用户名: 密码: 验证码:
激活态雪旺细胞临床应用安全性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
引言:组织工程为周围神经缺损的修复提供了新的方法,填充了雪旺细胞的可吸收人工神经导管有望在将来替代自体神经移植应用于临床。通过“激活液”(专利申请中)外源性刺激获得的激活态雪旺细胞,在增殖能力和分泌活性都明显超过正常的雪旺细胞,而且促进神经再生的效果也明显增强。体外培养、扩增的激活态雪旺细胞应用于临床的一个必要前提是安全可靠,无致癌性、致畸性。本研究的目的是联合体内、体外多个实验,检测激活态雪旺细胞是否安全,有无应用于临床的可能。本研究共分为4个部分:
     目的:通过横向比较,探索适合临床应用的成年雪旺细胞培养技术。
     方法:成年SD大鼠,分4组,每组10只,从双侧坐骨神经取材培养雪旺细胞。A组采用体内预变性法+快速酶消化法;B组采用体内预变性法+慢速酶消化法;C组采用体外预变性法+快速酶消化法;D组采用体外预变性法+慢速酶消化法。细胞传代使用冷喷射传代法和胰酶消化传代法。比较(1)体内、体外预变性增加取材神经中雪旺细胞的数目有无差别;(2)快速、慢速酶消化法从神经中获取雪旺细胞的效率;(3)冷喷射传代法和胰酶消化传代法的效率。筛选使动物痛苦小、而雪旺细胞数量多、纯度高等最适合临床应用的方法。
     结果:体外预变性和体内预变性都能明显增加取材神经中的雪旺细胞数目,无统计学差异,但体外预变性减轻了患者的痛苦。快速酶消化法和慢速酶消化法在培养1周时获得的雪旺细胞数目相似,无统计学差异。冷喷射传代法兼有纯化雪旺细胞的作用,会损失一定数量的雪旺细胞,对操作者技术要求高;胰酶消化传代法没有纯化的作用,对操作者技术要求低。
     结论:体外预变性减轻患者痛苦,更适合临床应用;快速、慢速酶消化法效果无明显差异,均可考虑应用;冷喷射传代法可以和胰酶消化传代法有机结合使用,前者在雪旺细胞纯度较低时应用,后者在雪旺细胞纯度较高时应用。
     目的:体外检测激活态雪旺细胞的生物学特性,与良性、恶性细胞对比,分析其是否有恶性细胞的特点。
     方法:从成年大鼠坐骨神经中分离并体外培养激活态雪旺细胞,通过对细胞形态的连续观察、生长方式的变化、免疫学标志物鉴定、增殖率和纯度检测、迁移能力和侵袭能力检测、染色体核型分析,及全基因组表达谱基因芯片、细胞因子抗体芯片检测,对激活态雪旺细胞的生物学特性进行综合评估。
     结果:激活态雪旺细胞在体外培养形态均一、无异质性变化。增殖能力增加,受密度抑制影响减小。连续传代不丢失S100、P75LNGFR、GFAP等免疫学标识物,迁移能力、侵袭能力略有增加,但明显弱于恶性细胞。染色体仍为2倍体。基因和蛋白表达存在动态平衡,第2、3代总体表达最高。
     结论:从成年大鼠周围神经分离并体外培养获得的激活态雪旺细胞,基本不具备恶性细胞的生物学特性。
     目的:模拟临床应用,探索激活态雪旺细胞的体内变化过程,是否会形成肿瘤。
     方法:从成年大鼠双侧坐骨神经培养足量的激活态雪旺细胞,移植到自体腋窝下,与良性、恶性细胞移植对比。50只成年大鼠分三组:A组:激活态雪旺细胞,自体移植细胞数目1×107个,大鼠20只;B:正常雪旺细胞,自体移植细胞数目1×107个,大鼠20只;C组,恶性大鼠胶质瘤C6细胞,移植细胞数目2×106个,大鼠10只。分别在移植细胞后0.5个月、1个月、2个月、4个月、6个月对大鼠腋窝注射细胞处取材,观察大体标本上是否有细胞团或肿瘤形成,解剖局部及内脏观察有无肿瘤转移灶的形成。将局部的细胞团块或肿瘤做免疫组织化学鉴定,并查找病理性核分裂相。
     结果:注射恶性细胞的大鼠(C组),均在0.5-1个月长出肿瘤。而激活态雪旺细胞组(A组)和正常雪旺细胞组(B组)在体内不形成肿瘤,体内的过程相似,至少可以在腋窝下存活2个月,并表达免疫学标志物。
     结论:激活态雪旺细胞在体内非正常微环境下至少可以存活2个月,并表达免疫学标志物,不形成肿瘤。
     目的:探索激活态雪旺细胞自体移植是否对后代产生影响。
     方法:从成年雌性动物坐骨神经培养出足量的激活态雪旺细胞后自体移植,然后与雄性大鼠同笼喂养3个月。与单纯坐骨神经切除的动物对比后代的生物学性状,如怀孕率,新生鼠的活胎数、死胎数、体重、体长、尾长的比较,染色体数目的检测。新生鼠4周时的发育、基本行为能力、对伤害的认知等。
     结果:无论是否移植激活态雪旺细胞,单侧坐骨神经切除后的成年雌性大鼠,3个月内怀孕率均为40%。实验组和对照组的新生鼠的活胎数、死胎数、体重、体长、尾长无统计学差异,新生鼠发育状况、基本行为能力、对伤害的认知等均未见明显异常。新生鼠的染色体仍为21对。
     结论:激活态雪旺细胞的自体移植对成年雌性动物的后代的生物学性状不产生明显的影响。
Introduction:
     Tissue engineering supplies a new approach in repairing peripheral nerve defects. The absorbable artificial nerve conduits filled with Schwann cells could be an alternative substitute of peripheral nerve autograft. Activated Schwann cells, which are acquired through stimulating Schwann cells with "activation liquid" (patent in applying), have higher reproductive activity and secrete more growth factors. Furthermore, activated Schwann cells appear to facilitate much more peripheral nerve regeneration. An important prerequisite of activated Schwann cells utilizing in clinical application is absolute safeness, that is, no carcinogenicity and no teratogenicity. The aim of this study was to detect the malignant potential of activated Schwann cells in vitro and in vivo. This study includes four parts:
     Objective:We aim to find some clinically applicable techniques in adult Schwann cell culture through comparative study.
     Methods:Fourty adult rats were randomly divided into 4 groups. Schwann cells were harvested from bilateral sciatic nerves. Group A:Predegeneration in vivo+Fast enzyme digestion; Group B:Predegeneration in vivo+Slow enzyme digestion; Group C:Predegeneration in vitro+Fast enzyme digestion; Group:Pregegeneration in vitro +Slow enzyme digestion. Cells were passaged with cold jet or trypsinization. Comparative studies include:(1) The difference of predegeneration between in vitro and in vivo in increasing the number of Schwann cells within peripheral nerves; (2) The efficiency of harvesting Schwann cells between fast enzyme digestion and slow enzyme digestion; (3) The efficiency of cold jet and trypsinization in passage. Through comparative studies, the most suitable methods were found to culture Schwann cells in clinical application.
     Results:Predegeneration, both in vivo and in vitro were effective in increasing the number of Schwann cells within peripheral nerves. The number of Schwann cells expanded in vitro for 1 week, were similar with either fast enzyme digestion or slow enzyme digestion. No statistical significance was found among the four groups. Both cold jet and trypsinization were effective in passage. The differences were that cold jet could purify Schwann cells during passage, but needs skillful operators and losses a certain number of cells; and trypsinization does the opposite. Conclusion:Predegeneration in vitro alleviates patients'suffering, and more applicable in clinical medicine. Both fast and slow enzyme digestion could be use in harvesting Schwann cells from peripheral nerves. Cold jet and trypsinization should be combined in passaging Schwann cells.
     Objective:We aim to assess the malignant potential of activated Schwann cells in vitro through comparison with both benign and malignant cells.
     Methods:After dissociation from adult rat sciatic nerves, activated Schwann cells were cultured in vitro. We detected the biological characteristics of activated Schwann cells in vitro through a serial of experiments, such as successive cell morphology and growth pattern observations, immunological marker identifications, proliferation index and purity detections, wound healing assay and Transwell invasion assay, karyotype analysis and detections of gene expression profiling chips and cytokine antibody chips. And the characteristics of activated Schwann cells were compared with normal Schwann cells and malignant cells.
     Results:Morphology of activated Schwann cells was the same with normal ones. Proliferation activity was increased, and density inhibition was decreased in activated Schwann cells. Activation and successive passages did not influence the expression of immunological markers of Schwann cells. Proliferation rate of activated Schwann cells was higher than normal ones. After activation, the abilities of migration and invasion of Schwann cells were a little enhanced, however, much lower than malignant cells. The karyotype of activated Schwann cells was normal. The expressions of genes and proteins were under dynamic balance, and the highest viability was in the second and third passages.
     Conclusion:Activated Schwann cells, which were dissociated from rat peripheral nerves and expanded in vitro, have no biological characteristics of malignant cells.
     Objective:This study was to detect whether activated Schwann cells have carcinogenicity in vivo or not.
     Methods:Sufficient activated Schwann cells were harvested from rat bilateral sciatic nerves. Then the cells were were autotransplanted into axillary fossa to see whether they could produce tumors in vivo or not. Normal Schwann cells were used as a negative control, and malignant rat C6 glioma cells were used as a positive control. Fifty rats were randomly divided into 3 groups. Group A:A total of 1×107 activated Schwann cells were autotransplanted into right axillary fossa of 20 rats; Group B:A total of 1×107normal Schwann cells were autotransplanted into right axillary fossa of 20 rats; Group C:A total of 2×106 rat glioma cells were transplanted into right axillary fossa of 10 rats. Equivalent rats were sacrificed at 0.5 months,1 months,2 months,4 months and 6 months after cell transplantation, respectively. The complete gross necropsies of adjacent organs were done to find any potential hypercellular area, which were further examined histologically. The origin of cell mass was identified through immunohistochemistry. Karyokinesis was observed in sections from all cell masses after H&E staining.
     Results:All the 10 rats receiving C6 cell transplantation developed tumors during 0.5 to 1 month. And all rats which were autotransplanted with Schwann cells, whether activated or normal Schwann cells, were found no tumor formation. And Schwann cells could survive at axillary fossa for at least 2 months and express immunological markers.
     Conclusion:Activated Schwann cells could survive and express immunological markers at least 2 months in abnormal micro-enviroment in vivo, and produce no tumors.
     Objective:This study was to detect whether autotransplantation of activated Schwann cells have influences on descendants.
     Methods:Sufficient activated Schwann cells were harvested from sciatic nerves of adult female rats. Adult female rats simply resected sciatic nerves were used as controls. After autotransplantation, all rats were caged with male rats. Items of comparative detection include:pregnancy rate, the amount of foeti, body weight, body length, tail length and chromosome number. It was also observed that growth, fundamental behavioral capacity and cognition of injury till four weeks.
     Result:The pregnancy rates of adult female rats which were resected of unilateral sciatic nerve were 40% in 3 months. No difference was seen between autotransplantation and control group. Similarly, no significant difference was seen in parameters of newly born rats, such as live feoti, dead feoti, body weight, body length, tail length, et al. No abnormalities were found in growth, fundamental behavioral capacity and cognition of injury of newly born rats four weeks later. The chromosome number of newly born rats was 42.
     Conclusion:Autotransplation of activated Schwann cells did not influence the biological characteristics of descendants of adult female rats.
引文
[1]Brenner M J, Hess J R, Myckatyn T M, et al. Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats.[J]. Laryngoscope,2006,116(9):1685-1692.
    [2]Hoke A, Redett R, Hameed H, et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration.[J]. J Neurosci,2006,26(38):9646-9655.
    [3]Neubauer D, Graham J B, Muir D. Chondroitinase treatment increases the effective length of acellular nerve grafts.[J]. Exp Neurol,2007,207(1):163-170.
    [4]李岩峰,劳杰.组织工程神经导管研究进展[J].中华创伤杂志,2009,25(4):381-384.
    [5]Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury:an update of current concepts[J]. Injury-international journal of the care of the injured,2008:S29-S39.
    [6]Weber R A, Breidenbach W C, Brown R E, et al. A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans.[J]. Plast Reconstr Surg,2000,106(5):1036-1045,1046-1048.
    [7]Sinis N, Schaller H, Schulte-Eversum C. Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells[J]. Journal of Neurosurgery,2005,103(6):1067-1076.
    [8]劳杰,熊良俭,顾玉东,等.应用激活态雪旺细胞充填导管修复周围神经缺损的初步研究[J].中华手外科杂志,2000,16(04):136-140.
    [9]劳杰,姜良福,顾玉东,等.脑源性神经营养因子在激活态雪旺细胞中表达的初步实验研究[J].中华手外科杂志,2003,19(2):109-111.
    [10]劳杰,蒋良福,顾玉东.激活态雪旺细胞生长相关蛋白43mRNA表达的研究[J].中华骨科杂志,2005,25(6):372-374.
    [11]劳杰,顾玉东.激活态雪旺细胞在细胞培养下的生长规律[J].中华手外科杂志,2002,18(3):174-176.
    [12]何继银,劳杰,顾玉东,等.激活态雪旺细胞信号转导通路的分子构成[J].中华手外科杂志,2008,24(1):45-47.
    [13]蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究[J].中华手外科杂志,2005,21(3):172-174.
    [14]Haynes L W, Rushton J A, Perrins M F, et al. Diploid and hyperdiploid rat Schwann cell strains displaying negative authoregulation of growth in vitro and myelin sheath formation in vivo[J]. Journal of Neuroscience Methods,1994,52(2):119-127.
    [15]Haastert K, Seef P, Stein V M, et al. A new cell culture protocol for enrichment and genetic modification of adult canine Schwann cells suitable for peripheral nerve tissue engineering.[J]. Res Vet Sci,2009,87(1):140-142.
    [16]Mauritz C, Grothe C, Haastert K. Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells[J]. Journal of neuroscience research,2004,77(3):453-461.
    [17]Li R H, Sliwkowski M X, Lo J, et al. Establishment of Schwann cell lines from normal adult and embryonic rat dorsal root ganglia[J]. Journal of neuroscience methods,1996,67(1):57-69.
    [18]Porter S, Glaser L, Bunge R P. Release of autocrine growth factor by primary and immortalized Schwann cells.[J]. Proc Natl Acad Sci U S A,1987,84(21):7768-7772.
    [19]Langford L A, Porter S, Bunge R P. Immortalized rat Schwann cells produce tumours in vivo.[J]. J Neurocytol,1988,17(4):521-529.
    [1]李岩峰,劳杰.组织工程神经导管研究进展[J].中华创伤杂志,2009,25(4):381-384.
    [2]Inada Y, Morimoto S, Takakura Y, et al. Regeneration of peripheral nerve gaps with a polyglycolic acid-collagen tube.[J]. Neurosurgery,2004,55(3):640-646, 646-648.
    [3]Wang H, Lineaweaver W C. Nerve conduits for nerve reconstruction[J]. Operative Techniques in Plastic and Reconstructive Surgery,2002,9(2):59-66.
    [4]Li R H, Sliwkowski M X, Lo J, et al. Establishment of Schwann cell lines from normal adult and embryonic rat dorsal root ganglia[J]. Journal of neuroscience methods,1996,67(1):57-69.
    [5]Wei Y, Zhou J, Zheng Z, et al. An improved method for isolating Schwann cells from postnatal rat sciatic nerves.[J]. Cell Tissue Res,2009,337(3):361-369.
    [6]Calderon-Martinez D, Garavito Z, Spinel C, et al. Schwann cell-enriched cultures from adult human peripheral nerve:a technique combining short enzymatic dissociation and treatment with cytosine arabinoside (Ara-C)[J].2002,114(1):1-8.
    [7]Haastert K, Mauritz C, Chaturvedi S, et al. Human and rat adult Schwann cell cultures:fast and efficient enrichment and highly effective non-viral transfection protocol.[J]. Nat Protoc,2007,2(1):99-104.
    [8]Oda Y, Okada Y, Katsuda S, et al. A simple method for the Schwann cell preparation from newborn rat sciatic nerves[J].1989,28(3):163-169.
    [9]Pannunzio M E, Jou I, Long A, et al. A new method of selecting Schwann cells from adult mouse sciatic nerve[J].2005,149(1):74-81.
    [10]Manent J, Oguievetskaia K, Bayer J, et al. Magnetic cell sorting for enriching Schwann cells from adult mouse peripheral nerves[J].2003,123(2):167-173.
    [11]Jin Y, Liu W, Hong T, et al. Efficient Schwann cell purification by differential cell detachment using multiplex collagenase treatment[J]. Journal of Neuroscience Methods,2008,170(1):140-148.
    [12]章少华,劳杰,李岩峰,等.应用黑素细胞培养基在成年SD大鼠雪旺细胞培养中的实验研究[J].中华手外科杂志,2009,25(2):110-112.
    [13]Haastert K, Mauritz C, Matthies C, et al. Autologous adult human Schwann cells genetically modified to provide alternative cellular transplants in peripheral nerve regeneration.[J]. J Neurosurg,2006,104(5):778-786.
    [14]Porter S, Glaser L, Bunge R P. Release of autocrine growth factor by primary and immortalized Schwann cells.[J]. Proc Natl Acad Sci U S A,1987,84(21):7768-7772.
    [15]Kraus A, Taeger J, Kohler K, et al. Efficacy of various durations of in vitro predegeneration on the cell count and purity of rat Schwann cell cultures. [J]. J Neurotrauma,2009.
    [16]Haynes L W, Rushton J A, Perrins M F, et al. Diploid and hyperdiploid rat Schwann cell strains displaying negative authoregulation of growth in vitro and myelin sheath formation in vivo[J]. Journal of Neuroscience Methods,1994,52(2):119-127.
    [17]Mauritz C, Grothe C, Haastert K. Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells[J]. Journal of neuroscience research,2004,77(3):453-461.
    [18]Tzeng S F, Deibler G E, Devries G H. Myelin basic protein and myelin basic protein peptides induce the proliferation of Schwann cells via ganglioside GM1 and the FGF receptor.[J]. Neurochem Res,1999,24(2):255-260.
    [19]Chang J Y, Brown S. Cytosine arabinoside differentially alters survival and neurite outgrowth of neuronal PC 12 cells.[J]. Biochem Biophys Res Commun,1996,218(3):753-758.
    [20]Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves:an effective technique to obtain activated Schwann cells for nerve conduits[J]. 1999,89(1):17-24.
    [21]Jirsova K, Sodaar P, Mandys V, et al. Cold jet:a method to obtain pure Schwann cell cultures without the need for cytotoxic, apoptosis-inducing drug treatment[J]. 1997,78(1-2):133-137.
    [22]Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury:an update of current concepts[J]. Injury-international journal of the care of the injured,2008:S29-S39.
    [23]Sinis N, Schaller H, Schulte-Eversum C. Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells[J]. Journal of Neurosurgery,2005,103(6):1067-1076.
    [24]蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究[J].中华手外科杂志,2005,21(3):172-174.
    [25]Collins P, Wigley C. Introduction and systemic overview[M] Gray's anatomy, Thirty-ninth Edition. ed; Standring S, Philadelphia:Elservier,2005.,443-467.
    [1]李岩峰,劳杰.组织工程神经导管研究进展[J].中华创伤杂志,2009,25(4):381-384.
    [2]Collins P, Wigley C. Introduction and systemic overview[M] Gray's anatomy, Thirty-ninth Edition. ed; Standring S, Philadelphia:Elservier,2005.,443-467.
    [3]Saberi H, Moshayedi P, Aghayan H R, et al. Treatment of chronic thoracic spinal cord injury patients with autologous Schwann cell transplantation:An interim report on safety considerations and possible outcomes[J]. Neuroscience Letters,2008,443(1):46-50.
    [4]Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves:an effective technique to obtain activated Schwann cells for nerve conduits[J]. 1999,89(1):17-24.
    [5]Mauritz C, Grothe C, Haastert K. Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells[J]. Journal of neuroscience research,2004,77(3):453-461.
    [6]劳杰,顾玉东.激活态雪旺细胞在细胞培养下的生长规律[J].中华手外科杂志,2002,18(3):174-176.
    [7]劳杰,姜良福,顾玉东,等.脑源性神经营养因子在激活态雪旺细胞中表达的初步实验研究[J].中华手外科杂志,2003,19(2):109-111.
    [8]劳杰,蒋良福,顾玉东.激活态雪旺细胞生长相关蛋白43mRNA表达的研究[J].中华骨科杂志,2005,25(6):372-374.
    [9]劳杰,熊良俭,顾玉东,等.应用激活态雪旺细胞充填导管修复周围神经缺损的初步研究[J].中华手外科杂志,2000,16(04):136-140.
    [10]Emery E, Li X M, Brunschwig J P, et al. Assessment of the malignant potential of mitogen stimulated human Schwann cells [J]. Journal of the peripheral nervous system,1999,4(2):107-116.
    [11]Haastert K, Seef P, Stein V M, et al. A new cell culture protocol for enrichment and genetic modification of adult canine Schwann cells suitable for peripheral nerve tissue engineering.[J]. Res Vet Sci,2009,87(1):140-142.
    [12]Li R H, Sliwkowski M X, Lo J, et al. Establishment of Schwann cell lines from normal adult and embryonic rat dorsal root ganglia[J]. Journal of neuroscience methods,1996,67(1):57-69.
    [13]Tzeng S F, Deibler G E, Devries G H. Myelin basic protein and myelin basic protein peptides induce the proliferation of Schwann cells via ganglioside GM1 and the FGF receptor.[J]. Neurochem Res,1999,24(2):255-260.
    [14]Porter S, Glaser L, Bunge R P. Release of autocrine growth factor by primary and immortalized Schwann cells.[J]. Proc Natl Acad Sci U S A,1987,84(21):7768-7772.
    [15]Langford L A, Porter S, Bunge R P. Immortalized rat Schwann cells produce tumours in vivo.[J]. J Neurocytol,1988,17(4):521-529.
    [16]Valster A, Tran N L, Nakada M, et al. Cell migration and invasion assays.[J]. Methods,2005,37(2):208-215.
    [17]Rambau R V, Elder F F, Robinson T J. Chromosomal evolution in the vlei rat, Otomys irroratus (Muridae:Otomyinae):a compound chromosomal rearrangement separates two major cytogenetic groups.[J]. Cytogenet Cell Genet,2001,93(3-4):253-257.
    [18]劳杰,顾玉东,熊良俭,等.预变神经段修复神经缺损的实验研究[J].中华手外科杂志,1998(03):172-174.
    [19]劳杰,熊良俭,顾玉东,等.改良成年SD大鼠雪旺细胞培养的实验研究[J].中华手外科杂志,1999,15(02):106-108.
    [20]蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究[J].中华手外科杂志,2005,21(3):172-174.
    [21]何继银,劳杰,顾玉东,等.激活态雪旺细胞信号转导通路的分子构成[J].中华手外科杂志,2008,24(1):45-47.
    [1]Langford L A, Porter S, Bunge R P. Immortalized rat Schwann cells produce tumours in vivo.[J]. J Neurocytol,1988,17(4):521-529.
    [2]李岩峰,劳杰.组织工程神经导管研究进展[J].中华创伤杂志,2009,25(4):381-384.
    [3]Sinis N, Schaller H, Schulte-Eversum C. Nerve regeneration across a 2-cm gap in the rat median nerve using a resorbable nerve conduit filled with Schwann cells[J]. Journal of Neurosurgery,2005,103(6):1067-1076.
    [4]劳杰,姜良福,顾玉东,等.脑源性神经营养因子在激活态雪旺细胞中表达的初步实验研究[J].中华手外科杂志,2003,19(2):109-111.
    [5]劳杰,蒋良福,顾玉东.激活态雪旺细胞生长相关蛋白43mRNA表达的研究[J].中华骨科杂志,2005,25(6):372-374.
    [6]蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究[J].中华手外科杂志,2005,21(3):172-174.
    [7]Nukumi N, Iwamori T, Kano K, et al. Reduction of tumorigenesis and invasion of human breast cancer cells by whey acidic protein (WAP).[J]. Cancer Lett,2007,252(1):65-74.
    [8]Porter S, Glaser L, Bunge R P. Release of autocrine growth factor by primary and immortalized Schwann cells.[J]. Proc Natl Acad Sci U S A,1987,84(21):7768-7772.
    [1]李岩峰,劳杰.组织工程神经导管研究进展[J].中华创伤杂志,2009,25(4):381-384.
    [2]Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury:an update of current concepts[J]. Injury-international journal of the care of the injured,2008:S29-S39.
    [3]蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究[J].中华手外科杂志,2005,21(3):172-174.
    [4]劳杰,蒋良福,顾玉东.激活态雪旺细胞生长相关蛋白43mRNA表达的研究[J].中华骨科杂志,2005,25(6):372-374.
    [5]劳杰,姜良福,顾玉东,等.脑源性神经营养因子在激活态雪旺细胞中表达的初步实验研究[J].中华手外科杂志,2003,19(2):109-111.
    [6]Koren G, Levichek Z. The teratogenicity of drugs for nausea and vomiting of pregnancy:perceived versus true risk.[J]. Am J Obstet Gynecol,2002,186(5 Suppl Understanding):S248-S252.
    [7]Griffiths J C, Borzelleca J F, St C J. Lack of oral embryotoxicity/teratogenicity with D-ribose in Wistar rats.[J]. Food Chem Toxicol,2007,45(3):388-395.
    [1]李岩峰,劳杰.组织工程神经导管研究进展[J].中华创伤杂志,2009,25(4):381-384.
    [2]Ichihara S, Inada Y, Nakamura T. Artificial nerve tubes and their application for repair of peripheral nerve injury:an update of current concepts[J]. Injury-international journal of the care of the injured,2008:S29-S39.
    [3]Hoke A, Redett R, Hameed H, et al. Schwann cells express motor and sensory phenotypes that regulate axon regeneration. [J]. J Neurosci,2006,26(38):9646-9655.
    [4]Brenner M J, Hess J R, Myckatyn T M, et al. Repair of motor nerve gaps with sensory nerve inhibits regeneration in rats. [J]. Laryngoscope,2006,116(9):1685-1692.
    [5]Tos P, Battiston B, Nicolino S, et al. Comparison of fresh and predegenerated muscle-vein-combined guides for the repair of rat median nerve. [J]. Microsurgery,2007,27(1):48-55.
    [6]Su Y, Zeng B F, Zhang C Q, et al. Study of biocompatibility of small intestinal submucosa (SIS) with Schwann cells in vitro. [J]. Brain Res,2007,1145:41-47.
    [7]Mohammad J, Shenaq J, Rabinovsky E, et al. Modulation of peripheral nerve regeneration:a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap.[J]. Plast Reconstr Surg,2000,105(2):660-666.
    [8]Hess J R, Brenner M J, Fox I K, et al. Use of cold-preserved allografts seeded with autologous Schwann cells in the treatment of a long-gap peripheral nerve injury. [J]. Plast Reconstr Surg,2007,119(1):246-259.
    [9]Hu J, Zhu Q T, Liu X L, et al. Repair of extended peripheral nerve lesions in rhesus monkeys using acellular allogenic nerve grafts implanted with autologous mesenchymal stem cells.[J]. Exp Neurol,2007,204(2):658-666.
    [10]Auba C, Hontanilla B, Arcocha J, et al. Peripheral nerve regeneration through allografts compared with autografts in FK506-treated monkeys. [J]. J Neurosurg,2006,105(4):602-609.
    [11]Vogelin E, Baker J M, Gates J, et al. Effects of local continuous release of brain derived neurotrophic factor (BDNF) on peripheral nerve regeneration in a rat model. [J]. Exp Neurol,2006,199(2):348-353.
    [12]Kim S M, Lee S K, Lee J H. Peripheral nerve regeneration using a three dimensionally cultured schwann cell conduit.[J]. J Craniofac Surg,2007,18 (3):475-488.
    [13]Ikeguchi R, Kakinoki R, Matsumoto T, et al. Basic fibroblast growth factor promotes nerve regeneration in a C--ion-implanted silicon chamber. [J]. Brain Res,2006,1090(1):51-57.
    [14]Sun M, Kingham P J, Reid A J, et al. In vitro and in vivo testing of novel ultrathin PCL and PCL/PLA blend films as peripheral nerve conduit. [J]. J Biomed Mater Res A,2009.
    [15]Hsu S H, Lu P S, Ni H C, et al. Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. [J]. Biomed Microdevices,2007,9(5):665-674.
    [16]Barakat-Walter I, Kraftsik R, Schenker M, et al. Thyroid hormone in biodegradable nerve guides stimulates sciatic nerve regeneration:a potential therapeutic approach for human peripheral nerve injuries. [J]. J Neurotrauma,2007,24(3):567-577.
    [17]Suzuki K, Kawauchi A, Nakamura T, et al. Histologic and electrophysiological study of nerve regeneration using a polyglycolic acid-collagen nerve conduit filled with collagen sponge in canine model. [J]. Urology,2009,74(4):958-963.
    [18]Vleggeert-Lankamp C L, de Ruiter G C, Wolfs J F, et al. Pores in synthetic nerve conduits are beneficial to regeneration.[J]. J Biomed Mater Res A,2007,80(4):965-982.
    [19]Haile Y, Haastert K, Cesnulevicius K, et al. Culturing of glial and neuronal cells on polysialic acid. [J]. Biomaterials,2007,28(6):1163-1173.
    [20]Okamoto H, Hata K, Kagami H, et al. Recovery process of sciatic nerve defect with novel bioabsorbable collagen tubes packed with collagen filaments in dogs. [J]. J Biomed Mater Res A,2010,92(3):859-868.
    [21]Dodla M C, Bellamkonda R V. Anisotropic scaffolds facilitate enhanced neurite extension in vitro. [J]. J Biomed Mater Res A,2006,78(2):213-221.
    [22]Yucel D, Kose G T, Hasirci V. Polyester based nerve guidance conduit design. [J]. Biomaterials,2010,31(7):1596-1603.
    [23]Huang Y C, Huang C C, Huang Y Y, et al. Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. [J]. J Biomed Mater Res A,2007,82(4):842-851.
    [24]Chang C J, Hsu S H. The effect of high outflow permeability in asymmetric poly(dl-lactic acid-co-glycolic acid) conduits for peripheral nerve regeneration. [J]. Biomaterials,2006,27(7):1035-1042.
    [25]Schnell E, Klinkhammer K, Balzer S, et al. Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-epsilon-caprolactone and a collagen/poly-epsilon-caprolactone blend.[J]. Biomaterials,2007,28(19):3012-3025.
    [26]Alluin O, Feron F, Desouches C, et al. Metabosensitive afferent fiber responses after peripheral nerve injury and transplantation of an acellular muscle graft in association with schwann cells. [J]. J Neurotrauma,2006,23(12):1883-1894.
    [27]Cottrell B L, Perez-Abadia G, Onifer S M, et al. Neuroregeneration in composite tissue allografts:effect of low-dose FK506 and mycophenolate mofetil immunotherapy. [J]. Plast Reconstr Surg,2006,118(3):615-623,624-625.
    [28]Brown D L, Bishop D K, Wood S Y, et al. Short-term anti-CD40 ligand costimulatory blockade induces tolerance to peripheral nerve allografts, resulting in improved skeletal muscle function. [J]. Plast Reconstr Surg,2006,117(7):2250-2258.
    [29]Tung T H, Doolabh V B, Mackinnon S B, et al. Survival of long nerve allografts following donor antigen pretreatment:a pilot study. [J]. J Reconstr Microsurg,2006,22(6):443-449.
    [30]Chang J Y, Lin J H, Yao C H, et al. In vivo evaluation of a biodegradable EDC/NHS-cross-linked gelatin peripheral nerve guide conduit material.[J]. Macromol Biosci,2007,7(4):500-507.
    [31]Nakayama K, Takakuda K, Koyama Y, et al. Enhancement of peripheral nerve regeneration using bioabsorbable polymer tubes packed with fibrin gel. [J]. Artif Organs,2007,31(7):500-508.
    [32]Nakayama K, Takakuda K, Koyama Y, et al. Regeneration of peripheral nerves by bioabsorbable polymer tubes with fibrin gel. [J]. J Nanosci Nanotechnol,2007,7(3):730-733.
    [33]Newman K D, Mclaughlin C R, Carlsson D, et al. Bioactive hydrogel-filament scaffolds for nerve repair and regeneration. [J]. Int J Artif Organs,2006,29 (11):1082-1091.
    [34]Stokols S, Sakamoto J, Breckon C, et al. Templated agarose scaffolds support linear axonal regeneration. [J]. Tissue Eng,2006,12(10):2777-2787.
    [35]Luis A L, Rodrigues J M, Lobato J V, et al. Evaluation of two biodegradable nerve guides for the reconstruction of the rat sciatic nerve. [J]. Biomed Mater Eng,2007,17(1):39-52.
    [36]Pfister L A, Papaloizos M, Merkle H P, et al. Hydrogel nerve conduits produced from alginate/chitosan complexes. [J]. J Biomed Mater Res A,2007,80 (4):932-937.
    [37]Zhang Z, Rouabhia M, Wang Z, et al. Electrically conductive biodegradable polymer composite for nerve regeneration: electricity-stimulated neurite outgrowth and axon regeneration. [J]. Artif Organs,2007,31 (1):13-22.
    [38]Lohmeyer J A, Shen Z L, Walter G F, et al. Bridging extended nerve defects with an artifcial nerve graft containing Schwann cells pre-seeded on polyglactin filaments. [J]. Int J Artif Organs,2007,30(1):64-74.
    [39]Keilhoff G, Fansa H, Schneider W, et al. In vivo predegeneration of peripheral nerves:an effective technique to obtain activated Schwann cells for nerve conduits[J].1999,89(1):17-24.
    [40]Mauritz C, Grothe C, Haastert K. Comparative study of cell culture and purification methods to obtain highly enriched cultures of proliferating adult rat Schwann cells[J]. Journal of neuroscience research,2004,77(3):453-461.
    [41]蒋良福,劳杰,何继银,等.几丁糖胶原复合膜及激活态雪旺细胞修复周围神经缺损的实验研究[J].中华手外科杂志,2005,21(3):172-174.
    [42]Haastert K, Mauritz C, Matthies C, et al. Autologous adult human Schwann cells genetically modified to provide alternative cellular transplants in peripheral nerve regeneration. [J]. J Neurosurg,2006,104(5):778-786.
    [43]Setton-Avruj C P, Musolino P L, Salis C, et al. Presence of alpha-globin mRNA and migration of bone marrow cells after sciatic nerve injury suggests their participation in the degeneration/regeneration process. [J]. Exp Neurol,2007,203(2):568-578.
    [44]Chen C J, Ou Y C, Liao S L, et al. Transplantation of bone marrow stromal cells for peripheral nerve repair. [J]. Exp Neurol,2007,204(1):443-453.
    [45]Shimizu S, Kitada M, Ishikawa H, et al. Peripheral nerve regeneration by the in vitro differentiated-human bone marrow stromal cells with Schwann cell property. [J]. Biochem Biophys Res Commun,2007,359(4):915-920.
    [46]Hou S Y, Zhang H Y, Quan D P, et al. Tissue-engineered peripheral nerve grafting by differentiated bone marrow stromal cells. [J]. Neuroscience,2006,140(1):101-110.
    [47]Keilhoff G, Stang F, Goihl A, et al. Transdifferentiated mesenchymal stem cells as alternative therapy in supporting nerve regeneration and myelination. [J]. Cell Mol Neurobiol,2006,26(7-8):1235-1252.
    [48]Nie X, Zhang Y J, Tian W D, et al. Improvement of peripheral nerve regeneration by a tissue-engineered nerve filled with ectomesenchymal stem cells. [J]. Int J Oral Maxillofac Surg,2007,36(1):32-38.
    [49]Marchesi C, Pluderi M, Colleoni F, et al. Skin-derived stem cells transplanted into resorbable guides provide functional nerve regeneration after sciatic nerve resection. [J]. Glia,2007,55 (4):425-438.
    [50]Dombrowski M A, Sasaki M, Lankford K L, et al. Myelination and nodal formation of regenerated peripheral nerve fibers following transplantation of acutely prepared olfactory ensheathing cells. [J]. Brain Res,2006,1125(1):1-8.
    [51]Leaver S G, Harvey A R, Plant G W. Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. [J]. Glia,2006,53(5):467-476.
    [52]Li Y, Li D, Raisman G. Transplanted Schwann cells, not olfactory ensheathing cells, myelinate optic nerve fibres. [J]. Glia,2007,55(3):312-316.
    [53]Aquino J B, Hjerling-Leffler J, Koltzenburg M, et al. In vitro and in vivo differentiation of boundary cap neural crest stem cells into mature Schwann cells. [J]. Exp Neurol,2006,198(2):438-449.
    [54]Hoffman R M. The potential of nestin-expressing hair follicle stem cells in regenerative medicine. [J]. Expert Opin Biol Ther,2007,7(3):289-291.
    [55]Boyd J G, Gordon T. Neurotrophic factors and their receptors in axonal regeneration and functional recovery after peripheral nerve injury. [J]. Mol Neurobiol,2003,27(3):277-324.
    [56]Piotrowicz A, Shoichet M S. Nerve guidance channels as drug delivery vehicles. [J]. Biomaterials,2006,27(9):2018-2027.
    [57]Chen M H, Chen P R, Chen M H, et al. Gelatin-tricalcium phosphate membranes immobilized with NGF, BDNF, or IGF-1 for peripheral nerve repair: an in vitro and in vivo study. [J]. J Biomed Mater Res A,2006,79 (4):846-857.
    [58]Neto J C, Vasconcelos B C, Sobral A P, et al. Clinical and histopathologic study of the use of gangliosides for nerve regeneration in rats after axonotmesis. [J]. J Oral Maxillofac Surg,2007,65(5):870-874.
    [59]Hadlock T, Sundback C. Biologically inspired approaches to drug delivery for nerve regeneration. [J]. Expert Opin Biol Ther,2006,6(11):1105-1111.
    [60]Jungnickel J, Haase K, Konitzer J, et al. Faster nerve regeneration after sciatic nerve injury in mice over-expressing basic fibroblast growth factor. [J]. J Neurobiol,2006,66(9):940-948.
    [61]Niere M, Braun B, Gass R, et al. Combination of engineered neural cell adhesion molecules and GDF-5 for improved neurite extension in nerve guide concepts. [J]. Biomaterials,2006,27(18):3432-3440.
    [62]Golz G, Uhlmann L, Ludecke D, et al. The cytokine/neurotrophin axis in peripheral axon outgrowth. [J]. Eur J Neurosci,2006,24(10):2721-2730.
    [63]Macica C M, Liang G, Lankford K L, et al. Induction of parathyroid hormone-related peptide following peripheral nerve injury:role as a modulator of Schwann cell phenotype. [J]. Glia,2006,53(6):637-648.
    [64]Toth C, Brussee V, Martinez J A, et al. Rescue and regeneration of injured peripheral nerve axons by intrathecal insulin. [J]. Neuroscience,2006,139(2):429-449.
    [65]Lykissas M G, Sakellariou E, Vekris M D, et al. Axonal regeneration stimulated by erythropoietin:an experimental study in rats. [J]. J Neurosci Methods,2007,164(1):107-115.
    [66]King C E, Rodger J, Bartlett C, et al. Erythropoietin is both neuroprotective and neuroregenerative following optic nerve transection. [J]. Exp Neurol,2007,205(1):48-55.
    [67]Turgut M, Oktem G, Uysal A, et al. Immunohistochemical profile of transforming growth factor-betal and basic fibroblast growth factor in sciatic nerve anastomosis following pinealectomy and exogenous melatonin administration in rats. [J]. J Clin Neurosci,2006,13(7):753-758.
    [68]Cui S S, Yang C P, Bowen R C, et al. Valproic acid enhances axonal regeneration and recovery of motor function after sciatic nerve axotomy in adult rats. [J]. Brain Res,2003,975(1-2):229-236.
    [69]Sinn D I, Kim S J, Chu K, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation. [J]. Neurobiol Dis,2007,26(2):464-472.
    [70]Madura T, Kubo T, Tanag M, et al. The Rho-associated kinase inhibitor fasudil hydrochloride enhances neural regeneration after axotomy in the peripheral nervous system. [J]. Plast Reconstr Surg,2007,119(2):526-535.
    [71]Shortland P J, Leinster V H, White W, et al. Riluzole promotes cell survival and neurite outgrowth in rat sensory neurones in vitro. [J]. Eur J Neurosci,2006,24(12):3343-3353.
    [72]Uwabe K, Iwakawa T, Matsumoto M, et al. HU0622:a small molecule promoting GAP-43 activation and neurotrophic effects. [J]. Neuropharmacology,2006,51 (4):727-736.
    [73]Sarikcioglu L, Duygulu E, Aydin H, et al. Effects of intrathecal administration of FK506 after sciatic nerve crush injury. [J]. J Reconstr Microsurg,2006,22(8):649-654.
    [74]Snyder A K, Fox I K, Nichols C M, et al. Neuroregenerative effects of preinjury FK-506 administration. [J]. Plast Reconstr Surg,2006,118(2):360-367.
    [75]Masgutov R, Raginov I, Fomina G, et al. Stimulation of the rat's sciatic nerve regeneration by local treatment with Xymedon. [J]. Cell Mol Neurobiol,2006,26 (7-8):1413-1421.
    [76]Golka B, Swiech-Sabuda E, Golka D, et al. The changes in neurotrophic properties of the peripheral nerves extracts following blocking of BDNF activity. [J]. Neurol Res,2007,29(5):500-505.
    [77]Ayan I, Esenkaya I, Karakaplan M, et al. [The effect of human placental suspension on rat sciatic nerve healing][J]. Acta Orthop Traumatol Turc,2007,41 (2):140-146.
    [78]Chen H T, Yao C H, Chao P D, et al. Effect of serum metabolites of Pueraria lobata in rats on peripheral nerve regeneration:in vitro and in vivo studies. [J]. J Biomed Mater Res B Appl Biomater,2008,84(1):256-262.
    [79]Farrag T Y, Lehar M, Verhaegen P, et al. Effect of platelet rich plasma and fibrin sealant on facial nerve regeneration in a rat model. [J]. Laryngoscope,2007,117(1):157-165.
    [80]Simova 0, Irintchev A, Mehanna A, et al. Carbohydrate mimics promote functional recovery after peripheral nerve repair. [J]. Ann Neurol,2006,60(4):430-437.
    [81]Wu Q L, Liang X C. Survey of current experimental studies of effects of traditional chinese medicine on peripheral nerve regeneration. [J]. Chin J Integr Med,2006,12(3):229-233.
    [82]Donzelli R, Maiuri F, Piscopo G A, et al. Role of extracellular matrix components in facial nerve regeneration:an experimental study. [J]. Neurol Res,2006,28(8):794-801.
    [83]Novikova L N, Mosahebi A, Wiberg M, et al. Alginate hydrogel and matrigel as potential cell carriers for neurotransplantation. [J]. J Biomed Mater Res A,2006,77(2):242-252.
    [84]Wang D Y, Huang Y C, Chiang H, et al. Microcontact printing of laminin on oxygen plasma activated substrates for the alignment and growth of Schwann cells. [J]. J Biomed Mater Res B Appl Biomater,2007,80(2):447-453.
    [85]Williams L R. Exogenous fibrin matrix precursors stimulate the temporal progress of nerve regeneration within a silicone chamber. [J]. Neurochem Res,1987,12(10):851-860.
    [86]Williams L R, Danielsen N, Muller H, et al. Exogenous matrix precursors promote functional nerve regeneration across a 15-mm gap within a silicone chamber in the rat. [J]. J Comp Neurol,1987,264(2):284-290.
    [87]Dubey N, Letourneau P C, Tranquillo R T. Neuronal contact guidance in magnetically aligned fibrin gels:effect of variation in gel mechano-structural properties. [J]. Biomaterials,2001,22(10):1065-1075.
    [88]Panteri R, Mey J, Zhelyaznik N, et al. Reelin is transiently expressed in the peripheral nerve during development and is upregulated following nerve crush. [J]. Mol Cell Neurosci,2006,32(1-2):133-142.
    [89]Lee H K, Seo I A, Park H K, et al. Nidogen is a prosurvival and promigratory factor for adult Schwann cells. [J]. J Neurochem,2007,102(3):686-698.
    [90]Tucker B A, Rahimtula M, Mearow K M. Laminin and growth factor receptor activation stimulates differential growth responses in subpopulations of adult DRG neurons. [J]. Eur J Neurosci,2006,24(3):676-690.
    [91]Toba T, Nakamura T, Lynn A K, et al. Evaluation of peripheral nerve regeneration across an 80-mm gap using a polyglycolic acid (PGA)--collagen nerve conduit filled with laminin-soaked collagen sponge in dogs. [J]. Int J Artif Organs,2002,25(3):230-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700