用户名: 密码: 验证码:
生物矿化机制初探和人工骨材料的仿生制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米生物技术是纳米技术与生命科学的交叉,是在纳米尺度上形成的有关生命科学的纳米新技术和新方法。本文采用双膜扩散系统(DMDS)体外模拟了生物矿化,利用原子力显微镜(AFM)在纳米尺度研究了胶原的生物矿化行为。模拟生物矿化,采用脲酶法对羟基磷灰石基复合人工骨材料进行了仿生合成。制备了抗骨骼炎药物缓释材料——壳聚糖/羟基磷灰石-庆大霉素(CS/HA-G),并利用AFM从微观角度初步探讨药物对细菌的作用机制,同时还研究了抗生素对骨材料性能的影响。主要获得了以下具有创新性的结果:
     1.本文利用双膜扩散系统对生物矿化进行了体外模拟,并利用AFM对矿化过程中胶原纤维表面形貌及微观力学性能进行了探测。结果表明胶原纤维的矿化作用是一个分步自组装过程:在矿化初期,胶原的单体分子首先组装成较大的胶原纤维,这些胶原纤维再进一步组装成了大的纤维束,纤维束仅是胶原小纤维的疏松、无规则图案的聚集。到矿化中期,疏松聚集的胶原束组装成了有序结构,胶原纤维进一步聚集使得纤维束变得更紧密、更纤细,矿化胶原纤维呈现出了周期性的横纹条带,条带间距与天然胶原的周期性横纹一致。在矿化后期,由于羟基磷灰石(HA)在胶原纤维中的深度矿化,矿化胶原纤维直径和硬度均增大。AFM观察到了矿化初期和中期磷酸钙盐颗粒大小变化以及矿化后期磷酸钙盐颗粒的消失,为“高分子诱导的液相前体”理论提供了可视化证据。同时,AFM测量的结果表明,矿化胶原纤维表面周期性横纹条带的明带与暗带间高度差为2.4-4.3nm,比天然胶原纤维(约5nm)有所下降,它为Landis的“矿物质优先沉积于胶原纤维空隙(波谷)处”理论提供了实验数据。
     2.突破了传统共沉淀法的合成途径,模拟生物矿化行为,设计了脲酶法仿生制备人工骨材料壳聚糖/羟基磷灰石复合材料(CS/HA)以及胶原/羟基磷灰石复合材料(Coll/HA)。利用FTIR、TEM、XRD对两种复合材料进行了表征,同时采用激光衍射粒度分析仪(LDPSA)对材料的颗粒大小及粒径分布进行了分析;以万能材料试验机对材料的机械强度进行了测定;并对材料进行了降解实验。FTIR和XRD结果表明复合材料中HA为弱结晶;TEM和LDPSA结果表明与传统共沉淀法的制备产物相比,脲酶法制备的复合材料粉体颗粒更小,粒度分布更窄;万能材料试验机测得的复合材料的机械强度良好;降解实验结果表明材料具有良好的降解性能。
     3.制备了壳聚糖/羟基磷灰石-庆大霉素(CS/HA-G)缓释材料,对CS/HA-G进行体外缓释行为研究及抗菌实验;并利用AFM观察了细胞在药物作用前后表面形态结构的变化。结果表明,CS/HA-G的抑菌效果显著,维持有效释药时间长达30d以上。AFM观察显示药物作用于细菌菌体高度和表面平均粗糙度(Ra)均下降,有内容物渗漏。CS/HA-G的缓释作用和缓释规律显示出该材料在骨髓炎的防治中具有极大的临床应用潜能。
     4.为了研究抗生素对CS/HA材料性能的影响,本文采用共沉淀法制备了CS/HA-G缓释材料和CS/HA复合材料。利用红外光谱(IR)、X射线衍射(XRD)和扫描电子显微镜(SEM)对材料进行了表征。以不载药的CS/HA为对照,研究了庆大霉素对CS/HA复合材料抑菌性能、力学性能和降解性能等的影响。实验结果表明,CS/HA-G有良好的抑菌效果。负载庆大霉素后CS/HA的机械强度明显增强,而材料的降解速率有所下降。本文采用的二次成型技术显著增大了材料的机械强度。
     5.壳聚糖膜无论作为组织工程支架材料还是作为定向控释材料,其微观结构及微观力学性能都至关重要。而干燥条件是影响壳聚糖膜结构与性能的一个重要因素。本文以自然风干(NW)、真空干燥(VD)及红外干燥(ID)三种干燥方式制备了壳聚糖膜。并利用原子力显微镜(AFM)研究这三种壳聚糖膜的表面形貌及微观力学性能。实验结果表明VD和ID改善了膜材料的表面平整度,膜表面粗糙度分别为(5.47±1.34)和(2.79±0.93)nm,均显著低于NW膜((30.67±8.06)nm)。干燥条件对壳聚糖膜的微观力学性能有较大影响:ID壳聚糖膜的粘附力显著大于((2595±68.5) pN) NW壳聚糖膜((982.6±149.3)pN)和VD壳聚糖膜((1817.9±279.2)pN)。而ID壳聚糖膜的杨氏模量((158.8±15.2)MPa)则低于NW壳聚糖膜((204.3±22.7)MPa)和VD壳聚糖膜((195.8±14.6)MPa)。
     总之,本文利用纳米生物技术在纳米尺度对生物矿化进行了较为深入详细的研究分析,获得了大量有价值的实验数据与信息,为进一步研究生物矿化机制以及人工骨材料的仿生合成提供新的研究视角和思路。脲酶法所制备的HA基人工骨复合材料所显示的与天然骨相似的良好性能,表明这种新型仿生合成技术在骨组织工程中具有良好的应用前途。而CS/HA-G缓释材料的良好性能则显示了该材料在骨科临床应用的价值与潜力。未来,生物矿化及矿化仿生技术的进一步研究必将为骨组织工程的发展做出重大贡献。
Nanobiotechnology, as the cross-discipline of nanotechnology and life science, is a novel technology and approach to investigate life science at nanoscale level. In this paper, a dual membrane diffusion system (DMDS) was used to investigate the mineralization behaviour of collagen. Simulating the biomineralization, this paper applied a new route for preparing hydroxyapatite-based composite by enzymatic decomposition of urea. As a drug delivery system to cure osteomyelitis, chitosan/Hydroxyapatite-gentamicin was prepared for the treatment of osteomyelitis, and the antibacterial mechanism of antibiotic was detected with AFM. The effect of gentamicin on the composite material was investigated as well. From the results, we obtained a lot of valuable information shown as the following:
     1. A model dual membrane diffusion system was used to detect the mineralization behaviour of collagen. The process of mineralization was observed by atomic force microscope (AFM). The micromechanical properties and microstructure changes of collagen fibers in the process of mineralization suggested that the mineralization was a step-by-step assembling process. In the initial stage, when the supersaturated condition was created in the DMDS, monomeric collagen converted into larger fibrils. These mineralized fibrils self-assembled into loose-arrayed fibers, which has no typical cross-striation patterns. In the second stage, loose-arrayed fibers arranged closely with each other and further assembled into slenderer but tighter ones. It represented the typical cross-striation pattern, which was similar with nature collagen. In the final stage, the fibers became thicker and stiffer due to the further growth of HA crystal within collagen fibrils. The phenomenon that calcium phosphate solid-phase appeared in the initial-and medium-stage and disappeared in final-stage supported the hypothesis of "polymer-induced liquid-precursor mineralization process". Moreover, the difference in height between the peak and bottom in typical cross-striation patterns on collagen fibers was measured by AFM. The differenceinheight of nature collagen fiber was about 5 nm, while it was 2.4-4.3 nm on minerized collagen fiber. The structural investigation by AFM supplied new evidence on the hypothesis that HA preferentially grows into the hole zones and interstices of the collagen fiber as reported by Landis.
     2. Simulating the biomineralization, we applied a new route for preparing hydroxyapatite-based composite by enzymatic decomposition of urea. The composite materials were characterized by XRD, laser diffraction particle size analyzer, SEM and TEM. The results of FTIR and TEM indicated that chemical and crystallographic properties of the complex were similar to the properties of nature bone. Laser diffraction particle size measurement and SEM showed that the samples were of smaller particle size and narrower particle size distribution particle sizes than those prepared by traditional co-precipitation method. The degradation of the composite materials was investigated via simulation in vitro. The results showed that these materials had excellent degradability.
     3. Chitosan/Hydroxyapatite-Gentamicin (CS/HA-G) was prepared, and this drug delivery system (DDS) was tested in vitro release ratio and antibacterial activity against bacteria. We used AFM to probe the surface ultrastructure of bacteria before and after CS/HA-G treatment. The results showed that CS/HA-G had considerable delayed release effectivity. It maintained effective release time of gentamicin up to 30 d, and its inactivation against bacteria was remarkable. AFM ultrastructure images showed that the height and the Ra (average roughness) of cells were all decreased. The cell content leaked via damaged cellular membrane. The CS/HA composite is a promising local biodegradable delivery system for gentamicin in treating osteomyelitis.
     4. In order to investigate the effects of gentamicin on properties of hydroxyapatite/chitosan, CS/HA-G and CS/HA composites were prepared by co-precipitation method. The products were characterized by FTIR, XRD and SEM. This paper reported on comparison of chemical property and antibacterial activity between HA/CS-G and HA/CS. Comprising with HA/CS, HA/CS-G exhibitied much higher compressive strength and better antimicrobial activity. Moreover, molding technique of uniaxial pressure following cold isostatic pressure gave materials much higher compressive strength than technique of cold isostatic pressure. HA/CS-G can be used as an ideal gentamicin carrier and has great potential in osteomyelitis therapy.
     5. The microstructural and micromechanical properties of chitosan were very important for its bioapplications as scaffolds for tissue engineering or carrier for drug delivery. Different drying conditions greatly affected the microstructural and micromechanical properties of chitosan. Chitosan films were prepared by wet casting followed by vacuum drying (VD) and
引文
1. Wilde Y.D., Lemoine P.A.. Review of NSOM Microscopy for Materials [J]. AIP Conference Proceedings,2007,931-943.
    2. Muller D.J.. AFM:a nanotool in membrane biology [J]. Biochemistry,2008,47(31): 7986-7998.
    3. Binnig G., Rohrer H.. Scanning tunneling microscope. Helvetica Physica Acta,1982,55: 726-735.
    4. 白春礼.扫描隧道显微术及其应用[M].上海,上海科学技术出版社,1992.
    5.鲍幸峰,方积年.原子力显微镜在生物大分子结构研究中的应用进展[J].分析化学,2010,28:1300-1307.
    6. Binnig G., Quate C.F., Gerber C.. Atomic force microscope [J]. Physical Review Letters, 1986,56:930-933.
    7. Gould S., Marti O., Drake B., et al. Molecular Resolution Images of Amino Acid Crystals with the Atomic Force Microscope [J]. Nature,1988,332:332-334.
    8. Drake B., Prater C.B., Weisenhorn A.L., et al. Imaging crystals, polymers, and processes in water with the atomic force microscope [J]. Science,1989,243:1586-1589.
    9. Egger M., Ohnesorge F., Weisenhorn A.L., et al. Wet lipid-protein membranes imaged at submolecular resolution by atomic force microscopy [J]. Journal of Structural Biology, 1990,103:89-94.
    10. Butt H., Downing K.H., Hansma P.K.. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope [J]. Biophysical Journal,1990,58:1473-1480.
    11. Andreas E., Yuri L., Daniel M.. Atomic force microscopy:a powerful tool to observe biomolecules at work [J]. Trends in Cell Biology,9:77-80.
    12.田芳,李建伟,王琛等.原子力显微镜及其对DNA大分子的应用研究[J].物理,1997,26:238-243.
    13. Cross S.E., Jin Y.S., Rao J.Y., et al. Nanomechanical analysis of cells from cancer patients [J]. Nature Nanotechnology,2007,2:780-783.
    14. Stolz M., Gottardi R., Raiteri R., et al. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy [J]. Nature Nanotechnology,2009,4:144-145.
    15. Jin H., Xing X.B., Zhao H.X., et al. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope [J]. Biochemical and Biophysical Research Communications,2010,391(4):1698-1702.
    16. Hinterdorfer P., Dufrene Y.F.. Detection and localization of single molecular recognition events using atomic force microscopy [J]. Nat Methods.2006,3(5):347-355.
    17. Abu-Lail N.I., Camesano T.A.. Specific and nonspecific interaction forces between escherichia coli and silicon nitride, determined by Poisson statistical analysis [J]. Langmuir 2006,22:7296-7301
    18. Viani M.B., Pietrasanta L.I., Thompson J.B., et al. Probing protein-protein interactions in real time [J]. Nature Structural Biology,2000,7:644-647.
    19. Ando T., Kodera N., Takai E., et al. A high-speed atomic force microscope for studying biological macromolecules [J]. Proceedings of the National Academy of Science of the United States of America,2001,98:12468-12472.
    20. Heymann J.B., Muller D.J., Landau E., et al. Charting the surfaces of purple membrane [J]. Journal of Structural Biology,1999,128:243-249.
    21. Engel A., Schoenenberger C.A., Muller D.J.. High-resolution imaging of native biological sample surfaces using scanning probe microscopy [J]. Current Opinion in Structural Biology,1997,7:279-284.
    22.王英梅,李志强,陈敏等.原子力显微镜对天然猪皮胶原纤维精细结构的研究[J].中国皮革,2002,31(15):35-37.
    23. Ge J., Cui F.Z., Wang X.M., et al. New evidence of surface mineralization of collagen fibrils in wild type zebrafish skeleton by AFM and TEM [J]. Materials Science and Engineering C,2007,27:46-50.
    24.何晓青,蔡继业,赵涛,王小燕,梁志红.Ⅰ型胶原蛋白在云母表面自组装的AFM研究.生物技术,2004,14(2):35-37.
    25. Vinoy T., Derrick R.D., Moncy V.J., et al. Nanostructured Biocomposite Scaffolds Based on collagen coelectrospun with nanohydroxyapatite [J]. Biomacromolecules, 2007,8:631-637.
    26.王彬,蔡继业,夏科,梁志红,王小燕,陈勇.原子力显微镜对壳聚糖分形结构的研究[J].生物技术,2003,13(3):18-20.
    27.何晓青,王彬,蔡继业,冯倩,曾谷城,杨培慧,梁志红.AFM对壳聚糖富集银离子的分形学研究[J].辽宁师范大学学报(自然科学版),2004,27(2):176-179.
    28.马豫峰,蔡继业,杨培慧,陈勇.壳聚糖自组装复合修饰血红蛋白的研究[J].高分子材料科学与工程,2005,21(1):272-275.
    29.吴扬哲,蔡继业.纤维粘连蛋白的AFM[J].分析四川大学学报(自然科学版),2007,44(6):1354-1358.
    30. Strasser S., Zink A., Janko M., et al. Structural investigations on native collagen type I fibrils using AFM [J]. Biochemical and Biophysical Research Communications,2007, 354:27-32.
    1. Mann S., Calvert P.D.. Biotechnological horizons in biomineralization [J]. Trends in Biotechnology,1987,5(11):309-314.
    2. Leeuwenhoek A.. An extract of a letter from Mr. Anth. Van. Leeuwenhoek, containing several observations on the texture of the bones of animals compared with that of wood:on the bark of trees:on the little scales found on the cuticula,1693, J. R. Soc:838-843.
    3. Ehrlicha H., Hankea T., Borna R., et al. Mineralization of biomimetically carboxymethylated collagen fibrils in a model dual membrane diffusion system [J]. Journal of Membrane Science,2009,326:254-259.
    4. Zhai Y., Cui F.Z.. Formation of nano-hydroxyapatite on recombinant human-like collagen fibrils [J]. Current Applied Physics,2005,5:429-432.
    5. Kadler K.E., Holmes D.F., Trotter J.A., et al. Collagen fibril formation [J]. Biochemical Journal,1996,316:1-11.
    6. Zhang W., Liao S.S., Cui F.Z., Hierarchical self-assembly of nano-fibrils in mineralized collagen [J]. Chemistry of Materials,2003,15:3221-3226.
    7. Zhai Y, Cui F.Z., Cryst J.. Recombinant human-like collagen directed growth of hydroxyapatite nanocrystals [J]. Journal of Crystal Growth,2006,291:202-206.
    8. Cui F.Z., Li Y, Ge J.. Self-assembly of mineralized collagen composites [J]. Materials Science and Engineering R:Reports,2007,57:1-27.
    9. Liao,S. Xu G.F., Wang W., et al. Self-assembly of nano-hydroxyapatite on multi-walled carbon nanotubes [J]. Acta Biomaterials,2007,3:669-675.
    10. Wilson O.C., Hull J.R. Surface modification of nanophase hydroxyapatite with chitosan [J]. Material Science and Engineering C,2008,28:434-437.
    11. Jiang L.Y., Li Y.B., Zhang L., et al. Preparation and properties of a novel bone repair composite:nano-hydroxyapatite/chitosan/carboxymethyl cellulose [J]. Journal of Materials. Science:Materials in Medicine,2008,19(3):981-987.
    12. Thomas V., Dean D.R., Jose M.V., et al. Nanostructured Biocomposite Scaffolds Based on Collagen Coelectrospun with Nanohydroxyapatite [J]. Biomacromolecules,2007,8: 631-637.
    13. Whitesides G.M., Grzybowski B.. Self-assembly at all scales [J]. Science,2002,295: 2418-242.
    14. Weiner S.. Biomineralization:A structural perspective [J]. Journal of Structural Biology, 2008.163:229-234
    15. Gower L.B., Odom D.J.. Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process [J]. Journal of Crystal Growth,2000,210:719-734.
    16.黄兆龙,张伟,崔福斋.胶原/磷酸钙生物矿化的紫外吸收动力学研究[J].光谱学与光谱分析,2004,24(4):466-469.
    17.蒋挺大.胶原与胶原蛋白[M].北京:化学工业出版社,2006.
    18. Goh M.C., Paige M.F., Gale M.A., et al. Fibril formation in collagen [J]. Physica A,1997, 239:95-102.
    19. Ge J., Cui F.Z., Wang X.M., et al. New evidence of surface mineralization of collagen fibrils in wild type zebrafish skeleton by AFM and TEM [J]. Materials Science and Engineering C, 2007,27:46-50.
    20. Bozeca L., Grootb J.D., Odlyha M., et al. Atomic force microscopy of collagen structure in bone and dentine revealed by osteoclastic resorption [J]. Ultramicroscopy 105 (2005) 79-89.
    21.王英梅,李志强,陈敏等.原子力显微镜对天然猪皮胶原纤维精细结构的研究[J].中国皮革,2002,31(15):35-37.
    22. Landis W.J., Song M.J., Leith A., et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in 3 dimensions by high-voltage electron-microscopic tomography and graphic image-reconstruction [J]. Journal of Structural Biology,1993,110: 39-54.
    23. Olszta M.J., Cheng X.G., Jee S.S., et al. Bone structure and formation:A new perspective [J]. Materials Science and Engineering R,2007,58:77-116.
    24. Cross S.E., Jin Y.S., Rao J.Y., et al. Nanomechanical analysis of cells from cancer patients [J], Nature Nanotechnology,2007,2:780-783.
    25. Stolz M., Gottardi R., Raiteri R., et al. Early detection of aging cartilage and osteoarthritis in mice and patient samples using atomic force microscopy [J]. Nature Nanotechnology,2009, 4:144-145.
    26. Jin H., Xing X., Zhao H., et al. Detection of erythrocytes influenced by aging and type 2 diabetes using atomic force microscope [J]. Biochemical and Biophysical Research Communications,2010,391(4):1698-1702.
    27. Nehal I. A., Terri A. Camesano. Specific and nonspecific interaction forces between escherichia coli and silicon nitride, determined by poisson statistical analysis [J]. Langmuir, 2006,22:7296-7301.
    28. Hinterdorfer P, Dufrene YF. Detection and localization of single molecular recognition events using atomic force microscopy [J]. Nat Methods.2006,3(5):347-55.
    29. Wu Y.Z., Hu Y., Lu H.S., et al. Nano-mechanics and membrane receptor mapping of CDg8+T cells [J]. Current nanoscience,2009,5:465-469.
    30. Strasser S., Zink A., Janko M., et al. Structural investigations on native collagen type Ⅰ fibrils using AFM [J]. Biochemical and Biophysical Research Communications,2007,354:27-32.
    31. Sneddon I.N., The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile [J], International Journal of Engineering Science, 1965,3:47-57.
    32. Johnson K.L., Contact Mechanics [M], Cambridge University Press, Cambridge,1994.
    33. Domke J., Radmacher M.. Measuring the elastic properties of thin polymer films with the atomic force microscope [J]. Langmuir,1998,14:3320-3325.
    34. Webster T.J., Ergun C., Doremus R.H., et al. Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics [J]. Journal of Biomedical Materials Research,2000,51: 475-483.
    35. Satoa M., Slamovicha E.B., Webster T.J.. Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings [J]. Biomaterials.,2005,26:1349-1357.
    36. Yang D.Z., Jin Y, Zhou Y.S., et al. In Situ Mineralization of Hydroxyapatite on Electrospun Chitosan-Based Nanofibrous Scaffolds [J]. Macromolecular Bioscience,2008,8:239-246.
    37. Redey S.A., Nardin M., Bernache-Assolant D., et al. Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite:role of surface energy [J]. Journal of Biomedical Materials Research,2000,50:353-364.
    38. Chung T.W., Yang M.G., Liu D.Z., et al. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (epsilon-caprolactone) (PCL) surface with nanometer scale of surface disturbance [J]. Journal of Biomedical Materials Research A,2005,72: 213-219.
    39.张学骜,王建方,吴文健等.贝壳珍珠层生物矿化及其对仿生材料的启示[J].无机材料学报,2006,21(2):257-266.
    40. Wang Y., Cui F., Zhai Y., et al. Investigations of the initial stage of recombinant human-like collagen mineralization[J]. Materials Science and Engineering C,2006,26:635-638.
    1. Wahl D.A., Czernuszka J.T.. Collagen-hydroxyapatite composites for hard tissue repair [J]. European Cells and Materials,2006,11:43-56.
    2. Hench L.L.. Bioceramics:from concept to clinic [J]. Journal of The American Ceramic Society.,1991,74 (7),1487-1510.
    3. Cui F.Z., Li Y., Ge J.. Self-assembly of mineralized collagen composites [J]. Materials Science and Engineering R,2007,57:1-27.
    4.黄伟九,李兆峰.医用钛合金表面改性研究进展[J].材料导报,2006,20:369-379.
    5.薛卫昌,郑学斌,刘宣勇.经碱处理的等离子喷涂钛涂层的成骨性能研究[J].无机材料学报,2005,20(5):1275-1280.
    6. 巴凯,张静,王虎等.纳米颗粒钛膜对成骨细胞合成功能的影响[J].华西口腔医学杂志,2009,27(6):592-594.
    7.王磊,陈建治,唐建国等.纯钛表面微弧氧化膜的粗糙度与接触角[J].中国组织工程研究与临床康复,2009,13(42):8291-8294.
    8.施伟,黄飞.镍钛形状记忆合金加压骑缝钉在骨折内固定中的应用[J].徐州医学院学报,1996,16(2):151-152.
    9.李潜慧,王双能,柴绍强.镍钛记忆合金接骨板治疗四肢管状骨骨折108例[J].中国医药指南,2009,7(23):17-18.
    10.张海军,王栓科,赵斌.HAP涂层镍钛记忆合金的组织相容性[J].中国修复重建外科杂志,2009,23(4):468-472.
    11.杨秀文,夏缨,刘洪臣.生物活性玻璃骨扩增作用的实验研究进展[J].中华老年口腔医学杂志,2005,3(2):115-117.
    12.曾绍先.医用生物陶瓷及临床应用[J].化学进展,1997,9(1):91-97.
    13. Zhao J., Liao W., Wang Y., et al. Preparation and degradation characteristic study of bone repair composite of DL2 polylacticaeid/hydroxyapatite/decalcifying bone matrix [J]. Chinese Journal of Ttraumatology,2002,5(6):369-373.
    14.强小虎,王彦平.聚磷酸钙纤维/纳米羟基磷灰石/聚乳酸复合材料的降解行为.中国组织工程研究与临床康复[J],2008,12(27):5275-5275.
    15.周炳华,廖文波.改性聚乳酸-羟基乙酸/Ⅰ型胶原复合支架的细胞亲和性[J].中国组织工程研究与临床康复,2009,13(29):5687-5690.
    16.李立华,焦延鹏,李志忠等.聚乳酸/壳聚糖复合支架材料的生物相容性研究[J].中国生物医学工程学报,2005,24(4):503-506.
    17. Vinoy T., Derrick R.D., Money V.J., et al. Nanostructured Biocomposite Scaffolds Based on collagen coelectrospun with nanohydroxyapatite [J]. Biomacromolecules,2007,8:631-637.
    18. Santos M.H., Guilherme L., Heneine D.. Herman Sander Mansur. Synthesis and characterization of calcium phosphate/collagen biocomposites doped with Zn2+ [J]. Materials Science and Engineering C,2008,28:563-571.
    19. Kong L.J., Gao Y, Lu G.Y., et al. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering [J]. European Polymer Journal,2006,42: 3171-3179.
    20. Li J.J., Yin Y.J., Yao F.L., et al. Effect of nano- and micro-hydroxyapatite/chitosan-gelatin network film on human gastric cancer cells [J]. Materials Letters,2008,62:3220-3223.
    21. Hartgerink J.D., Beniash E., Stupp S.I.. Self-assembly and mineralization of peptide-amphiphile nanofibers [J]. Science,2001,294(5547):1684-1688.
    22. Wang R.Z., Cui F.Z., Lu H.B., et al. Synthesis of nanophase hydroxyapatite/collagen composite [J]. Journal of Materials Science Letters,1995,14:490-492.
    23. Chang M.C., Ikoma T., Kikuchi M., et al. Preparation of a porous hydroxyapatite/collagen nanocomposite using glutaraldehyde as a crosslinkage agent [J], Journal of Materials Science Letters,2001,20:1199-1201.
    24.卢晓英,王秀红,刘治等.反应pH值对原位水热沉积法制备纳米羟基磷灰石/壳聚糖复合材料的影响[J].复合材料学报,2009,4:53-58.
    25. Pang X., Casagrande T., Zhitomirsky I.. Electrophoretic deposition of hydroxyapatite-CaSiO3-chitosan composite coatings [J]. Journal of Colloid and Interface Science,2009,330(2):323-329.
    26. Bayraktar D., Cuneyt T.A.. Chemical preparation of carbonated calcium hydroxyapatite powders at 37℃ in urea-containing synthetic body fluids [J]. Journal of the European Ceramic Society,1999,19:2573-2579.
    27. Bernard L., Freche M., Lacout J. L., et al. Preparation of hydroxyapatite by neutralization at low temperature-influence of purity of the raw material[J]. Powder Technology,1999,103: 19-25.
    28. Vial S., Prevot V., Forano C..Novel route for layered double hydroxides preparation by enzymatic decomposition of urea [J]. Journal of Physics and Chemistry of Solids,2006,67: 1048-1053.
    29.杨洪,傅山岗.尿素共沉淀法制备纤维状羟基磷灰石/壳聚糖复合粉料[J].应用化学,2005,22(1):87-90.
    30.刘治.原位生长纳米羟基磷灰石-壳聚糖基复合材料[D].成都:西南交通大学硕士学位论文
    31.何英,蔡群,杨光梅.羟基磷灰石钙磷比的快速分析[J].红水学院学报,2005,3(3):13-15.
    32.李素芹,张军,王俊凤等.磷钼蓝光度法测定磷酸钙中的磷含量[J].无机盐工业,2008,40(3):55-57.
    33.程先苗,李玉宝,张利,左奕,李吉东,廖建国.纳米羟基磷灰石/壳聚糖复合膜的制备和表征[J].动能材料,2008,6(39):983-986.
    34.石浦江,李玉宝,张利,彭雪林,周钢,邹琴.载微球纳米羟基磷灰石壳聚糖复合多孔支架的制备与表征[J].功能材料,2006,11(37):1798-1801.
    35.张利,李玉宝,魏杰,左奕,韩纪梅,吴兰,王学江.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征[J].功能材料,2005,3(36):441-444.
    36.杨洪,宁黔冀,赵海涛.均匀共沉淀-水热法制备纤维状羟基磷酸钙/壳聚糖复合粉体化学研究与应用[J]. Chemical Research and Application,2005,17(2):186-189.
    37. Lan W., Li. Y.B., Yi Z., et al. Study on the biomimetic properties of bone substitute material: nano-hydroxyapatite/polyamide 66 composite [J], Materials Science Forum,2006,510-511: 938-941.
    38. Wang M.L., Tuli R., Manner P.A., et al. Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles [J]. Journal of Orthopaedic Research.,2003,21:697-707.
    39. Rusu V.M., Ng C.H., Wilke M., et al. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials [J]. Biomaterials,2005,26(26): 5414-5426.
    40. Larena A., Caceres D.A., Vicario C., et al. Release of a chitosan-hydroxyapatite composite loaded with ibuprofen and acetyl-salicylic acid submitted to different sterilization treatments [J]. Applied Surface Science,2004,238 (14):518-522.
    41.魏杰,刘昌胜,洪华,袁媛,陈芳萍.新型可降解钙磷骨水泥多孔支架研究[J].无机材料学报,2006,21(4):958-964.
    42.梁燕.壳聚糖降解及高分子溶液特性粘度测定方法的研究[D].华东师范大学硕士学位论文.
    43. Sivapriya K., Suguna P., Banerjee A., et al. Facile one-pot synthesis of thio and selenourea derivatives:a new class of potent urease inhibitors [J]. Bioorganic and Medicinal Chemistry Letters,2007; 17:6387-6391.
    44. Amtul Z., Kausar N., Follmer C., et al. Cysteine based novel noncompetitive inhibitors of urease(s)-distinctive inhibition susceptibility of microbial and plant ureases[J]. Bioorganic and Medicinal Chemistry Letters,2006;14:6737-6744.
    45. Juszkiewicz A., Kot M., Leszko M., et al. The enthalpimetric determination of inhibition constants for the inhibition of urease by fluoride ion [J]. Thermochim Acta,1995;249: 301-311.
    46. Illeova V., Polakovi M., Stefuca V., et al. M. Experimental modelling of thermal inactivation of urease[J]. Journal of Biotechnology,2003;105:235-243.
    47. Benini S., Rypniewski W.R., Wilson K.S., et al. Structure-based rationalization of urease inhibition by phosphate:novel insights into the enzyme mechanism [J]. Journal of Biological Inorganic Chemistry,2001;6:778-790.
    48. Krajewska B., Zaborska W. J.. The effect of phosphate buffer in the range of pH 5.80-8.07 on jack bean urease activity [J]. Journal of Molecular Catalysis b-Enzymatic,1999; 6:75-81.
    49. Fujisakia K., Tadanoa S., Sasaki N.. A method on strain measurement of HAP in cortical bone diffusive profile of X-ray diffraction [J]. Journal of Biomechanics,2006; 39:579-586.
    50.张学骜,王建方,吴文健等.贝壳珍珠层生物矿化及其对仿生材料的启示[J].无机材料学报,2006,21(2):257-266.
    1.宋诗铎.临床感染病学[M].天津:科学出版社,2004:338-339.
    2.李艳.疾病实验诊断与分析[M].:北京:人民军医出版社,2002:105-106.
    3.王文,蔡锦方.抗生素在骨髓炎治疗中的局部应用[J].中国矫形外科杂志,2007,15(17):1328-1330.
    4. Kyriaki K, Evangelos J, Giamarellos B, et al. Carrier systems for the local delivery of antibiotics in bone infections [J]. Drugs,2000,59 (6):1223-1232.
    5. 陈红卫,黄洪斌,赵钢生等.载药磷酸钙骨水泥治疗慢性骨髓炎研究进展[J].中国骨伤,2008,21(1):79-81.
    6. Radin S, Campbell JT, Ducheyne P, et al. Calcium phosphate ceramic coatings as carriers of vancomycin [J]. Biomaterials,1997,18(8):777-782.
    7. Habraken W, Wolke J, Janse JA. Matrices and Scaffolds for Drug Delivery in Tissue Engineering [J]. Advanced Drug Delivery Reviews,2007,59:234-248.
    8. Hoang QQ, Sicheri F, Howard AJ, et al. Bone recognition mechanism of porcine osteocalcin from crystal structure[J]. Nature,2003,425:977-980.
    9.韩冬,蔡晓冰,禹宝庆等.负载抗生素硫酸钙在开放性骨折中的应用.中国组织工程研究与临床康复,2009,13(29):5735-5738.
    10. Stallmann HP, Faber C, Bronckers AL, et al. Histatin and lactoferrin derived peptides: antimicrobial properties and effects on mammalian cells [J]. J Antimicrob Chemoth,2004, 54(2):472-476.
    11. Zbigniew R, Wolfgang F. Collagen as a carrier for on-site delivery of antibacterial drugs[J]. Advanced Drug Delivery Reviews,2003,55(12):1679-1698.
    12.高昊,平其能,顾月清.氟尿嘧啶/左旋聚乳酸生物可降解纤维支架载药体系构建与缓释效应[J].中国生物医学工程学报,2007,26(4):588-592.
    13.孙强,刘军.庆大霉素-PMMA链珠治疗长骨慢性骨髓炎分析[J].中国现代医药杂志,2008,10(4):93-94.
    14.汤善华,靳安民,吕仁发等.纳米羟基磷灰石/硫酸庆大霉素缓释系统的制备及体内释放实验[J].中国组织工程研究与临床康复,2007,11(18):5-06.
    15.刘洪,张朝跃,臧晓方.多孔型颗粒羟基磷灰石填充硬化性骨髓炎术后骨缺损的临床
    应用[J].现代医药卫生,2007,23(7):994-995.
    16.李云飞,方涛林,董健.载万古霉素纳米羟基磷灰石对耐甲氧西林金黄色葡萄球菌慢性骨髓炎兔骨缺损的修复[J].中国组织工程研究与临床康复,2008,12(23):4422-4426.
    17. Joosten U, Joist A, Gosheger G, et al. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of staphylococcus aureus induced chronic osteomyelitis [J]. Biomaterials,2005,26 (25):5251-5258.
    18. Xu Q.G., Czernuszka. Controlled release of amoxicillin from hydroxyapatite-coated poly(lactic-co-glycolic acid) microspheres [J]. Journal of Controlled Release,2008,127 (2): 146-153.
    19. Xu Q.G., Tanaka Y., Czernuszka, Encapsulation and release of a hydrophobic drug from hydroxyapatite coated liposomes [J]. Biomaterials,2007,28(16):2687-2694.
    20. Ho M.L., Fu Y.C., Wang G.J., et al. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite [J]. Journal of Controlled Release, 2008,128 (2):142-148.
    21.李建,万怡灶,黄远等.仿生矿化法制备可降解羟基磷灰石/氧化细菌纤维素复合材料[J].复合材料学报,2008,25(6):7-11.
    22.凌秀菊,龚兴厚,邱巧锐.生物降解高分子/羟基磷灰石复合材料研究进展[J].高分子通报,2009,4:58-63.
    23.王瑞芳,文达,谢兴益等.纳米羟基磷灰石骨修复复合材料的研究进展[J].生物医学工程学杂志,2008,25(5):1231-1234.
    24.孙大辉,秦大明,谷贵山等.庆大霉素链珠与抗生素液灌洗引流治疗慢性骨髓炎疗效比较[J].吉林大学学报:医学版,2007,33(6):1088-1090.
    25.杨东,舒勇,曹凯等.庆大霉素PMMA珠链在慢性骨髓炎治疗中的应用[J].实用临床医学,2007,8(1):62-63.
    26.廖前德,刘雄,吴哲等.手术联合庆大霉素滴注引流法治疗慢性骨髓炎的临床体会[J].中南药学,2008,6(5):617-619.
    27.庞为民.紫外分光光度法测定硫酸庆大霉素制剂的含量[J].辽宁药物与临床,1999,2(4):28-29.
    28. Rusu VM, Ng CH, Wilke M, et al. Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials[J]. Biomaterials,2005,26(26): 5414-5426.
    29. Larena A, Caceres DA, Vicario C, et al. Release of a chitosan-hydroxyapatite composite loaded with ibuprofen and acetyl-salicylic acid submitted to different sterilization treatments[J]. Applied Surface Science,2004,238 (14):p518-522.
    30. Liu TY; Chen SY; Chen SC. Effect of hydroxyapatite nanoparticles on ibuprofen release from carboxymethyl-hexanoyl chitosan/O-hexanoyl chitosan hydrogel[J]. Journal Of Nanoscience And Nanotechnology,2006,6:2929-2935.
    31.汪银锋,阮洪江,范存义.慢性创伤后骨髓炎诊治进展[J].国际骨科学杂志,2008,29(2):100-112.
    32.王永峰,靳安民,魏坤等.抗感染纳米羟基磷灰石局部药物缓释微球的研制及体外释药实验[J].南方医科大学学报,2006,26(6):754-756.
    33.孔桦,孟洁,郭小天等.载药纳米羟基磷灰石材料的体外药物缓释研究[J].透析与人工器官,2005,9(16):12-15.
    34. Perry A.C., Prapa B., Rouse M.S., et al. Levofloxacin and trowafloxacin inhibiton of experimental fracture-healing[J]. Clin. Orthop.,2003,414:95-100.
    35. Chang H I, Perrie Y, Coombes A G A. Delivery of the antibiotic gentamicin sulphate from precipitation cast matrices of polycaprolactone [J]. J Control Release,2006,110 (2):414-421.
    36. Sampath S. S., Garvin K., Robinson D. H.. Preparation and characterization of biodegradable poly(l-lactic acid) gentamicin delivery systemsInternational[J]. Journal of Pharmaceutics,1992,78:165-174.
    37. Schnieders J., Gbureck U., Thull R.r, et al. Controlled release of gentamicin from calcium phosphate-poly(lactic acid-co-glycolic acid) composite bone cement[J]. Biomaterials,2006, 27, (23):4239-4249.
    38. Lim S. T., Forbes B., Berry D. J., G. P. Martin, M. B. Brown. In vivo evaluation of novel hyaluronan/chitosan microparticulate delivery systems for the nasal delivery of gentamicin in rabbits[J]. International Journal of Pharmaceutics,2002,231(1):73-82.
    39. Prior S., Gamazo C., Irache J. M., Merkle H. P., Gander B. Gentamicin encapsulation in PLA/PLGA microspheres in view of treating Brucella infections [J]. International Journal of Pharmaceutics,2000,196(1):115-125.
    40. Xiang Chen, Jing Liu, Song Gao,et al. Construction and Characterization of Avian Pathogenic Escherichia coli Mutants with iro and/or tsh Gene Mutation[J]. Chin J Biotech, 2008,24:401-408.
    41.肖永红.临床抗生素学.重庆:重庆出版社,2004:50-52
    42.杨玉辉,王金成,赵长福等.万古霉素骨水泥抗压强度的影响因素[J].中国组织工程研究与临床康复.2008,12:77-79.
    43.唐佩福,郝立波,毛克亚等.羟基磷灰石骨水泥中碳酸根存在的意义及其对溶解度的影响[J].生物医学工程与临床,2005,9(5):267-270.
    44.卢晓英,王秀红,屈树新等.纳米羟基磷灰石/壳聚糖杂化材料的制备[J].无机材料学报,2008,23(2):332-336.
    45.程先苗,李玉宝,张利等.纳米羟基磷灰石/壳聚糖复合膜的制备和表征[J].功能材料,2008,39(6):983-986.
    46. Yoshio Sakka. Effects of cold isostatic pressure on the sintering behaviour of nickel ultrafine powders [J]. Journal of Alloys and Compounds,1992,190(1):31-33.
    47. Yong Ick Cho, Hidehiro Kamiya, Yoshio Suzuki, Masayuki Horio, Hisao Suzuki. Processing of mullite ceramic from alkoxide-derived silica and colloidal alumina with ultra-high cold isostatic pressing [J]. Journal of the European Ceramic Society,1998,18(3):261-268.
    48. A.J. Freeman. Development of a duplex pressure vessel for hot, warm and cold high pressure isostatic pressing systems [J]. Metal Powder Report,1991,46(3):22-24.
    49. Ching-Shan Lin, Shun-Tian Lin. Effects of granule size and distribution on the cold isostatic pressed alumina [J]. Journal of Materials Processing Technology,2008,201(1-3):657-661.
    50. O. Contreras, Ch. Power, M. Quintero, et al. Quantum dots of Cd0.5Mn0.5Te semimagnetic semiconductor formed by the cold isostatic pressure method [J]. Journal of Magnetism and Magnetic Materials,2005,294(2):77-81.
    1. 郭晟,魏锐利,王文斌等.壳聚糖膜在眼表碱烧伤早期应用的实验研究[J].武警医学,2007,18:814-816.
    2. Kong, L., Gao, Y, Lu, G.; et al. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal [J].2006,42: 3171-3179.
    3.郭珉,杨彤,李传勋.复方壳聚糖膜剂促进皮肤溃疡愈合的实验研究[J].辽宁中医药大学学报,2007,9:137-139.
    4. Shu, X. Z., Zhu, K. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release [J]. European Journal of Pharmaceutics and Biopharmaceutics,2002,54:235
    5. Shanmuganathan, S., Shanumugasundaram, N., Adhirajan, N. Preparation and characterization of chitosan microspheres for doxycycline delivery [J]. Carbohydrate Polymers,2008,73(2):201-211.
    6. Martinoa, A.D., Sittinger, M., Risbuda, M.V.. Chitosan:A versatile biopolymer for orthopaedic tissue]engineering [J]. Biomaterials,2005,26:5983-5990.
    7. 雷涛,姚晖,曲树明等.两种壳聚糖生物膜引导颅颌骨再生的比较研究[J].天津医科大学学报,2003,9(2):214-222.
    8. 洪奕,龚逸鸿,高长有等.壳聚糖涂层聚乳酸细胞微载体的制备和性能[J].材料研究学报,2005,19(6):589-593.
    9.王亚红,张文静,李全利等.磷酸化壳聚糖膜引导牙周组织再生的实验研究[J].安徽医科大学学报,2009,44(5):573-576.
    10.宫志强,李彦春,祝德义等.加热干燥时间对壳聚糖-明胶复合膜性能的影响[J].山东轻工业学院学报,2007,22:27-29.
    11.宫志强,李彦春,祝德义等.干燥温度对壳聚糖-明胶复合膜性能的影响[J].食品科技,2008,4:92
    12. Srinivasa, P.C., Ramesh, M.N., Kumar, K.R., et al. Properties of chitosan films prepared under different drying conditions[J]. Journal of Food Engineering,2004,63:79-85.
    13. Johnson, K. L., Kendall, K., Roberts, A. D. Surface Energy and the Contact of Elastic Solids [J]. Proceedings of the Royal Society of London Series A:Mathematical Physical and Engineering Sciences.1971,324:301-313.
    14.范震,贾爽,苏剑生.种植体表面粗糙度对成骨细胞增殖及ALP含量的影响[J].口腔颌面外科杂志,2009,9:128-131.
    15. Huang, H.H.; Ho, C.T.; Lee, T.H.; et al. Effect of surface roughness of ground titanium on initial cell adhesion [J]. Biomolecular Engineering,2004, (21):93-97.
    16. Chung, T.W.; Yang, M.G.; Liu, D.Z.; et al. Enhancing growth human endothelial cells on Arg-Gly-Asp (RGD) embedded poly (-caprolactone) (PCL) surface with nanometer scale of surface disturbance. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2005,72:213-219.
    17.郑秀萍,吴永刚,付联效等.Al和MgF2多层滤光膜光谱及其环境稳定性[J].强激光与粒子束,2008,20:119-223.
    18. Vogt, M.. Infrared drying lowers energy costs and drying times [J]. Plastics, Additives and Compounding,2007,9:58-61.
    19.黄鸣,黎锡流,李泽坤.微波与远红外线加热在食品加工中的应用[J].广州食品工业科技,2002,18:60-63.
    20. Salagnac, P.; Glouannec.; P, Lecharpentier, D. Numerical modeling of heat and mass transfer in porous medium during combined hot air, infrared and microwaves drying[J]. International Journal of Heat and Mass Transfer,2004,47:4479-4489.
    21. Lam, W. A.; Rosenbluth, M. J.; Fletcher, D. A. Chemotherapy exposure increases leukemia cell stiffness[J]. Blood,2007,109:3505-3508.
    22. Butt, H.J., Cappella, B., Kappl M.. Force measurements with the atomic force microscope: Technique, interpretation and applications [J]. Surface Science Reports,2005,59:1-152.
    23. Vadillo, R.V.; Busscher, H.J.; Norde, W., et al. Comparison of atomic force microscopy interaction forces between bacteria and silicon nitride substrata for three commonly used immobilization methods[J]. Applied and Environmental Microbiology,2004,70:5441-5446.
    24.刘清泉,潘春跃.PAA、PLiAA和PNaAA涂膜结晶度对其表面性能的影响[J].涂料工业,2006,36(11):8-10.
    25. Sperling. L.H. Introduction to physical polymer science [D].4th ed. Hoboken:John Wiley Press,2006:1-28.
    26. Kurtz, S.M., Villarraga, M.L., Herr, M. P., et al. Thermomechanical behavior of virgin and highly crosslinked ultra-high molecular weight polyethylenes used in total joint replacements [J]. Biomaterials,2002,23:3681-3697.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700