用户名: 密码: 验证码:
Fostriecin生物合成相关基因功能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
福司曲星(Fostriecin, FST)是由链霉菌Streptomyces pulveraceus产生的一种磷酸酯类聚酮化合物,具有良好的抗肿瘤活性。FST的生物合成是由Ⅰ型聚酮合酶催化形成,其后经过一系列后修饰加工反应,如:羟基化、磷酸化等。目前,对FST的研究主要针对其生物活性及化学合成方面。不同链霉菌遗传转化体系建立的难易程度不同,FST产生菌的遗传转化体系较难建立,至今未见FST产生菌遗传转化体系和生物合成机制的相关报道。
     本研究建立并优化了FST产生菌S. pulveraceus的遗传转化体系;通过基因阻断失活,确定了FST生物合成后修饰基因的功能;初步确定了FST生物合成的PKS后修饰途径。具体研究结果及结论如下:
     (1)利用接合转移方法建立并优化了FST产生菌S. pulveraceus的遗传转化体系。最适宜的转化条件为:以孢子悬液作为受体菌,50℃热激10min,涂布于添加终浓度为5%甘氨酸的MS培养基,培养18h后,用终浓度为20μg/mL的阿伯拉霉素和25μg/mL的萘啶酮酸覆盖。
     (2)对Red/ET重组系统的电转体系进行优化,提高了同源重组效率。具体的参数为:电转时加入500ng外源线性DNA,制备感受态细胞时大肠杆菌培养至OD600值为0.4~0.6,感受态细胞的终浓度为0.7×107个/μL,添加的L-阿拉伯糖终浓度为20mmol/L,诱导3h。
     (3)根据FST基因簇上与其生物合成相关的基因序列进行BLAST同源比对分析,发现FST生物合成基因簇含有5个主要后修饰基因,被命名为fosG、fosJ、fosK、fosH和fosM。为了研究它们各自的功能,通过基因阻断试验对基因进行失活。与野生型菌株相比,fosG阻断变株不再产化合物PD113271,以FST为主要产物;fosJ阻断变株产生五种新衍生物(1-5);.fosH阻断变株产生两种新衍生物(6,7);fosK阻断变株产生两种新衍生物(8,PD113270);而fosM基因缺失突变株只产生一种新衍生物(9)。经质谱和核磁对新衍生物的结构进行解析,初步证实了这5个后修饰基因的功能。fosG、 fosJ、fosK编码细胞色素P450单氧化酶,属于羟化酶,分别修饰FST C-4、C-8及C-18位的羟基化;FosH属于磷酸激酶家族成员,参与FST C-9位的磷酸化;fosM基因负责脱去C-3位丙二酸酯形成FST C2, C3位之间的不饱和双键。
     (4)通过基因互补试验,确定基因缺失突变株的代谢产物不是由其它因素影响的。以pSET153-tsr为出发质粒,连入目的基因构建基因回复载体,分别转入相应的基因阻断突变株中,得到回复菌株。对其进行摇瓶发酵,HPLC分析显示:基因在其阻断变株中获得表达,fosJ~fosM回复菌株重新合成FST, fosG回复菌株重新积累到化合物PD113271。
     (5)多数聚酮化合物的结构中包含一个或多个双键,这些双键是由PKS模块中酮还原酶-脱水酶(KR-DH)双结构域催化形成,但FST PKS最后一个模块缺少DH结构域,无法形成内酯环的不饱和双键。通过对fosM基因功能的研究,发现该不饱和双键的形成不依赖于PKS模块脱水酶(DH)结构域,由后修饰基因fosM完成。FST生物合成的整个PKS后修饰过程均伴随着C-3位丙二酸酯结构进行,只有当FosK催化形成C-18位羟基后,FosM才发挥功能作为FST合成的最后一步脱去丙二酸形成不饱和内酯。
     (6)根据5个后修饰基因阻断试验得到的一系列衍生物结构分析,初步确定了FST生物合成的PKS后修饰途径。带有丙二酸酯结构的化合物4经FosJ羟化,加载C-8位羟基,形成化合物6。再先后经FosH和FosK作用,在C-9位进行磷酸化,C-18位进行羟基化,形成化合物8和9。FosM最后发挥作用,脱去丙二酸,形成C2-C3位间的双键,完成FST的生物合成。FosG是在FST合成后才开始执行它的功能,形成C-4位带羟基的FST即化合物PD113271。
Fostriecin (FST) is a phosphate ester polyketide produced by Streptomyces pulveraceus with promising antitumor activity. FST is synthesized by a modular FST polyketide synthase (PKS) and a series of post-PKS modifying reactions, including hydroxylation, phosphorylation and so on. Recently, the studies on FST mainly exist in biological activity and chemical synthesis. It has not been reported on the FST biosynthetic mechanism. In this study, we established and optimized genomic transfer system for FST producer S. pulveraceus, delineated the functions of post-PKS modification genes by gene knockout inactivation, and elucidated the pathway for post-PKS modification in FST biosynthesis. The main results and conclusions are listed as follows:
     (1) We established and optimized gemonic transfer system for FST producer S. pulveraceus by conjugal transfer method. The optimal conditions were spore suspension as conjugation recipients, Ms agar medium with5%glycin,50℃heat shock10min and flooding apramycin (20μg/mL) and nalidixic acid (25μg/mL) after18h.
     (2) To enhance the electrotransformation efficiency, we optimized electrotransformation system of Red/ET recombination system. The optimal electrotansformation parameters as follows:500ng foreign DNA, OD600for E. coli reaches0.4-0.6, competent cell concentration is0.7×107/μL, and final concentration of L-alabinose is20mmol/L, inducing3h.
     (3) The BLAST analysis of the FST biosynthetic gene cluster revealed that it includes five genes putatively involved in post-PKS modifications, named fosG, fosH, fosJ, fosK and fosM. To elucidate the functions of these genes, we inactivated their functions by gene knockout experiments. Compared with wild-type strain, fosG disrupted strain failed to produce PD113271and accumulated FST as the major product; fosJ disrupted strain accumulated five new FST analogues,1-5; fosH and fosK disrupted strains accumulated two new FST analogues,6,7and8, PD113270, respectively; fosM disrupted strains only accumulated one new FST analogue,9. Structures of these new derivatives were identified through mass and'H NMR spectroscopic analysis. On the basis of the structures of these compounds, we verified the functions of these post-PKS modification genes. FosG-, fosJ-and fosK-encoded cytochrome P450monooxygenases belonged to hydroxylases, are responsible for C-4C-8and C-18hydroxylation, respectively. FosH encoded phosphokinase are involved in C-9phosphorylation. FosM might be the crucial enzyme involved in formation of double bond at C2-C3in FST biosynthesis.
     (4) Genetic complementations to the mutant strains were subsequently carried out to confirm the metabolites were not influenced by other factors. All target genes were amplified and inserted into pSET153-tsr to yield gene complemented vectors. Then these complemented plasmids were introduced into the corresponding mutant strains by conjugation. When cultured these complemented strains, HPLC analysis suggested that all target genes could be expressed in the corresponding mutant strains. We observed that FST was accumulated by fosJ~fosM complementations and PD113271was restored with fosG complementation.
     (5) Many poliketides contain one or more double bonds in their structures that are generated by ketoreductase-dehydratase (KR-DH) domains within the PKS modules. It is unable to form the unsaturated double bond of the lactone ring due to the lack of a cognate DH domain in the FST PKS terminal module. Through the determination of function offosM gene, we found that the formation of an unsaturated double bond is dependent upon FosM, not a DH domain in the module PKS. All the post-PKS modification steps in FST biosynthesis can occur with the polyketide chain bearing a malonyl ester at the C-3position. FosM is responsible for the formal elimination of malonate to generate the unsaturated lactone in FST biosynthesis only when the C-18hydroxylation catalyzed by FosK is completed.
     (6) According to the chemical structures of a series of new analogues achieved from the five post-PKS modification gene disruption experiments, we elucidated the pathway for post-PKS modifications in FST biosynthesis. The malonylated compound4, liberated from PKS elongation by TE, was catalyzed by FosJ to form compound6. Then, FosH and FosK could catalyze the phosphorylation at C-9and hydroxylation at C-18to create the malonylated compound8and9, respectively. Finally, FosM performs its function on elimination of malonic acid and formation of double bond between C-2and C-3. When the biosynthesis of FST is completed, FosG starts to play its role in C4-hydroxylation of FST to afford PD113271.
引文
[1]NEWMAN D J, CRAGG G M. Natural products as sources of new drugs over the Last 25 Years [J]. Journal of natural products,2007,70(3):461-477.
    [2]NEWMAN D J, CRAGG G M, SNADER K M. Natural products as sources of new drugs over the period 1981-2002 [J]. Journal of natural products,2003,66(7):1022-1037.
    [3]LEADLAY P F. Combinatorial approaches to polyketide biosynthesis [J]. Current opinion in chemical biology,1997,1(2):162-168.
    [4]MENZELLA H G, REID R, CARNEY J R, et al. Combinatorial polyketide biosynthesis by de novo design and rearrangement of modular polyketide synthase genes [J]. Nature biotechnology,2005,23(9): 1171-1176.
    [5]STAMPWALA S, BUNGE R, HURLEY T, et al. Novel antitumor agents CI-920, PD 113,270 and PD 113,271. Ⅱ. Isolation and characterization [J]. The Journal of antibiotics,1983,36(12):1601-1605.
    [6]BORITZKI T J, WOLFARD T S, BESSERER J A, et al. Inhibition of type Ⅱ topoisomerase by fostriecin [J]. Biochemical pharmacology,1988,37(21):4063-4068.
    [7]WALSH A H, CHENG A, HONKANEN R E. Fostriecin, an antitumor antibiotic with inhibitory activity against serine/threonine protein phosphatases types 1 (PP1) and 2A (PP2A), is highly selective for PP2A [J]. FEBS letters,1997,416(3):230-234.
    [8]DE JONG R, DE VRIES E, MULDER N. Fostriecin:a review of the preclinical data [J]. Anti-cancer drugs,1997,8(5):413-418.
    [9]O'HAGAN D. Biosynthesis of fatty acid and polyketide metabolites [J]. Natural product reports,1995, 12(1):1-32.
    [10]SANGLIER J, HAAG H, HUCK T, et al. Novel bioactive compounds from actinomycetes:a short review (1988-1992) [J]. Research in microbiology,1993,144(8):633-642.
    [11]KATZ L, DONADIO S. Polyketide synthesis:prospects for hybrid antibiotics [J]. Annual Reviews in Microbiology,1993,47(1):875-912.
    [12]HOPWOOD D A, SHERMAN D H. Molecular genetics of polyketides and its comparison to fatty acid biosynthesis [J]. Annual review of genetics,1990,24(1):37-62.
    [13]CARRERAS C, PIEPER R, KHOSLA C. The chemistry and biology of fatty acid, polyketide, and nonribosomal peptide biosynthesis [J]. Bioorganic Chemistry Deoxysugars, Polyketides and Related Classes:Synthesis, Biosynthesis, Enzymes,1997,85-126.
    [14]HARVEY A. Strategies for discovering drugs from previously unexplored natural products [J]. Drug discovery today,2000,5(7):294-300.
    [15]WEISSMAN K J. Polyketide biosynthesis:understanding and exploiting modularity [J]. Philosophical Transactions of the Royal Society of London Series A:Mathematical, Physical and Engineering Sciences,2004,362(1825):2671-2690.
    [16]STAUNTON J, WEISSMAN K J. Polyketide biosynthesis:a millennium review [J]. Natural product reports,2001,18(4):380-416.
    [17]RODRIGUEZ E, MCDANIEL R. Combinatorial biosynthesis of antimicrobials and other natural products [J]. Current opinion in microbiology,2001,4(5):526-534.
    [18]WALSH C T. Combinatorial biosynthesis of antibiotics:challenges and opportunities [J]. ChemBioChem,2002,3(2-3):124-134.
    [19]KHOSLA C, ZAWADA R J X. Generation of polyketide libraries via combinatorial biosynthesis [J]. Trends in biotechnology,1996,14(9):335-341.
    [20]RIX U, FISCHER C, REMSING L L, et al. Modification of post-PKS tailoring steps through combinatorial biosynthesis [J]. Natural product reports,2002,19(5):542-580.
    [21]ROUHI A M. Rediscovering natural products [J]. Chemical & engineering news,2003,81(41):77-91.
    [22]YING L, TANG D. Recent advances in the medicinal chemistry of novel erythromycin-derivatized antibiotics [J]. Current Topics in Medicinal Chemistry,2010,10(14):1441-1469.
    [23]SHEN B. Polyketide biosynthesis beyond the type Ⅰ, Ⅱ and Ⅲ polyketide synthase paradigms [J]. Current opinion in chemical biology,2003,7(2):285-295.
    [24]HUTCHINSON C R, FUJⅡ Ⅰ. Polyketide synthase gene manipulation:a structure-function approach in engineering novel antibiotics [J]. Annual Reviews in Microbiology,1995,49(1):201-238.
    [25]SEOW K, MEURER G, GERLITZ M, et al. A study of iterative type Ⅱ polyketide synthases, using bacterial genes cloned from soil DNA:a means to access and use genes from uncultured microorganisms [J]. Journal of bacteriology,1997,179(23):7360-7368.
    [26]MOORE B S, HOPKE J N. Discovery of a new bacterial polyketide biosynthetic pathway [J]. ChemBioChem,2001,2(1):35-38.
    [27]DONADIO S, STAVER M J, MCALPINE J B, et al. Modular organization of genes required for complex polyketide biosynthesis [J]. Science,1991,252(5006):675-679.
    [28]WIESMANN K E H, CORT S J, BROWN M J B, et al. Polyketide synthesis in vitro on a modular polyketide synthase [J]. Chemistry & biology,1995,2(9):583-589.
    [29]CORTES J, HAYDOCK S F, ROBERTS G A, et al. An unusually large multifunctional polypeptide in the erythromycin-producing polyketide synthase of Saccharopolyspora erythraea [J].1990,348: 176-178.
    [30]WEBER J M, LEUNG J, MAINE G, et al. Organization of a cluster of erythromycin genes in Saccharopolyspora erythraea [J]. Journal of bacteriology,1990,172(5):2372-2383.
    [31]FISHMAN S, COX K, LARSON J, et al. Cloning genes for the biosynthesis of a macrolide antibiotic [J]. Proceedings of the National Academy of Sciences,1987,84(23):8248-8252.
    [32]MACNEIL D J, OCCI J L, GEWAIN K M, et al. Complex organization of the Streptomyces avermitilis genes encoding the avermectin polyketide synthase [J]. Gene,1992,115(1-2):119-125.
    [33]MOTAMEDI H, SHAFIEE A, CAI S J, et al. Characterization of methyltransferase and hydroxylase genes involved in the biosynthesis of the immunosuppressants FK506 and FK520 [J]. Journal of bacteriology,1996,178(17):5243-5248.
    [34]SCHWECKE T, APARICIO J F, MOLNAR I, et al. The biosynthetic gene cluster for the polyketide immunosuppressant rapamycin [J]. Proceedings of the National Academy of Sciences,1995,92(17): 7839-7843.
    [35]SUN Y, ZHOU X, DONG H, et al. A complete gene cluster from Streptomyces nanchangensis NS3226 encoding biosynthesis of the polyether ionophore nanchangmycin [J]. Chemistry & biology, 2003,10(5):431-441.
    [36]ZHAO C, JU J, CHRISTENSON S D, et al. Utilization of the methoxymalonyl-acyl carrier protein biosynthesis locus for cloning the oxazolomycin biosynthetic gene cluster from Streptomyces albus JA3453 [J]. Journal of bacteriology.2006,188(11):4142-4147.
    [37]MAGARVEY N A, HALTLI B, HE M, et al. Biosynthetic pathway for mannopeptimycins, lipoglycopeptide antibiotics active against drug-resistant gram-positive pathogens [J]. Antimicrobial agents and chemotherapy,2006,50(6):2167-2177.
    [38]THOMPSON C, SKINNER R, THOMPSON J, et al. Biochemical characterization of resistance determinants cloned from antibiotic-producing streptomycetes [J]. Journal of bacteriology,1982, 151(2):678-685.
    [39]BEVITT D J, CORTES J, HAYDOCK S F, et al.6-Deoxyerythronolide-B synthase 2 from Saccharopolyspora erythraea [J]. European Journal of Biochemistry,1992,204(1):39-49.
    [40]OLANO C, M NDEZ C, SALAS J A. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis [J]. Natural product reports,2010, 27(4):571-616.
    [41]GAISSER S, LEADLAY P F. Sugaring the pill by design [J]. Nat Biotech,1998,16 (1):1-19.
    [42]BORISOVA S A, ZHAO L, SHERMAN D H, et al. Biosynthesis of desosamine:construction of a new macrolide carrying a genetically designed sugar moiety [J]. Organic letters,1999,1(1):133-136.
    [43]TANG L, MCDANIEL R. Construction of desosamine containing polyketide libraries using a glycosyltransferase with broad substrate specificity [J]. Chemistry & biology,2001,8(6):547-555.
    [44]BLANCO G, PATALLO E P, BRA A A F, et al. Identification of a sugar flexible glycosyltransferase from Streptomyces olivaceus, the producer of the antitumor polyketide elloramycin [J]. Chemistry & biology,2001,8(3):253-263.
    [45]FERNANDEZ-MORENO M, MART NEZ E, BOTO L, et al. Nucleotide sequence and deduced functions of a set of cotranscribed genes of Streptomyces coelicolor A3 (2) including the polyketide synthase for the antibiotic actinorhodin [J]. Journal of Biological Chemistry,1992,267(27): 19278-19290.
    [46]SUMMERS R, WENDT-PIENKOWSKI E, MOTAMEDI H, et al. The tcmVI region of the tetracenomycin C biosynthetic gene cluster of Streptomyces glaucescens encodes the tetracenomycin F1 monooxygenase, tetracenomycin F2 cyclase, and, most likely, a second cyclase [J]. Journal of bacteriology,1993,175(23):7571-7580.
    [47]BIBB M J, BIRO S, MOTAMEDI H, et al. Analysis of the nucleotide sequence of the Streptomyces glaucescens temI genes provides key information about the enzymology of polyketide antibiotic biosynthesis [J]. The EMBO journal,1989,8(9):2727-2736.
    [48]BECK J, RIPKA S, SIEGNER A, et al. The multifunctional 6-methylsalicylic acid synthase gene of Penicillium patulum [J]. European Journal of Biochemistry,1990,192(2):487-498.
    [49]BROWN D, YU J, KELKAR H, et al. Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans [J]. Proceedings of the National Academy of Sciences,1996, 93(4):1418-1422.
    [50]MCDANIEL R, EBERT-KHOSLA S, HOPWOOD D A, et al. Engineered biosynthesis of novel polyketides [J]. Science,1993,262(5139):1546-1550.
    [51]SHEN B, HUTCHINSON C R. Deciphering the mechanism for the assembly of aromatic polyketides by a bacterial polyketide synthase [J]. Proceedings of the National Academy of Sciences,1996,93(13): 6600-6604.
    [52]MCDANIEL R, EBERT-KHOSLA S, HOPWOOD D A, et al. Engineered biosynthesis of novel polyketides:actVII and actIV genes encode aromatase and cyclase enzymes, respectively [J]. Journal of the American Chemical Society,1994,116(24):10855-10859.
    [53]FUNA N, OHNISHI Y, FUJII I, et al. A new pathway for polyketide synthesis in microorganisms [J]. Nature,1999,400(6747):897-899.
    [54]HAYDOCK S F, APARICIO J F, MOLN R I, et al. Divergent sequence motifs correlated with the substrate specificity of (methyl) malonyl-CoA:acyl carrier protein transacylase domains in modular polyketide synthases [J]. FEBS letters,1995,374(2):246-248.
    [55]SUMMERS R G, DONADIO S, STAVER M J, et al. Sequencing and mutagenesis of genes from the erythromycin biosynthetic gene cluster of Saccharopolyspora erythraea that are involved in L-mycarose and D-desosamine production [J]. Microbiology,1997,143(10):3251-3262.
    [56]WEISSMAN K J, LEADLAY P F. Combinatorial biosynthesis of reduced polyketides [J]. Nature reviews microbiology,2005,3(12):925-936.
    [57]LAL R, KUMARI R, KAUR H, et al. Regulation and manipulation of the gene clusters encoding type-I PKSs [J]. Trends in biotechnology,2000,18(6):264-274.
    [58]CARRERAS C W, SANTI D V. Engineering of modular polyketide synthases to produce novel polyketides [J]. Current opinion in biotechnology,1998,9(4):403-411.
    [59]JACOBSEN J R, HUTCHINSON C R, CANE D E, et al. Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase [J]. Science,1997,277(5324):367-369.
    [60]WATANABE K, WANG C C C, BODDY C N, et al. Understanding substrate specificity of polyketide synthase modules by generating hybrid multimodular synthases [J]. Journal of Biological Chemistry,2003,278(43):42020-42026.
    [61]GAISSER S, KELLENBERGER L, KAJA A L, et al. Direct production of ivermectin-like drugs after domain exchange in the avermectin polyketide synthase of Streptomyces avermitilis ATCC31272 [J]. Org Biomol Chem,2003,1(16):2840-2847.
    [62]STARKS C M, ZHOU Y, LIU F, et al. Isolation and characterization of new epothilone analogues from recombinant myxococcus x anthus fermentations [J]. Journal of natural products,2003,66(10): 1313-1317.
    [63]ZAZOPOULOS E, HUANG K, STAFFA A, et al. A genomics-guided approach for discovering and expressing cryptic metabolic pathways [J]. Nature biotechnology,2003,21(2):187-190.
    [64]KOUMOUTSI A, CHEN X H, HENNE A, et al. Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42 [J]. Journal of bacteriology,2004,186(4):1084-1096.
    [65]RODRIGUEZ L, OELKERS C, AGUIRREZABALAGA I, et al. Generation of hybrid elloramycin analogs by combinatorial biosynthesis using genes from anthracycline-type and macrolide biosynthetic pathways [J]. Journal of molecular microbiology and biotechnology,2000,2(3):271-176.
    [66]HUFFMAN J, GERBER R, DU L. Recent advancements in the biosynthetic mechanisms for polyketide-derived mycotoxins [J]. Biopolymers,2010,93(9):764-776.
    [67]WEBER J, LEUNG J, SWANSON S, et al. An erythromycin derivative produced by targeted gene disruption in Saccharopolyspora erythraea [J]. Science,1991,252(5002):114-117.
    [68]SALAH-BEY K, DOUMITH M, MICHEL J M, et al. Targeted gene inactivation for the elucidation of deoxysugar biosynthesis in the erythromycin producer Saccharopolyspora eiythraea [J]. Molecular and General Genetics MGG,1998,257(5):542-553.
    [69]ZHAO L, AHLERT J, XUE Y, et al. Engineering a methymycin/pikromycin-calicheamicin hybrid: construction of two new macrolides carrying a designed sugar moiety [J]. Journal of the American Chemical Society,1999,121(42):9881-9882.
    [70]GAISSER S, REATHER J, WIRTZ G, et al. A defined system for hybrid macrolide biosynthesis in Saccharopolyspora erythraea [J]. Molecular microbiology,2000,36(2):391-401.
    [71]LAMB D C, WATERMAN M R, KELLY S L, et al. Cytochromes P450 and drug discovery [J]. Current opinion in biotechnology,2007,18(6):504-512.
    [72]SAVINO C, MONTEMIGLIO L C, SCIARA G, et al. Investigating the structural plasticity of a cytochrome P450 three-dimensional structures of P450 EryK and bingding to its physiological substrate [J]. Journal of Biological Chemistry,2009,284(42):29170-29179.
    [73]COOPER H L, GROVES J T. Molecular probes of the mechanism of cytochrome P450. Oxygen traps a substrate radical intermediate [J]. Archives of biochemistry and biophysics,2011,507(1):111-118.
    [74]JONES B C, MIDDLETON D S, YOUDIM K.6 Cytochrome P450 metabolism and inhibition: analysis for drug discovery [J]. Progress in medicinal chemistry,2009,47(2):39-63.
    [75]LAMB D C, SKAUG T, SONG H-L, et al. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3 (2) [J]. Journal of Biological Chemistry,2002,277(27):24000-24005.
    [76]LAMB D C, IKEDA H, NELSON D R, et al. Cytochrome P450 complement (CYPome) of the avermectin-producer Streptomyces avermitilis and comparison to that of Streptomyces coelicolor A3 (2) [J]. Biochemical and biophysical research communications,2003,307(3):610-619.
    [77]PARAJULI N, BASNET D B, CHAN LEE H, et al. Genome analyses of Streptomyces peucetius ATCC 27952 for the identification and comparison of cytochrome P450 complement with other Streptomyces [J]. Archives of biochemistry and biophysics,2004,425(2):233-241.
    [78]HUSSAIN H A, WARD J M. Enhanced heterologous expression of two Streptomyces griseolus cytochrome P450s and Streptomyces coelicolor ferredoxin reductase as potentially efficient hydroxylation catalysts [J]. Applied and environmental microbiology,2003,69(1):373-382.
    [79]XUE Y, WILSON D, ZHAO L, et al. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Streptomyces venezuelae [J]. Chemistry & biology, 1998,5(11):661-667.
    [80]IKEDA H, NONOMI YA T, USAMI M, et al. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis [J]. Proceedings of the National Academy of Sciences,1999,96(17):9509-9514.
    [81]RODRIGUEZ A M, OLANO C, M NDEZ C, et al. A cytochrome P450-like gene possibly involved in oleandomycin biosynthesis by Streptomyces antibioticus [J]. FEMS Microbiology Letters,1995, 127(1 2):117-120.
    [82]APARICIO J F, MOLN R I, SCH WECKE T, et al. Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus:Analysis of the enzymatic domains in the modular polyketide synthase [J]. Gene,1996,169(1):9-16.
    [83]LAMB D C, GUENGERICH F P, KELLY S L, et al. Exploiting Streptomyces coelicolor A3 (2) P450s as a model for application in drug discovery [J].2006,2(1):27-40.
    [84]CAFFREY P, LYNCH S, FLOOD E, et al. Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes [J]. Chemistry & biology,2001,8(7): 713-723.
    [85]MATSUOKA T, MIYAKOSHI S, TANZAWA K, et al. Purification and characterization of cytochrome P-450sca from Streptomyces carbophilus [J]. European Journal of Biochemistry,1989, 184(3):707-713.
    [86]WEYMOUTH-WILSON A C. The role of carbohydrates in biologically active natural products [J]. Nat Prod Rep,1997,14(2):99-110.
    [87]S NCHEZ C, BUTOVICH I A, BRA A A F, et al. The biosynthetic gene cluster for the antitumor rebeccamycin:characterization and generation of indolocarbazole derivatives [J]. Chemistry & biology,2002,9(4):519-531.
    [88]OTTEN S L, LIU X, FERGUSON J, et al. Cloning and characterization of the Streptomyces peucetius dnrQS genes encoding a daunosamine biosynthesis enzyme and a glycosyl transferase involved in daunorubicin biosynthesis [J]. Journal of bacteriology,1995,177(22):6688-6692.
    [89]KIM B-G, JUNG B-R, LEE Y, et al. Regiospecific flavonoid 7-O-methylation with Streptomyces avermitilis O-methyltransferase expressed in Escherichia coli [J]. Journal of agricultural and food chemistry,2006,54(3):823-828.
    [90]KIM D H, KIM B-G, LEE Y, et al. Regiospecific methylation of naringenin to ponciretin by soybean O-methyltransferase expressed in Escherichia coli [J]. Journal of biotechnology,2005,119(2): 155-162.
    [91]HONG Y-S, LEE J H, KIM H S, et al. Targeted gene disruption of the avermectin B O-methyltransferase gene in Streptomyces avermitilis [J]. Biotechnology letters,2001,23(21): 1765-1770.
    [92]KIESER T, BIBB M J, BUTTNER M J, et al. Practical streptomyces genetics [M]. The John Innes Foundation Norwich, UK,2000.
    [93]GUST B, KIESER T, CHATER K. REDIRECT technology:PCR-targeting system in Streptomyces coelicolor [J]. The John Innes Centre, Norwich, United Kingdom,2002,1-42.
    [94]MAZODIER P, PETTER R, THOMPSON C. Intergeneric conjugation between Escherichia coli and Streptomyces species [J]. Journal of bacteriology,1989,171(6):3583-3585.
    [95]ILLING G, NORMANSELL I, PEBERDY J. Protoplast isolation and regeneration in Streptomyces clavuligerus [J]. Journal of general microbiology,1989,135(8):2289-97.
    [96]PIG AC J, SCHREMPF H. A simple and rapid method of transformation of Streptomyces rimosus R6 and other Streptomycetes by Electroporation [J]. Applied and environmental microbiology,1995, 61(1):352-6.
    [97]SIMON R, PRIEFER U, P HLER A. A broad host range mobilization system for in vivo genetic engineering:transposon mutagenesis in gram negative bacteria [J]. Nature biotechnology,1983,1(9): 784-91.
    [98]OKANISHI M, SUZUKI K, UMEZAWA H. Formation and reversion of Streptomycete protoplasts: cultural condition and morphological study [J]. Journal of general microbiology,1974,80(2): 389-400.
    [99]BIBB M J, WARD J M, HOPWOOD D A. Transformation of plasmid DNA into Streptomyces at high frequency [J].1978,274:398-400
    [100]DEB J, MALIK S, GHOSH V, et al. Intergeneric protplast fusion between xylanase producing Bacillus subtilis LYT and Corynebacterium acetoacidphilum ATCC 21476 [J]. FEMS Microbiology Letters,1990,71(3):287-92.
    [101]AIDOO D A, BARRETT K, VINING L C. Plasmid transformation of Streptomyces venezuelae: modified procedures used to introduce the gene (s) for p-aminobenzoate synthase [J]. Journal of general microbiology,1990,136(4):657-62.
    [102]TUNAC J, GRAHAM B, DOBSON W. Novel antitumor agents CI-920, PD 113,270 and PD 113,271. I. Taxonomy, fermentation and biological properties [J]. The Journal of antibiotics,1983, 36(12):1595-600.
    [103]HOKANSON G C, FRENCH J C. Novel antitumor agents CI-920, PD 113 270, and PD 113 271.3. Structure determination [J]. The Journal of Organic Chemistry,1985,50(4):462-6.
    [104]LEOPOLD W R, SHILLIS J L, MERTUS A E, et al. Anticancer activity of the structurally novel antibiotic CI-920 and its analogues [J]. Cancer research,1984,44(5):1928-1932.
    [105]JACKSON R C, FRY D W, BORITZKI T J, et al. The biochemical pharmacology of CI-920, a structurally novel antibiotic with antileukemic activity [J]. Advances in Enzyme Regulation,1985,23: 193-215.
    [106]FRY D W, BESSERER J A, BORITZKI T J. Transport of the antitumor antibiotic CI-920 into L1210 leukemia cells by the reduced folate carrier system [J]. Cancer research,1984,44(8):3366-70.
    [107]LEWY D, SOENEN D, BOGER D. Fostriecin:chemistry and biology [J]. Current medicinal chemistry,2002,9(22):2005-32.
    [108]HOLM C, STEARNS T, BOTSTEIN D. DNA topoisomerase Ⅱ must act at mitosis to prevent nondisjunction and chromosome breakage [J]. Molecular and cellular biology,1989,9(1):159-68.
    [109]DA CRUZ E SILVA O B, DA CRUZ E SILVA E F, COHEN P T W. Identification of a novel protein phosphatase catalytic subunit by cDNA cloning [J]. FEBS letters,1988,242(1):106-10.
    [110]MACKINTOSH C, BEATTIE K A, KLUMPP S, et al. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants [J]. FEBS letters,1990,264(2):187-92.
    [111]BREWIS N, STREET A, PRESCOTT A, et al. PPX, a novel protein serine/threonine phosphatase localized to centrosomes [J]. The EMBO journal,1993,12(3):987-996.
    [112]HUANG X, CHENG A, HONKANEN R E. Genomic organization of the human PP4 gene encoding a serine/threonine protein phosphatase (PP4) suggests a common ancestry with PP2A [J]. Genomics, 1997,44(3):336-43.
    [113]USUI T, MARRIOTT G, INAGAKI M, et al. Protein phosphatase 2A inhibitors, phoslactomycins. Effects on the cytoskeleton in NIH/3T3 cells [J]. Journal of biochemistry,1999,125(5):960-5.
    [114]HELPS N R, BREWIS N D, LINERUTH K, et al. Protein phosphatase 4 is an essential enzyme required for organisation of microtubules at centrosomes in Drosophila embryos [J]. Journal of Cell Science,1998,111(10):1331-40.
    [115]PICARD A, LABB J C, BARAKAT H, et al. Okadaic acid mimics a nuclear component required for cyclin B-cdc2 kinase microinjection to drive starfish oocytes into M phase [J]. The Journal of cell biology,1991,115(2):337-44.
    [116]YAMASHITA K, YASUDA H, PINES J, et al. Okadaic acid, a potent inhibitor of type 1 and type 2A protein phosphatases, activates cdc2/H1 kinase and transiently induces a premature mitosis-like state in BHK21 cells [J]. The EMBO journal,1990,9(13):4331-4338.
    [117]TOSUJI H, MABUCHI I, FUSETANI N, et al. Calyculin A induces contractile ring-like apparatus formation and condensation of chromosomes in unfertilized sea urchin eggs [J]. Proceedings of the National Academy of Sciences,1992,89(22):10613-7.
    [118]UEMURA T, OHKURA H, ADACHI Y, et al. DNA topoisomerase Ⅱ is required for condensation and separation of mitotic chromosomes in S. pombe [J]. Cell,1987,50(6):917-25.
    [119]DE JONG R, MULDER N, UGES D, et al. Phase I and pharmacokinetic study of the topoisomerase II catalytic inhibitor fostriecin [J]. British journal of cancer,1999,79(5/6):882-887.
    [120]DE JONG R S, DE VRIES E G E, MEIJER S, et al. Renal toxicity of the anticancer drug fostriecin [J]. Cancer chemotherapy and pharmacology,1998,42(2):160-4.
    [121]SUSICK R, HAWKINS K, PEGG D. Preclinical toxicological evaluation of fostriecin, a novel anticancer antibiotic, in rats [J]. Fundamental and Applied Toxicology,1990,15(2):258-69.
    [122]BOGER D L, HIKOTA M, LEWIS B M. Determination of the relative and absolute stereochemistry of fostriecin (CI-920) [J]. The Journal of Organic Chemistry,1997,62(6):1748-53.
    [123]CHAVEZ D E, JACOBSEN E N. Total synthesis of Fostriecin (CI-920) [J]. Angewandte Chemie, 2001,113(19):3779-82.
    [124]REDDY Y K, FALCK J. Asymmetric total synthesis of (+)-fostriecin [J]. Organic letters,2002,4(6): 969-71.
    [125]MIYASHITA K, IKEJIRI M, KAWASAKI H, et al. Total synthesis of fostriecin (CI-920) via a convergent route [J]. Chemical Communications,2002,7):742-3.
    [126]HAYASHI Y, YAMAGUCHI H, TOYOSHIMA M, et al. Formal total synthesis of Fostriecin via 1, 4-Asymmetric induction using cobalt-alkyne complex [J]. Organic letters,2008,10(7):1405-8.
    [127]MAKI K, MOTOKI R, FUJII K, et al. Catalyst-controlled asymmetric synthesis of fostriecin and 8-epi-fostriecin [J]. Journal of the American Chemical Society,2005,127(48):17111-7.
    [128]ROBLES O, MCDONALD F E. Convergent synthesis of Fostriecin via selective alkene couplings and regioselective asymmetric dihydroxylation [J]. Organic letters,2009,11(23):5498-501.
    [129]GAO D, O'DOHERTY G A. Total synthesis of Fostriecin:via a regio-and stereoselective polyene hydration, oxidation, and hydroboration sequence [J]. Organic letters,2010,3752-3755.
    [130]JUST G, O'CONNOR B. Synthesis of the 5R,8R,9S,11R dephosphorylated derivative of CI-920, a novel antitumor agent [J]. Tetrahedron letters,1988,29(7):753-6.
    [131]DAUBEN W G, HENDRICKS R T, PANDY B, et al. Stereoselective intramolecular cyclopropanations:Enantioselective syntheses of la,25-dihydroxy vitamin D3 A-ring precursors [J]. Tetrahedron letters,1995,36(14):2385-8.
    [132]KONG R, LIU X, SU C, et al. Elucidation of the biosynthetic gene cluster and the post-PKS modification mechanism for Fostriecin in Streptomyces pulveraceus [J]. Chemistry & biology,2013, 20(1):45-54.
    [133]PATERSON I, ANDERSON E A. The renaissance of natural products as drug candidates [J]. Science,2005,310(5747):451-3.
    [134]VEAL D, STOKES H, DAGGARD G. Genetic exchange in natural microbial communities [J]. Advances in microbial ecology,1992,12:383-430.
    [135]KUHSTOSS S, RAO R N. Analysis of the integration function of the streptomycete bacteriophage φC31 [J]. Journal of molecular biology,1991,222(4):897-908.
    [136]SCHATZ A, BUGLE E, WAKSMAN S A. Streptomycin, a Substance Exhibiting Antibiotic Activity Against Gram-Positive and Gram-Negative Bacteria. F,1944 [C]. Royal Society of Medicine.
    [137]VERPOORTE R. Exploration of nature's chemodiversity:the role of secondary metabolites as leads in drug development [J]. Drug discovery today,1998,3(5):232-8.
    [138]HUTCHINSON C R. Combinatorial biosynthesis for new drug discovery [J]. Current opinion in microbiology,1998,1(3):319-29.
    [139]BIERMAN M, LOGAN R, O'BRIEN K, et al. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Slreptomyces spp [J]. Gene,1992,116(1):43-9.
    [140]COPELAND N G, JENKINS N A, COURT D. Recombineering:a powerful new tool for mouse functional genomics [J]. Nature Reviews Genetics,2001,2(10):769-79.
    [141]WANG J, SAROV M, RIENTJES J, et al. An improved recombineering approach by adding RecA to λ red recombination [J]. Molecular biotechnology,2006,32(1):43-53.
    [142]DATSENKO K A, WANNER B L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products [J]. Proceedings of the National Academy of Sciences,2000,97(12): 6640-6645.
    [143]MERSON-DAVIES L A, CUNDI1FFE E. Analysis of five tyiosin biosynthetic genes from the tyllBA region of the Streptomyces fradiae genome [J]. Molecular microbiology,1994,13(2):349-55.
    [144]XUE Y, WILSON D, ZHAO L, et al. Hydroxylation of macrolactones YC-17 and narbomycin is mediated by the pikC-encoded cytochrome P450 in Slreptomyces venezuelae [J]. Chemistry & biology,1998,5(11):661-7.
    [145]BETLACH M C, KEALEY J T, ASHLEY G W, et al. Characterization of the macrolide P-450 hydroxylase from Streptomyces venezuelae which converts narbomycin to picromycin [J]. Biochemistry,1998,37(42):14937-42.
    [146]ANDERSEN J F, TATSUTA K, GUNJI H, et al. Substrate specificity of 6-deoxyerythronolide B hydroxylase, a bacterial cytochrome P450 of erythromycin A biosynthesis [J]. Biochemistry,1993, 32(8):1905-13.
    [147]GHATGE M S, REYNOLDS K A. The plmS2-encoded cytochrome P450 monooxygenase mediates hydroxylation of phoslactomycin B in Streptomyces sp. strain HK803 [J]. Journal of bacteriology, 2005,187(23):7970-6.
    [148]GHATGE M, PALANIAPPAN N, DAS CHOUDHURI S, et al. Genetic manipulation of the biosynthetic process leading to phoslactomycins, potent protein phosphatase 2A inhibitors [J]. Journal of industrial microbiology & biotechnology,2006,33(7):589-99.
    [149]POTEETE A R. What makes the bacteriophage λ Red system useful for genetic engineering: molecular mechanism and biological function [J]. FEMS Microbiology Letters,2001,201(1):9-14.
    [150]ZHANG Y, BUCHHOLZ F, MUYRERS J P P, et al. A new logic for DNA engineering using recombination in Escherichia coli [J]. Nature genetics,1998,20(2):123-8.
    [151]ZHANG Y, MUYRERS J P P, TESTA G, et al. DNA cloning by homologous recombination in Escherichia coli [J]. Nature biotechnology,2000,18(12):1314-7.
    [152]VALENZUELA D M, MURPHY A J, FRENDEWEY D, et al. High-throughput engineering of the mouse genome coupled with high-resolution expression analysis [J]. Nature biotechnology,2003, 21(6):652-9.
    [153]LIU P, JENKINS N A, COPELAND N G. A highly efficient recombineering-based method for generating conditional knockout mutations [J]. Genome research,2003,13(3):476-84.
    [154]KATZ L. Manipulation of modular polyketide synthases [J]. Chemical reviews,1997,97(7): 2557-75.
    [155]CHENG A, BALCZON R, ZUO Z, et al. Fostriecin-mediated G2-M-phase growth arrest correlates with abnormal centrosome replication, the formation of aberrant mitotic spindles, and the inhibition of serine/threonine protein phosphatase activity [J]. Cancer research,1998,58(16):3611-3619.
    [156]ROBERGE M, TUDAN C, HUNG S M F, et al. Antitumor drug fostriecin inhibits the mitotic entry checkpoint and protein phosphatases 1 and 2A [J]. Cancer research,1994,54(23):6115-6121.
    [157]KONG R, LIU X, SU C, et al. Elucidation of the biosynthetic gene cluster and the post-PKS modification mechanism for Fostriecin in Streptomyces pulveraceus [J]. Chemistry & biology,2013, 20(1):45-54.
    [158]LIU X, KONG R, NIU M, et al. Identification of the post-polyketide synthase enzymes for fostriecin biosynthesis in Streptomyces pulveraceus [J]. Journal of Natural Products,2013,76(4):524-529.
    [159]PALANIAPPAN N, ALHAMADSHEH M M, REYNOLDS K A. cis-Δ2,3-double bond of Phoslactomycins is generated by a post-PKS tailoring enzyme [J]. Journal of the American Chemical Society,2008,130(37):12236-7.
    [160]BYRNE B, CARMODY M, GIBSON E, et al. Biosynthesis of deoxyamphotericins and deoxyamphoteronolides by engineered strains of Streptomyces nodosus [J]. Chemistry & biology, 2003,10(12):1215-24.
    [161]CARMODY M, MURPHY B, BYRNE B, et al. Biosynthesis of amphotericin derivatives lacking exocyclic carboxyl groups [J]. Journal of Biological Chemistry,2005,280(41):34420-6.
    [162]MENDES M V, RECIO E, FOUCES R, et al. Engineered biosynthesis of novel polyenes:a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis [J]. Chemistry & biology, 2001,8(7):635-44.
    [163]WU J, ZALESKI T J, VALENZANO C, et al. Polyketide double bond biosynthesis. Mechanistic analysis of the dehydratase-containing module 2 of the picromycin/methymycin polyketide synthase [J]. Journal of the American Chemical Society,2005,127(49):17393-404.
    [164]CAFFREY P. Conserved amino acid residues correlating with ketoreductase stereospecificity in modular polyketide synthases [J]. ChemBioChem,2003,4(7):654-7.
    [165]REID R, PIAGENTINI M, RODRIGUEZ E, et al. A model of structure and catalysis for ketoreductase domains in modular polyketide synthases [J]. Biochemistry,2003,42(1):72-9.
    [166]KIM B S, CROPP T A, FLOROVA G, et al. An unexpected interaction between the modular polyketide synthases, erythromycin DEBS1 and pikromycin PikAIV, leads to efficient triketide lactone synthesis [J]. Biochemistry,2002,41(35):10827-33.
    [167]CHANDRA A, NAIR M G. Azalomycin F complex from Streptomyces hygroscopicus, MSU/MN-4-75 B [J]. Journal of antibiotics,1995,48(8):896-8.
    [168]KOSHINO H, KOBINATA K, UZAWA J, et al. Structure of malolactomycins A and B, novel 40-membered macrolide antibiotics [J]. Tetrahedron,1993,49(39):8827-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700