperative 3D CT scan reconstruction.
     2. From May 2002 to Sep 2006,38 scoliosis patients (range from 50°to 120°,22 cases over 70°) that underwent shape memory alloy assisted correction in our institute were reviewed. During the operation, a shape memory alloy rod served as a temporary correction tool. Following correction, the rod was replaced by a rigid rod. The correction rate, operative time, blood loss, and complications were documented. Patients with matched curve type, ages at surgery, operative methods, and fusion levels in our institute were instrumented with shape memory alloy rods (SMA) (n=14) and traditional correction techniques (n=16) were compared.
     3. From Sep 2007 to Mar 2009,30 patients with scoliosis were treated with segmental pedicle screw fixation were analyzed. The first group (n=14) was corrected by shape memory alloy, the major curve the patients located at thoracic spine in 8 patients, at lumbar spine in 6 patients. The second group (n=16) was treated by simple rod derotation, the major curve the patients located at thoracic spine in 9 patients, at lumbar spine in 7 patients. Both groups were evaluated for the deformity correction in coronal plane and sagittal plane, and the apical vertebral rotation was evaluated by computed tomography scans.
     Results.
     1. The results of simulation show that the shape memory alloy based scoliosis correction is a real 3D technique, in which the vertebrae were corrected in coronal plane, sagittal plane, and the axial plane.
     2. The major Cobb angle improved from an average 78.4°preoperatively to 24.3°postoperatively (total percent correction 71.4%). In 16 patients with a major curve <70°and flexibility of 52.7%, the deformity improved from 58.4°preoperatively to 12.3°postoperatively (percent correction 78.9%). In 22 patients with a major curve >70°and flexibility of 25.6%, the deformity improved from 94.1°preoperatively to 30.1°postoperatively (percent correction 68.1%). In the cohort study, in the SMA group, the pre-operative major curve was 92.6±13.7°with a flexibility of 25.5± 7.3% was corrected to 29.4±5.7°demonstrating a 68.4% immediate postoperative correction. In the traditional group, the pre-operative major curve was 88.6±14.6°with a flexibility of 29.3±6.6% was corrected to 37.2±7.3°demonstrating a 57.8% immediate postoperative correction. There was a statistic difference between the SMA group and traditional group in correction rate of the major thoracic curve.
     3. For patients with major curve at thoracic spine, in SMA group, the average preoperative apical vertebral rotation of 16.2°spine was corrected to 7.5°, showing 50.4% correction, whereas rod derotation group, the correction was from 15.3°to 9.9°(34.8%). There was statistically significant difference rotational correction (p< 0.05). For patients with major curve at lumbar spine, in SMA group, the average preoperative apical vertebral rotation of 26.2°pine was corrected to 13.7°, showing 47.6% correction, whereas rod derotation group, the correction was from 25.4°to 14.5°(42.8%). There was no statistically significant difference rotational correction (p > 0.05).
     Conclusions.
     1. The shape memory alloy based scoliosis correction is a real 3D technique.
     2. The temporary use of a shape memory rod is a safe and effective method to correct scoliosis, and the temporary use of shape memory alloy rod may reduce the operative time, blood loss, and decrease the failure rate of pedicle screws, while improve the correction of the coronal plane compared to standard techniques;
     3. Shape memory alloy based scoliosis correction can improve the derotation effect at thoracic spine, and can not at lumbar spine.
引文
1) Belytschko TB, Andriacchi TP, Schultz AB, et al. Analog studies of forces in the human spine:computational techniques. J Biomech 1973; 6(4):361-71.
    2) Schultz AB, Belytschko TB, Andriacchi TP, et al. Analog studies of forces in the human spine:mechanical properties and motion segment behavior. J Biomech 1973; 6(4):373-83.
    3) Schultz AB, Hirsch C. Mechanical analysis of Harrington rod correction of
    idiopathic scoliosis. J Bone Joint Surg Am 1973; 55(5):983-92.
    4) Schultz AB, Hirsch C. Mechanical analysis of techniques for improved correction of idiopathic scoliosis. Clin Orthop 1974; 100:66-73.
    5) Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech 1990; 23(6):589-95.
    6) Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis. Spine 1993; 18(16):2457-64.
    7) Stokes I, Gardner-Morse M. Simulation of surgical maneuvers with CD instrumentation. In:D'Amico M, Merolli A, Santambrogio GC, editors. Three dimensional analysis of spinal deformities. Amsterdam:IOS Press; 1995.
    8)汪正宇,刘祖德,王哲等.脊柱侧凸有限元模型的建立和参数优化.北京生物医学工程,2008,27(1):28-31,60.
    9)余慧琴,顾苏熙,李明等.脊柱侧凸三维有限元模型的建立及其意义.医用生物力学,2008,23(2):136-139
    10) Aubin CE. Scoliosis study using finite element models. Stud Health Technol Inform 2002; 91:309-13.
    11) Belytschko TB, Andriacchi TP, Schultz AB, et al. Analog studies of forces in the human spine:computational techniques, J. Biomech 1973.6:361-371.
    12) Schultz AB, Hirsch C. Mechanical analysis of Harrington rod correction of idiopathic scoliosis, J. Bone Joint Surg [Am] 1973,55:983-992.
    13) Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis, Spine 1993,18: 2457-2464,.
    14) Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine, Comput. Methods Biomech. Biomed. Eng 2003.,6:27-32,
    15) Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg.2004; 9(1-2):17-25.
    16) Lalonde NM, Aubin CE, Pannetier R, et al. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results. Stud Health Technol Inform.2008; 140:111-5.
    17) Drevelle X, Dubousset J, Lafon Y, et al. Analysis of the mechanisms of idiopathic scoliosis progression using finite. Stud Health Technol Inform 2008; 140:85-9.
    18) Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin.2005; 8(5):331-7.
    19) Liu CL, Kao HC, Wang ST, et al. Bio mechanical evaluation of a central rod system in the treatment of scoliosis. Clin Biomech (Bristol, Avon).1998; 13(7): 548-559.
    20) Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput.2004; 42(4):541-8.
    21) Carrier J, Aubin CE, Trochu F, et al. Optimization of rib surgery parameters for the correction of scoliotic deformities using approximation models. J Biomech Eng.2005; 127(4):680-91.
    22) Grealou L, Aubin CE, Sevastik JA, et al. Simulations of rib cage surgery for the management of scoliotic deformities. Stud Health Technol Inform.2002; 88: 345-9.
    23) Perie D, Aubin CE, Lacroix M, et al. Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Comput.2004; 42(3):339-44.
    24) Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J 2000; 9(3):185-90.
    25) Lafage V, Dubousset J, Lavaste F, et al. Finite element simulation of various strategies for CD correction. Stud Health Technol Inform 2002; 91:428-32.
    26) Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis. Spine (Phila Pa 1976) 2003,15; 28(4):364-70,371.
    27) Stokes IA, Gardner-Morse M. Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis. J Biomech.1991; 24(8):753-9.
    1) Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop 1988,227:10-23.
    2) Harrington PR. Treatment of scoliosis:correction and internal fixation by spine instrumentation. J Bone Joint Surg Am 1962,44:591-610.
    3) Labelle H, Dansereau J, Bellefleur C, et al. Comparison between preoperative and postoperative three-dimensional reconstructions of idiopathic scoliosis with the Cotrel-Dubousset procedure. Spine 1995,20:2487-92.
    4) Suk S, Lee CK, Kim W, et al. Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine 1995,20:1399-405.
    5) Szold A. Nitinol:shape-memory and super-elastic materials in surgery. Surg Endosc 2006,20:1493-1496.
    6) Bezzi M, Orsi F, Salvatori FM, et al. Self-expandable nitinol stent for the management of biliary obstruction:long-term clinical results. J Vasc Intervent Radiol 1994,5:287-93.
    7) Henry M, Amor M, Beyar R, et al. Clinical experience with a new nitinol selfexpanding stent in peripheral arteries. J Endovascular Surg 1996,3:369-79.
    8) Betz RR, Kim J, D'Andrea LP, et al. An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis:a feasibility, safety, and utility study. Spine 2003,28 (suppl):255-65.
    9) Braun JT, Hines JL, Akyuz E. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis. Spine 2006,15:1776-82
    10) Lu SB, Wang JF, Guo JF et al. Treatment of scoliosis with a shape-memory alloy rod. Zhonghua Wai Ke Za Zhi 1986,24:129-132,187.
    11) Bridwell KH. Surgical treatment of idiopathic adolescent scoliosis. Spine 1999, 24:2607-2616.
    12) Haher TR, Merola A, Zipnick RI, et al. Metaanalysis of surgical outcome in adolescent idiopathic scoliosis. A 35-year English literature review of 11,000 patients. Spine 1995,20:1575-84.
    13) Bridwell KH, Hanson DS, Rhee JM, et al. Correction of thoracic adolescent idiopathic scoliosis with segmental hooks, rods, and Wisconsin wires posteriorly: it's bad and obsolete, correct? Spine 2002,27:2059-66.
    14) Helenius I, Remes V, Yrjonen T, et al. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Joint Surg Am 2003,85:2303-9
    15) Liljenqvist U, Hackenberg L, Link TM, et al. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg 2001, 67:157-63.
    16) Schmerling MA, Wilkov MA, Sanders AE, et al. Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis. J Biomed Mater Res 1976, 10:879-892.
    17) Wever DJ, Elstrodt JA, Veldhuizen AG, et al. Scoliosis correction with shape-memory metal:results of an experimental study. Eur Spine J 2002, 11:100-106.
    18) Vieweg U, van Roost D, Wolf HK, et al. Corrosion on an internal spinal fixator system. Spine 1999,24:946-951.
    19) Wang JC, Yu WD, Sandhu HS, et al. Metal debris from titanium spinal implants. Spine 1999,24:899-903.
    1) Bradford DS, Tribus CB. Vertebral column resection for the treatment of rigid coronal decompensation. Spine 1997,22:1590-1599.
    2) Bridwell KH. Surgical treatment of idiopathic adolescent scoliosis. Spine 1999, 24:2607-2616.
    3) Lenke LG. Anterior endoscopic discectomy and fusion for adolescent idiopathic scoliosis. Spine 2003,28:S36-S43.
    4) Niemeyer T, Freeman BJC, Grevitt MP, et al. Anterior thoracoscopic surgery followed by posterior instrumentation and fusion in spinal deformity. Eur Spine J 2000,9:499-504.
    5) Tokunaga M, Minami S, Kitahara H, et al Vertebral decancellation for severe scoliosis. Spine 2000,25:469-474.
    6) Bullmann V, Halm HFH, Schulte T, et al. Combined anterior and posterior instrumentation in severe and rigid idiopathic scoliosis. Eur Spine J 2006,15: 440-448.
    7) Kuklo TR, Lenke LG, O'Brien MF, et al Accuracy and efficacy of thoracic pedicle screws in curves more than 90°. Spine 2005,30:222-6.
    8) Dobbs MB, Lenke LG, Kim YJ, et al. Anterior/posterior spinal instrumentation versus posterior instrumentation alone for the treatment of adolescent idiopathic scoliotic curves more than 90 degrees. Spine 2006,31:2386-91.
    9) Suk S, Kim JH, Cho KJ, et al. Is anterior release necessary in severe scoliosis treated by posterior segmental pedicle screw fixation. Eur Spine J 2007,16: 1359-1365.
    10) Wang Y, Zhang YG, Zhang XS. et al A single posterior approach for multilevel modified vertebral column resection in adults with severe rigid congenital kyphoscoliosis:a retrospective study of 13 cases. Eur Spine J 2008,17:361-72.
    11) Vieweg U, van Roost D, Wolf HK, et al. Corrosion on an internal spinal fixator system. Spine 1999,24:946-951.
    12) Wang JC, Yu WD, Sandhu HS, et al. Metal debris from titanium spinal implants. Spine 1999,24:899-903.
    1) Dubousset J, Cotrel Y. Application technique of Cotrel-Dubousset instrumentation for scoliosis deformities. Clin OrthopRelat Res 1991,264: 103-110.
    2) Stokes IA, Bigalow LC, Moreland MS. Three-dimensional spinal curvature in idiopathic scoliosis. J Orthop Res 1987,5:102-113.
    3) Cotrel Y, Dubousset J, Guillaumat M. New universal instrumentation in spinal surgery. Clin Orthop 1988; 227:10-23.
    4) Lee S, Suk S, Chung E. Direct vertebral rotation:A new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine 2004; 29:343-349.
    5) Parent S, Odell T, Oka R, et al. Does the direction of pedicle screw rotation affect the biomechanics of direct transverse plane vertebral derotation? Spine 2008; 33(18):1966-1969.
    6) Pollock FE. Idiopathic scoliosis:correction of lateral and rotational deformities using the Cotrel-Dubousset spinal instrumentation system. South Med J 1990; 83:161-5.
    7) Krismer M, Bauer R, Sterzinger W. Scoliosis correction by Cotrel-Dubousset instrumentation, the effect of derotation and three-dimensional correction. Spine 1992; 17:S263-9.
    8) Lenke LG, Bridwell KH, Baldus C, et al. Cotrel-Dubousset instrumentation for adolescent idiopathic scoliosis. J Bone Joint Surg Am 1992; 74:1056-67.
    9) Bridwell KH. Surgical treatment of adolescent idiopathic scoliosis:the basics and the controversies. Spine 1994; 19:1095-100.
    10) Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation. J Biomech 1994; 27:177-81.
    11) Perdriolle R, Vidal J. Morphology of scoliosis:three-dimensional evolution. Orthopedics 1987; 10:909-15.
    12) Asghar J, Samdani AF, Pahys JM, et al. Computed tomography evaluation of rotation correction in adolescent idiopathic scoliosis:A comparison of an all pedicle screw construct versus a hook-rod system. Spine 2009; 34:804-807.
    1) Buchler WJ. Effect of low-temperature phase changes on the moohaniol propertics alloys noar composition NiTi. Appl Phys 1963,34(9):1475-1481.
    2)张春才,邱长友,王晓雄.形状记忆合金与医学.冶金医药情报1991,8(2):65~68.
    3)鲍侃,达国祖.NiTi形状记忆合金内固定器械与不锈钢内固定器械的材料性能对比分析.实用骨科杂志2002,8(4):318~320.
    4) Slosarczyk A, Stobierska E, Paszkiewicz Z, et al. Calcium phosphate materials prepared form precipitates with various calcium:phosphorus molar ratios. Am Ceram Soc 1996,79(10):2539-2544.
    5) Osaka A, Miura Y, Takeuchi K, et al. Calcium apatite prepared from calcium hydroxide and orthophosphoric acid. Mater Sci:Mater Med.1991,2:51-55.
    6)薛淼.镍钛记忆合金的基础研究:(Ⅰ)模拟腐蚀试验.口腔医学1981,1(1):40~43.
    7) Kong H, Wilkinson JL, Coe JY, et al. Corrosive behaviour of Amplatzer devices in experimental and biological environments. Cardiol Young 2002; 12(3):260-5.
    8) Assad M, Lombardi S, Berneche S, et al. Assays of cytotoxicity of the Nickel-Titanium shape memory alloy. Ann Chir 1994,48(8):731-736.
    9)卢世璧,王继芳,郭锦芳.镍钛形状记忆合金棒在脊柱侧凸症矫正中的应用.中华外科杂志,1986,24(2):129~133.
    10) Armitage D A. Haemocompatibility of surface modified NiTi. USA:SMST-97,
    1997.
    11) Kapanen A, Ilvesaro J, Danilov A, et al. Behaviour of nitinol in osteoblast-like ROS-17-cell cultures. Biomaterials 2002,23:645-650.
    12) Putters JL, Kaulesar S, de Zeeuw GR, et al. Comparative cell culture effects of shape memory metal (Nitinol), nickel and titanium:a biocompatibility estimation. Eur Surg Res 1992; 24 (6):378-82.
    13) El Medawar L, Rocher P, Hornez JC, et al. Electrochemical and cytocompatibility assessment of NiTiNOL memory shape alloy for orthodontic use. Biomol Eng. 2002; 19(2-6):153-60.
    14) Thierry B, Tabrizian M, Trepanier C, et al. Effect of surface treatment and sterilization processes on the corrosion behavior of NiTi shape memory alloy. Biomed Mater Res 2000; 51 (4):685-693.
    15) Prince MR, Salzman EW, Schoen FJ, et al. Local intravascular effects of the nitinol wire blood clot filter. Invest Radiol 1988; 23(4):294-300.
    16) Latal D, Mraz J, Zerhau P, et al. Nitinol urethral stents:long-term results in dogs. Urol Res 1994,22(5):295-300.
    17) Grenadier E, Shofti R, Beyar M, et al. Self-expandable and highly flexible nitinol stent immediate and long-term results in dogs. Am Heart J 1994 128(5):870-878.
    18) Kapanen A, Ryhanen J, Danilov A, et al. Effect of nickel-titanium shape memory metal alloy on bone formation. Biomaterials,2001,22:2475-2480.
    19)王俊艳,梁玉,崔红梅.镍钛形状记忆合金与骨组织相容性的超微结构观察.天津医科大学学报2003,9(4):477-479.
    20) Guidoin R, Douville Y, Basle MF, et al. Biocompatibility studies of the Anaconda stent-graft and observations of nitinol corrosion resistance. Endovasc Ther 2004; 11(4):385-403.
    21) Balakrishnan N, Uvelius B, Zaszczurynski P, et al. Biocompatibility of nitinol and stainless steel in the bladder:an experimental study. Urol 2005,173(2):647-50.
    22) Matsumoto K, Tajima N, Kuwahara S. Correction of scoliosis with shape-memory alloy. Nippon Seikeigeka Gakkai Zasshi 1993 67(4):267-74.
    23) Schmerling MA, Wilkov MA, Sanders AE, et al. Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis. J Biomed Mater Res 1976,10: 879-892.
    24) Lu SB, Wang JF, Guo JF et al. Treatment of scoliosis with a shape-memory alloy rod. Zhonghua Wai Ke Za Zhi 1986.24:129-132,187.
    25) Sanders JO, Sanders AE, More R, et al. A preliminary investigation of shape memory alloys in the surgical correction of scoliosis. Spine 1993,18(12):1640-6.
    26) Wever DJ, Elstrodt JA, Veldhuizen AG, et al. Scoliosis correction with shape-memory metal:results of an experimental study. Eur Spin J 2002, 11 (2):100-6.
    27) Braun JT, Ogilvie JW, Akyuz E, et al. Fusionless scoliosis correction using a shape memory alloy staple in the anterior thoracic spine of the immature goat. Spine 2004; 29(18):1980-9.
    28) Betz RR, Kim J, D'Andrea LP, et al. An innovative technique of vertebral body stapling for the treatment of patients with adolescent idiopathic scoliosis:a feasibility, safety, and utility study. Spine 2003; 28(20):S255-265.
    29)靳安民,朱立新,童斌辉等.自制节段记忆合金固定器治疗腰椎峡部裂.第一军医大学学报2001;21(6):440-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700