用户名: 密码: 验证码:
原位制备颗粒增强铝基复合材料的组织控制和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原位制备颗粒增强铝基复合材料是复合材料研究领域的热点,前期研究集中在开发不同的原位合成工艺和体系。如何通过过程优化来控制颗粒在基体中的形貌和分布特征对促进复合材料发展非常关键,所以通过优化原位合成体系、制备和成型工艺来控制复合材料的组织和性能具有重要的理论意义和现实意义。论文的研究基于两个学术思想:一是对原位合成的复合材料实现组织控制,包括颗粒种类、形貌、尺寸和分布以及基体晶粒度和硅相等,为复合材料的实践应用提供有章可循的理论依据;二是挖掘电磁技术在复合材料制备领域的应用,在优化复合材料组织的同时,体现电磁技术在复合材料制备中的优越性和前景。
     首先用Al-Zr(CO_3)_2组元通过熔体直接反应法原位合成了Al-Zr-O系颗粒增强铝基复合材料,颗粒强化相是Al_2O_3和Al_3Zr;用Al-Zr(CO_3)_2-KBF_4组元和Al-Zr(CO_3)_2-H_3BO_3组元合成了Al-Zr-O-B系复合材料,颗粒强化相是Al_2O_3、Al_3Zr和ZrB_2,颗粒粒度2~3μm。
     为了促使颗粒细化和在基体中弥散分布,通过外加电磁场来控制复合材料组织。用电磁搅拌法原位合成(Al_2O_3+Al_3Zr)_p/Al复合材料,当磁感应强度0.025T时,颗粒在基体中弥散均匀分布,且尺寸细化,粒度1~2μm。原因是切向电磁力造成熔体涡流,反应物颗粒更易进入铝液,增加了反应物之间的接触几率,电磁力加大了体系的混合对流运动,提高了传热传质和物质扩散速度,并促进增强颗粒在铝基体中的弥散均匀分布。并且当B值为0.04T时,电磁搅拌力增大,在离心作用下制备出颗粒分布呈现梯度特征的(Al_2O_3+Al_3Zr)_p/Al复合材料。
     高频磁场叠加低频正弦调制信号后可产生高频正弦调制磁场,当高频电流30A,外加正弦波信号频率10Hz,电压幅值7V时,磁感应强度为0.029T,系统研究了线圈内磁场分布规律。调制磁场产生的扰动、搅拌、振荡等效应,改善了固液相体系铝热反应的动力学条件,合成复合材料中颗粒体积分数成倍增加,颗粒细化至1~2μm,且在基体中均匀弥散分布。磁化学分析认为熔体接收了磁场能量,改善了原位反应体系的熵增和能量状态,促进了原位反应的进行。
     制备好的复合材料熔体如果采用金属模成型,存在气孔和缩松等浇注缺陷,而采用“挤压铸造”成型可提高组织致密度并细化基体晶粒,颗粒形貌没有明显变化,适于生产复合材料铸件。为了大规模生产铸锭,进行熔体的“半连铸”和“半连铸电磁搅拌”成型,浇注温度710~720℃,拉坯速度9cm/min,冷却水量为0.8t/h,颗粒特征没有大的变化,但分布均匀化程度提高。并当电磁搅拌磁感应强度0.025T时,基体晶粒度细化,出现大面积等轴晶,硅相形貌随搅拌强度增加由片状初晶硅向针状、细棒状共晶硅转变。又采用“高频电磁连铸”改善“半连铸电磁搅拌”铸锭表面质量,选用特制闭路水冷割缝结晶器,实现了铸锭与结晶器之间的软接触。当线圈内电流80A时,铸锭表面光洁,无明显褶皱;高频方波调幅磁场的铸锭表面存在周期性振痕,调幅波频率越高,振痕的间隔就越小。
     基于合成成型工艺的研究结论,提出复合材料的“联合电磁制备”概念,即熔炼过程中施加低频磁场,连铸过程中施加低频高频磁场的复合材料铸锭制备方法,充分利用电磁场在复合材料制备中的优越性。凝固组织观察发现,复合材料中颗粒弥散均匀分布,粒度在1~2μm,适于工业规模制备高性能高表面质量的复合材料铸锭。
     对于基体合金、15vol%(Al_2O_3+Al_3Zr)_p/A356复合材料熔体金属模成型、挤压铸造、半连铸电磁搅拌以及联合电磁连铸时制备的复合材料抗拉强度分别为184.6、263.2、345.7、355.8、340.6MPa,相应的延伸率分别为7.1%、4.7%、15.1%、14.2%、10.1%。断裂机制多是脆性和塑性混合断裂。材料耐磨性研究结果显示,并非反应物加入量越多,复合材料的耐磨性越好,因为颗粒在其中起到支撑减磨和脱落后加剧磨损的双重效应。对于(Al_2O_3+Al_3Zr)_p/A356复合材料的最佳颗粒理论体积分数值是10%。
     本次研究外延了原位制备复合材料的体系内容,并拓展了电磁技术在材料制备中的应用领域,将电磁搅拌和高频调制磁场成功运用到颗粒增强铝基复合材料的原位合成和成型工艺中来,并优化了磁场参数,电磁力改善了原位合成过程的热力学和动力学条件,促使颗粒细化和在基体中的弥散均匀分布。提出了复合材料熔体挤压铸造、半连铸电磁搅拌和联合电磁制备的复合材料成型过程机制,控制了复合材料铸件和铸锭的内部组织和表面质量,并在电磁力作用下制备出颗粒增强梯度复合材料。
Much attention has been paid to the particulate reinforced aluminum matrix composites.Prior studies focused on exploring the new in situ fabrication processes and systems.But it is essential to control the feature and distribution of particulates.It has important theoretical and current meanings to optimize the in situ system,fabrication and solidifying processes so as to control the microstructure and properties of composites.
     The paper is based on two academic theories.One is to control the microstructure of in situ composites,such as kinds,feature,and distribution of particulates and grain size of matrix et al.It may offer the theoretical basement to produce composites on an industrial scale.The other is to explore the appliances of electromagnetic technologies in composite materials process.
     The in situ(Al_2O_3+Al_3Zr)_p/Al composites is fabricated composites using Al-Zr(CO_3)_2 components by direct melt reaction method.The in situ(Al_2O_3+Al_3Zr+ZrB_2)_p/Al composites are synthesized using Al-Zr(CO_3)_2-KBF_4 and Al-Zr(CO_3)_2-H_3BO_3 components.The sizes of particulates are in the range of 2~3μm.
     In order to refine and promote the uniform distribution of particulates the foreign electromagnetic fields are introduced to control the microstructure of composites.The (Al_2O_3+Al_3Zr)_p/Al composites are synthesized by electromagnetic stirring method with 0.025T magnetic induced intensity.The size of particulates is refined to 1~2μm.They are well distributed in matrix.The vortex flow occurs due to tangential electromagnetic force,which makes it easy for reactant particles to enter into the molten aluminum.The contact opportunity between reactants is increased.Meanwhile the electromagnetic forces accelerate the mix convection moving and add up the velocity of heat,mass transfer and diffusion.When the magnetic induced intensity is 0.04T the electromagnetic force is raised largely.The gradient(Al_2O_3+Al_3Zr)_p/Al composites are produced due to the centrifugal force.
     The high frequency sinusoid modified electromagnetic field is combined when the low frequency sinusoid modification signal imposed on the high frequency carrier wave. The magnetic induced intensity is 0.029T when the frequency and voltage of sinusoid signal is 10Hz and 7V separately.Meanwhile the current of high frequency magnetic field is 30A.The distribution rules in coils are studied systematically.Turbulence, stirring and oscillation phenomena take place due to the modified electromagnetic field, which improve the kinetic conditions of in situ fabrication.The volume fraction of particulates in composites is increased largely.The size of particulates are refined to 0.5~1μm and the particulates distribute uniformly in matrix.Magnet chemistry analysis illustrates that the melt receive the energy of electromagnetic field.The entropy and energy status of in situ reaction system are improved,which promote the in situ reaction.
     Conventional pinhole and shrinkage would appear in the cast composites with permanent mold.When the squeeze casting technique is utilized to cast composites,the tightness of microstructure is increased and the grain size of matrix is refined.The feature of particulates changes slightly.So it is suitable to produce composite parts. Semi continuous casting and electromagnetic stirring semi continuous casting are practiced to cast the composite.The casting temperature is in the range of 710~720℃,the casting speed is 9cm/min and the cooling water amount is 0.8t/h.The features of particulates almost do not change whilst the distribution state is more uniform than ever.When the magnetic induced intensity is 0.025T the grain size is refined and large areas with equiaxed grain appeare.With the increase of stirring intensity the pattern of silicon phases change from plate to needle and slender rod.Later high frequency electromagnetic continuous casting processes are used to increase the surface quality of slab.The special closed water cooling slit mold is introduced.The soft contact between slab and mold is reached.The surface of slab is smooth when the current is 80A.There are apparent oscillation marks on the surface of slab when using square wave modified the high frequency electromagnetic field.Higher frequency of modified wave,smaller space of oscillation marks.
     Basing on the above conclusions an "integrate electromagnetic fabrication of composites"is brought forward,which combines the low frequency melting with high frequency continuous casting.Microstructure observation shows that the size of particulates is 1~2μm and they are well distributed in matrix.The technology is suitable to produce composite slab with high properties and excellent surface quality.
     The tensile property and wear performance of composites are further studied.For A356,15vol%(Al_2O_3+Al_3Zr)_p/A356 cast by permanent mold,squeeze casting,semi continuous casting and integrate electromagnetic fabrication,the tensile strengthes are 184.6,263.2,345.7,355.8 and 340.6MPa,the elongationa are 7.1%,4.7%, 15.1%,14.2%and 10.1%individually.The fracture mechanisms are the mixed forms of brittle and plastic ones.The abradability study shows that it is not the case that high adding amount of reactants has high wear resistance property.Because the particulates would sustain the wear before falling and aggregate the wear after falling.For (Al_2O_3+Al_3Zr)_p/A356 composites the best value of theoretical volume fraction is 10%.
     The paper study extends the system of in situ composites and expands the appliance domain.Electromagnetic stirring and modified high frequency electromagnetic field are successfully introduced into the fabrication of particulate reinforced aluminum matrix composites.The electromagnetic forces enhance the thermodynamic and kinetic conditions.Hence the sizes of particulates are refined and they are well distributed in matrix.Meanwhile the parameters of electromagnetic field are optimized.The process mechanisms about squeeze casting,semi continuous casting with electromagnetic stirring and integrate electromagnetic fabrication are put forward.The aim of control the microstructure and surface quality of composite slab are realized.Furthermore the gradient particulate reinforced composites are produced under electromagnetic field.
引文
[1]Y.T.Zhao,X.N.Cheng,Q.X.DAI,et al.Microstructure and properties of in situ synthesized(Al_3Zr+Al_2O_3)p/A356 composites[J].Inter.J.Modern.Phy.B.2003,17(8)1292-1296.
    [2]Y.T.Zhao,X.N.Cheng,Q.X.DAI,et al.Crystal morphology and growth mechanism of reinforcements synthesized by direct melt reaction in the system Al-Zr-O[J].Mater.Sci.Eng.A.12(2003)315-318.
    [3]P.Yu,Z.Mei.S.C.Tjong.Structure,thermal and mechanical properties of in situ Al based matlal matrix composite reinforced with Al_2O_3and TiC submicron particles[J].Mater.Chem.Phys.93(2005)109-116.
    [4]P.Yu,C.J.Deng,N.G.Ma,et al.Formation of nanostructures eutectic network in α-Al_2O_3reinforced Al-Cu alloy matrix composite[J].Acta materialia,51(2003)3445-3454.
    [5]S.C.Tjong,Z.Y.Ma.Microstructure and mechanical characteristics of in situ metal matrix composites[J].Mater.Sci.Eng.29(2000)49-113.
    [6]S.C.Tjong,G.S.wang,Y.W.Mai.High cycle fatigue response of in situ Al-based composites containing TiB2 and Al_2O_3 submicron particles[J].Composites Sci,Technol 65(2005) 1391-1400.
    [7]L.Q.Chen,Q.Dong,M.J.Zhao,et al.Synthesis of TiC/Mg composites with interpenetrating networks by in situ reactive infdteration process[J].Mate.Sci.Eng.A 408(2005)125-130.
    [8]张秋明.电磁搅拌法制备铝/电气石复合材料的研究[D].硕士学位论文,大连:大连理工大学,2001.
    [9]黄赞军,胡敦元,杨滨,等.原位Al_2O_3颗粒增强铝基复合材料的研究[J].金属学抵,2002,38(6):568-574.
    [10]L.Lu,M.O.Lai,Y.Su,etc.In situ TiB_2 reinforced AI alloy composites[J].Scripata Materialia 45(2001)1017-1023.
    [11]Zhang Xiuqiang,Wang Haowei,Liao lihua,etc.The mechanical properties of magnesium matrix composites reinfoeced with(TiB_2+TiC)ceramic particulates[J].Mater.Let.59(2005)2105-2109.
    [12]Purush Sahoo,Michael J.Koczak.Analysis of in situ formation of titanium carbide in aluminum alloys[J].Mater.Sci.Eng.A,1991,144(1-2):37-44.
    [13]A.G.Merzhanov,I.P.Borovinskaya,Dokl.Nauk.SSSR204(1972)366
    [14]梅炳初,袁润章.白蔓延高溫合成技术制备TiC/Ni_3Al复合材料的研究[J].硅酸盐学报,1994,2:168-172.
    [15]L.Gotman,M.J.Koczak,E.Shtessel.Fabrication of AI matrix in situ composites via self-propagating synthesis.Mater.Sci.Eng.A,1994(187):189-199.
    [16]L.Chrstodoulou,D.C.Nagle,J.M.Brupbacher[P],International Patent No.WO 86/06366(1986).
    [17]A.K.Kuruvilla,K.S.Prasas,V.V.Bhanuprasad.Microstructure-property correlation in Al/TiB_2(XD)composites[J],Scripta Metallurgica Materialia,1990,24(5):873-878.
    [18]C.EFeng,L.Froyen.On the reaction mechanism of an Al-TiO_2-B system for producing in situ (Al_2O_3+TiB_2)/Al composites[J].Scipta Mater.1998,39(1):109-118.
    [19]T.G.Durai,Karabi Das,Siddhartha Das.Synthesis and characterication of Al matrix composites reinforced by in situ alumina particulates[J].Mater.Sci.Eng.A445-446(2007)100-105.
    [20]M.J.Koczak,K.S.kumar,US Patent[P].4,808,372(1989).
    [21]P.Sahoo,M.J.Koczak.Proceddings of the TMS Conference on Advanced Metal and Ceramic Matrix Composites[R].Feberatury,1990.
    [22]MA Z Y,BI J,LU X Y,et al.In situ ceramic particle-reinforced aluminum matrix composites fabricated by reaction pressing in the TiO_2(Ti)-Al-B(B_2O_3) systems.Metallurgical Materials Transactions A,1997,28A(7):1931-1942.
    [23]王桂松,耿林,王德尊等.反应热压(Al_2O_3+TiB_2+Al_3Ti)/Al复合材料的组织形成机制.中国有色金属学报,2004,14(2):228-232.
    [24]D.Roy,S.Ghosh,A.Basumallick,et al.Preparatino of Fe-aluminide reinforced in situ metal matrix composites by reactive hot pressing[J].Materials Science and Technology A 415(2006)202-206.
    [25]Lakshrni S,Lu L.Gupta M.In situ preparation of TiB_2 reinforced Al based composites[J].J.Mater.Pro.Technol,1998,73:160-166.
    [26]Y.Chen,D.L,Chung.Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminum PMMCs[J].J.Mater.Sci.31(1996)311-319.
    [27]陈子勇,陈玉勇,舒群等.熔体反应内生Al基复合材料的制备和凝固组织控制[J].金属学报,1999,35(8):875-879.
    [28]方信贤,赵玉涛,孙国雄.熔体直接反应法制备Al/TiB_2复合材料铸态组织和性能[J].东南大学学报(自然科学版),2000,30(2):101-105.
    [29]Y.T.Zhao,Z.H.Li,X.N.Cheng,et al.In situ synthesized(Al_3Zr+Al_2O_3)p/A356 composites by direct melt reaction in Al-Zr-O system[J].Trans.Nonferrous Met.Soc.China,2003,13(4)769-772.
    [30]潘蕾,陶杰,陈照峰,等.高能超声在颗粒/金属熔体体系中的声学效应[J].材料工程,2006,(1):35-38.
    [31]W.D.Griffiths,D.G.McCartney.The effect of electromagnetic stirring on macrostructure and macrosegergation in the aluminum alloy 7150[J].Mater Sci.Eng.A222(1997)140-148.
    [32]Feng Tang,Masuo Hagiwara,Julie M.Schoenung.Microsttucture and tensile properties of bulk nanostructured Al-5083/SiC_p composites prepared by cryomilling[J].Mater.Sci.Eng.A 407(2005)306-314.
    [33]孙建祥.Al-Zr(CO_3)_2体系反应合成复合材料的制备与力学性能研究[D].硕士学位论文,镇江:江苏大学,2004.
    [34]訾炳涛.LY12铝合金凝固组织的脉冲电磁细化新工艺研究[D].博士学位论文,沈阳:东北大学,2000.
    [35]郭珉,朱秀荣,王荣.颗粒增强铝基复合材料断裂韧度研究[J]:特种铸造及有色合金,2004(6):32-33.
    [36]Z.Y.Ma,S.C.Tjong.Creep deformation characteristics of discontinuously reinforced aluminum -matrix composites[J].Composites Science and Technology 61(2001)771-786.
    [37]L.Ceschini,G.Minak,A.Morri.Tensile and fatigue properties of the AA6061/20vol.%Al_2O_(3p)and AA7005/10vol.%Al_2O_(3p) composites[J].Composites Science and Technology,66(2006)333-342.
    [38]S.G.Long,Y.C.Zhou.Thermal fatigue of particle reinforced metal-matrix composite induced by lased heating and mechanical loas[J].Composites Science and Technology 65(2005)1391-1400.
    [39]江润莲,赵玉涛,戴起勋,等.A359-Zr(CO_3)_2体系反应合成复合材料的干滑动磨损性能[J].中国有色金属学报,2004,14(9):1621-1626.
    [40]张学习,王德尊等.非连续增强金属基复合材料的应用[J].航空制造技术,2002(5):35-38.
    [41]杨遇春.高新材料中异军突起的金属复合材料[J].材料科学与工艺,1991,9(2):7-12.
    [42]Shoji TANIGUCHI,Hideyuki YASUDA,Kouji TAKATANI.Preface to the special issue on advanced application electromagnetic force to materials processing[J].ISIJ Int.2003,43(6):799-800.
    [43]贾非.电磁连续铸造过程工艺优化及组织性能研究[D].博士学位论文,大连:大连理工大学 2002.
    [44]浅井滋生.電磁氦冶金の诞生上最近の动向.129回西山紀念技術講座.東京:日本鋼鐵協 會,平成元年:3-6.
    [45]唱鹤鸣,杨晓平,张德惠,等.感应炉熔炼与特种铸造技术[M].北京:冶金工业出版社,2003.
    [46]井满清.电磁搅拌工艺技术在铝合金生产中的应用[J].青海科技,2005,(1):53-54..
    [47]于艳,刘俊江.结晶器电磁搅拌对连铸坯质量的影响[J].钢铁,2005,40(2):31-33.
    [48]Zuo Yubo,Cui Jianzhong,Zhao Zhihao,et al.Effect of low frequency electromagnetic field on casting crack during DC casting superhigh strength aluminum alloy ingots[J].Mat Sci Eng,2005,A406:286-292.
    [49]王辉,金俊泽,郑贤淑,等.金属电磁铸造无量纲判据数学模型及实验研究[J].稀有金属材料与工程,2005,34(5):691-695.
    [50]房灿峰,贾非,金俊泽,等.铝合金的软接触电磁连铸研究[J].铸造,2004,53(5):350-351.
    [51]祝美丽,李海英.电磁搅拌对HK40钢离心铸管显微组织及蠕变性能的研究[J].机械工程材料,2004,28(8):18-20.
    [52]X.Q.Wu,H.M.Jing,Y.G.Zheng,et al.The eutectic carbides and creep rupture strength of 25Cr20Ni heat-resistant steel tubes centrifugally cast with different solidification conditions[J].Mater.Sci.Eng,2000,293(1-2):252-260.
    [53]Koichi TAKAHASHI,Shoji TANIGUCHI.Electromagnetic Separation of Nonmetallic Inclusion from Liquid Metal by Imposition of High Frequency Magnetic Field[J].ISIJ Inter.,2003,43(6):820-828.
    [54]姚若琼,王义海,曹志强,等.铝合金电磁净化的现状及前景[J].铸造,2003,52(4):227-231.
    [55]李克,孙宝德,李天晓,等.利用高频磁场分离Al熔体中的非金属夹杂[J].金属学报,2001,37(4):406-410
    [56]Da SHU,Baode Sun,Ke Li,et al.Effects of Secondary Flow on the Electromagnetic Separation of Inclusions from Aluminum Melt in a Square Channel by a Solenoid[J].ISIJ Int.,2002,42(11):1241-1245.
    [57]疏达.电磁分离铝熔体中非金属夹杂物的理论研究[D].博士学位论文,上海:上海交通大学 2004.
    [58]钟云波,任忠鸣,邓康,等.交变磁场净化金属液时金属液紊流的形成及其控制[J].中国有色金属学报,2001,11(4):541-546.
    [59]钟云波,任忠鸣,邓康,等.行波磁场连续净化铝合金液实验[J].中国有色金属学报,2001,11(2)-167-171.
    [60]彭涛,辜承林.脉冲强磁场发展技术[J].核技术,2003,26(3):185-188.
    [61]王晖,任忠鸣,蒋国昌,等.均恒强磁场在材料科学中的应用[J].材料科学与工程,2001,19(2):119-123.
    [62]庞雪梅,王强,王春江,等.强磁场对铝合金中溶质组元分布状态的影响效果[J].物理学报,2006,55(10):5129-5134.
    [63]李喜,任忠鸣,孙延辉,等.纵向强磁场对定向凝固Al-4.5%Cu合金显微组织的影响[J].金属学报,2006,42(2):147-152.
    [64]李喜,任忠鸣,王立龙,等.强磁场对Bi-6%Mn合金中MnBi相形态和相变的影响[J].金属学报,2006,42(1):77-82.
    [65]周永刚,徐金平.减缩时域有限差分法在电磁干扰预测中的应用[J].东南大学学报(自然科学版),2003,33(4):392-395.
    [66]韩邦成,吴一辉.有限元法计算偏心对径向磁轴承参数的影响[J].哈尔滨工业大学学报,2005,37(2):187-189.
    [67]R.KAGAYAMA,James W.EVANS.Development of Three dimensional mathematical model of the electromagnetic casting of steel[J].ISIJ Int.,42(2002)2:163-170.
    [68]王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发[J].材料科学与工艺,2000,8(4):1-5.
    [69]Feng Yan,Li Zong-quan.Preparation of BN Contained Al-based Alloys by Pressureless Infiltration[J].J.Mat.Sci.Technol.2004,22(3):337-340.
    [70]张秋明,曹志强,金俊泽等.电磁搅拌法制备复合材料过程的工艺优化[J].中国有色金属学报,2002,12(S1):142-416.
    [71]孙秋霞,钟云波,任忠鸣,等.电磁场对金属凝固界面前沿颗粒行为及分布的影响[J].金 属学报,2005(3):321-325.
    [72]Michael Hodenius,Marcel De Cuyper,Linda Desender,et al.Biotinylated stealth magnetoliposomes[J].Chemistry and Physics of Lipids,2002,120(1-2):75-85.
    [73]Heiko Lueken,Helmut Schilder,Thomas Eifert,et al.Magnetochemistry:Compounds and Concepts[J].Adv.in Solid State Phys,2001,41:515-532.
    [74]张高科,陈虹.材料制备及加工中的磁化学研究及应用[J].硅酸盐通报,2002(1):34-36.
    [75]V.Dubodelov,V.Fixsen,N.Slazhnev,et al.Appliaction of electromagnetic force amplitude modulation in the magnetodynamic unit[J].The 15~(th) and 6~(th) Pamir conference on dundamental and applied MHD.2006.
    [76]郑文裕,陈潮钿,陈仲丛.二氧化锆的性质、用途及其发展方向[J].无机盐工业,2000(1):18-21.
    [77]王常珍.冶金物理化学研究方法(第3版)[M].冶金工业出版社,2002.
    [78]韩德伟,张建新编著.金相试样制备与显示技术[M].中南大学出版社,2005.
    [79]桂满昌,王殿斌,张洪等.变质和细化元素对搅拌法制备SiCp/ZL101复合材料组织的影响[J].航空材料学报,1995,15(3):2-6.
    [80]赵玉涛.Al-Zr-O体系熔体反应生成Al_3Zr和Al_2O_3颗粒增强铝基复合材料的组织结构和性能研究[D].博士学位论文,南京:东南大学,2001.
    [81]Peng Yu,Cheng-Ji Deng,Nan-Gang Ma,etc.Formation of nnostructured eutectic network inα-Al_2O_3 reinforced Al-Cu alloy matrix composites[J].Acta Mater.51(2003)3445-3454.
    [82]曾志明.机械工程材料手册[M].北京:机械工业出版社,2003.
    [83]长崎诚三,平林真著,刘安生译.二元合金状态图[M].北京:冶金工业出版社,2004.
    [84]李荣久.陶瓷金属基复合材料[M].北京:冶金工业出版社,2004.
    [85]中国机械工程学会编.中国材料工程大典[M],化学工业出版社,2006.
    [86]刘光启.化学化工物性数据手册[M].北京:化学工业出版社,2002.
    [87]姚永斌.物理化学手册[M].上海:上海科学技术出版社,1985
    [88]方荣生.科技人员常用公式与图表手册[M].北京:机械工业出版社,1994.
    [89]朱延山,赵玉涛,戴起勋,等.Al-Zr(CO_3)_2体系熔体反应合成(Al_3Zr+Al_2O_3)_p/Al复合材料的热力学和动力学机制[J].铸造,2005,54(5):446-449
    [90]L byd D J.Solidification microstructure of particulate reinforced aluminum /SiC composites[J].Comp Sci &Tech,1989,35(2):159-179.
    [91]王俊,陈锋,孙宝德,等.微细颗粒对复合材料熔体表观粘度的影响[J].复合材料学报,2001在18(1):58-61.
    [92]Mitra R,China W A,Weertroan J R,etc.Relacation mechanisms at the interfaces in XD~(TM) Al/TiC_p metal matrix composites[J].Scripta Metall.Mater.,1999,25(6):2689-2694.
    [93]陈子勇,陈玉勇,舒群,等.熔体反应法制备Al-4.SCu/TiB_2复合材料的热力学[J].材料研究学报,2000,14(1):68-74.
    [94]ZHAO Yu-tao,LI Zhong-hua,CHENG Xiao-nong,et al.In-situ synthesizes ZrAl_(3(p))+Al_2O_(3(p))/A356 composites by direct melt reaction in Al-Zr-O system[J].Trans. Nonferrous Met.,Soc.China.2003,13(4)669-773.
    [95]李庆春.铸件形成理论基础[M].北京:机械工业出版社,1982.
    [96]殷声.燃烧合成[M].北京:冶金工业出版社,1999
    [97]梁英教,车荫昌主编.无机物热力学数据手册[M].沈阳:东北大学出版社,1993.
    [98]叶大伦.实用无机物热力学数据手册[M].北京:冶金工业出版社,2002.
    [99]朱和国,吴申庆,王恒志,XD合成Al_2O_3,TiB_2/Al复合材料的热力学分析[J].中国有色金属学报,2001,6:382-385.
    [100]Shigo ASAI.Birth and recent activities of electromagnetic processing of materials[J].ISIJ Int.1989.12(29):981-992.
    [101]张伟强.金属电磁凝固原理与技术[M].冶金工业出版社,2004.
    [102]钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究[D].博士学位论文,上海:上海大学,1999.
    [103]张兆顺,崔桂香.流体力学[M].清华大学出版社,2006.
    [104]张勤,崔建忠,路贵民,等.磁场强度对半连铸铝合金液穴形状及凝固组织的影响[J].金属学报,2002,38(9):955-960.
    [105]E.J.ZoQui,M.Paes,E.Es-Sadiqi.Macro- and microstructure analysis of SSM A356 produced by electromagnetic stirring[J].J.Mater.Process.Technol120(2002)365-373
    [106]K.Biswas,R.Hermann,J.Das,et al.Tailoring the microstructure and mechanical properties fo Ti-Al alloy using a novel electromagnetic stirring method[J].Scripta Mater.55(2006)1143-1146.
    [107]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社,2005.
    [108]李昊,桂满昌,周彼得.搅拌铸造金属基复合材料的热力学和动力学机制[J].中国空间科学技术,1997,(1):9-16.
    [109]Charles Vives,Christian Perry.Effect of electromagnetic stirring during the controlled splidification of tin[J].International Journal of Heat and Mass Transfer.1986,29(1):21-33.
    [110]H.M.Yina,G.H.Paulinoa,W.G.Buttlar.Micromechanies-based thermoelastic model for functionally graded particulate materials with particle interactions[J].J.Mech.Phy.Solids.55(2007) 132-160.
    [111]李英民,艾秀兰.电磁搅拌对Al/Mg2Si复合材料宏观偏细的影响[J],祷造,2002,51(12):756-758.
    [112]罗虹,张宝生,朱景川等.离心铸造SiC/A356功能梯度材料的组织结构和耐磨性[J].材料科学与工艺,1997,5(2):76-79.
    [113]雷作胜.连铸坯表面震痕形成机理及其电磁控制技术[D].博士学位论文,上海:上海大学,2004.
    [114]陈瑞润,丁宏升,毕维生,等.电磁约束成形用冷坩埚内磁场分布规律[J].特种铸造及有色合金,2006,26(10):615-617.
    [115]Nakata H,Inoue T,Mort H,et al.Improvement of Billet Surface Quality by Ultra-high-frequency Electromagnetic Casting[J].ISIJ International,2002,42(3):264-272.
    [116]鄢红春,何冠虎,周本濂,等.脉冲电流对Sn-Pb合金凝固组织的影响[J].金属学报,1997,33(4):352-358.
    [117]W.D.Griffiths,D.G.McCartney.The effect of electromagnetic stirring on macmstmcture and macrosegregation in the aluminum alloy 7150[J].Mate.Sci.Eng.A222(1997)140-148.
    [118]M.G.Lines.Nanomatedals for practical functional uses[J].Journal of Alloys and Compounds ⅹⅹⅹ(2007) ⅹⅹⅹ-ⅹⅹⅹ.(PDF paper is available on internet)
    [119]赵大成,梁春余编著.统计热力学导论[M].吉林人民出版社,2000.
    [120]张哲华,刘莲君编著.量子力学与原子物理学[M].武汉大学出版社,1997.
    [121]A.Labib,H.Liu,EH.Samuel.Effect of solidificationi rate(0.1-100/s)on the microstructure,mechanical properties and fractography of two Al-10vol%SiC particle composite castings[J].Mater.Sci.Eng.A.1993,160(1):81-90.
    [122]Shuangjie Chu,Renjie Wu.The structure and bending properties of squeeze-cast composites of A356 aluminium alloy reinforced with alumina particles.[J].Composites Science and Technology 59(1999) 157-162.
    [123]X.N.Zhang,L.Geng,G.S.Wang.Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting[J].J.Mater.Pro.Technol.176(2006)146-156.
    [124]M.R.Ghomashchi,A.Vikhrov.Squeeze casting:an overview[J].J.Mater.Pro.Technol 101(2000)1-9.
    [125]齐丕禳.挤压铸造,上海交通大学[M].北京国防工业出版社,1981.
    [126]Shang-Nan Choua,Jow-Lay Huanga,Ding-Fwu Lii,et al.The mechanical properties and microstmcture of Al2O3/aluminum alloy composites fabricated by squeeze casting[J].Journal of Alloys and Compounds ⅹⅹⅹ(2006) ⅹⅹⅹ-ⅹⅹⅹ.(PDF paper is available on interact).
    [127]赵龙志,曹小明,田冲等.挤压铸造siC/Z1109铝合金双连续相复合材料的凝固组织[J].金属学报,2006,42(3):325-330.
    [128]L.J.Yang.The effect of casting temperature on the properties of squeeze cast aluminum and zinc alloys[J].J.Mat.Pro.Technol.14(2003)391-396.
    [129]S.C.Tjong,G.S.wang,Y.W.Mai.High cycle fatigue response of in situ Al-based composites containing TiB2 and Al_2O_3 submicmn particles.Composites Sci,Technol 65(2005)1391-1400.
    [130]陈国钦,朱德志,占荣,等.挤压铸造法制备高致密Mo/Cu及其导热性能.中国有色金属学报,2005,15(11):1864-1868.
    [131]王晓东,李廷举,金俊泽.旋转磁场作用下金属凝固补缩机理探讨.材料工程,2001,(11):3-6.
    [132]M.R.Ghomashchi.Cleanliness of capped steel[R].BHP/U-SA Report,1991.
    [133]D.Y.Maeng,J.H.Lee,C.W.Won,et al.The effects of processing parameters on the microstmcture and mechanical properties of modified B390 alloy in direct squeeze casting.J.Mater.Pro.Technol.105(2000) 196-203.
    [134]赵恒义,周天西,袁燕.挤压铸造工艺及发展应用现状[J].热加工工艺,2000(2):45-47.
    [135]朱明原,许珞萍,邵光杰,等.EMS-DC法制备的半固态ZL101A铝合金的组织与性能[J].中国有色金属学报,2000,10(增刊):150-154.
    [136]E.J.ZoQui,M.Paes,E.Es-Sadiqi.Macro- and microstructure analysis of SSM A356 produced by electromagnetic stirring[J].J.Mater.Process.Technol120(2002)365-373.
    [137]郭钧,谢水生,黄声宏,等.半固态铝合金的制备研究[J].稀有金属,1998,22(6):424-426.
    [138]廖恒成,孙国雄.共晶硅变质机理研究进展[J].铸造,2003,52(12):1127-1129.
    [139]张伟强.金属电磁凝固原理与技术[M].北京:冶金工业出版社,2004.
    [140]T.J.Li,X.T.Li,Z.EZhang,et al.Effect of multielectromagnetic field on meniscus shape and quality of continuously cast metals[J].lronmaking and steelmaking.2006,33(1):57-60.
    [141]张斌.电磁场作用下液体金属液面运动及控制规律的研究[D].硕士学位论文,大连:大连理工大学,2002.
    [142]程常桂,任忠鸣,邓康等.气膜软接触连铸技术的研究[J].特种铸造及有色合金,2002(2):29-33.
    [143]Takatani K.Effects of Electromagnetic Brake and Meniscus Electromagnetic Stirrer on Transient Molten Steel Flow at Meniscus in a Continuous Casting Mold[J].ISIJ Int.,2002,43(6):915-922.
    [144]Nakata H.,Inoue T.,Mort H.,et al.Improvement of Billet Surface Quality by Ultra-high-frequency Electromagnetic Casting[J].ISIJ Int.,2002,42(3):264-272.
    [145]Zhongming REN,Huafeng DONG,Kang DENG,et al.lnfluence of High Frequency Electromagnetic Field on the Initial Solidification during Electromagnetic Continuous Casting[J].ISIJ Inter.,2001,41(9)981-985.
    [146]王宏明,任忠鸣,李桂荣等.颗粒增强铝基复合材料的电磁连铸研究[J].铸造技术,2005(3):199-201.
    [147]荆涛.凝固过程数值计算[M].北京:电子工业出版社,2002.
    [148]郭志芳,金俊泽,王辉等.圆锭电磁铸造中电磁场的数值模拟[J].特种铸造及有色合金,2004(4):38-40.
    [149]Park J.,Kim H.,Jeong H.et al.Continuous Casting of Steel Billet with High Frequency Electromagnetic Field[J].ISIJ International,2004(6):813-819.
    [150]雷作胜,任忠鸣,闫永刚,等.高频调幅磁场下无结晶器振动电磁连铸技术的实验研究[J].金属学报,2004,40(9):995-999.
    [151]M.Kolbe,X.R.Liu,T.Volkmann,et al.Interaction of solid ceramic particles with a dendritic solidification front[J].Mater.Sci.Eng.A375-377(2004)524-527.
    [152]王自东,胡汉起,金属基“内晶型”复合材料及其制备[J].金属学报,1995,31(1):40-43.
    [153]张留成.材料学导论[M].河北大学出版社,1999.
    [154]王辉虎,许伯藩,吴新杰等.多种氧化物原位反应制备的Al_2O_3/Al复合材料[J].中国有色金属学报,2003,13(3):662-667.
    [155]孙建祥,赵玉涛,戴起勋等.Al-Zr(CO_3)_2体系反应合成复合材料的力学性能与断裂行为[J].中国有色金属学报,2004,14(7):1228-1233.
    [156]梁艳峰,董晟全,杨通等.原位增强TiB_2/Al-4.5Cu复合材料的组织和力学性能[J].铸造技术,2004,25(2):125-127.
    [157]L Lu,M.O.Lai,Y.Su,etc.In situ TiB2 reinforced Al alloy composites[J].Scripta Materialia 45(2001)1017-1023.
    [158]R.DASGUPYA,H.MEENAI.Sliding wear properties of Al-Cu based alloys with SiC particles reinforced composites under varying wxperimental conditions[J].J.Mater.Sci.Letters 2003,22.1573-1576.
    [159]董杰.超高强铝合金低频电磁半连续铸造工艺及理论研究[D].沈阳:东北大学博士论文,2004.
    [160]Vives C.Efects of forced electromagnetic vibrations during the solidification of aluminum alloys(Ⅱ)-solidification in the presence of collinear variable and stationary magnetic field[J].Metall Mater Trans B,1996,7B:457-464.
    [161]Stucky M,Richard M.Influence of electromagnetic stirring,partical remelting and thixoforming on mechanical properties of A356alloys[J].Proc 5~(th) International conference on semi-solid processing of alloys and composites.Colorado:Golden,1998(23/25):513.
    [162]王晖,任忠鸣等.纯物质凝固的磁场热力学分析[J].中国有色金属学报,2004,14(6):945-948.
    [163]Subrata banerjee,Dinkar Prasad,Jayanta Pal.Large gap control in electromangnetic levitation[J].ISA Trans.2006,45(2):215-224.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700