用户名: 密码: 验证码:
甲醇氧化羰基合成酸二甲酯反应机理的DFT研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种优秀的绿色化学品,酸二甲酯(DMC)具有优良的化学反应性能和广泛的应用前景。目前应用于甲醇氧化羰基合成DMC体系中的催化剂主要包括两种:负载型含氯催化剂和交换型分子筛类催化剂。其中,相比分子筛催化剂,负载型含氯催化剂拥有更好的活性;但含氯型催化剂组成复杂,单独制备单一晶型较为困难,故而很难明确其活性组分及不同组分间的活性差异。本文采用量子化学手段,分别对六种负载型含氯催化剂(γ-Cu2(OH)3Cl,-Cu2(OH)3Cl,Cu(OH)Cl,CuCl2,Pd/CuCl2,2Pd/CuCl2)模型上甲醇氧化羰基合成DMC的反应机理进行考察,从而明确不同催化剂活性组分,以及催化剂活性组分的各个组成部分或组成元素在催化反应中所起的作用,从而为实验上改进催化剂或研发新型催化剂提供了理论依据和理论指导。
     在含Cl型催化剂表面上,反应机理可分为甲醇氧化反应,CO插入反应,DMC生成反应和表面重构反应四个步骤。甲醇吸附位为催化剂顶层Cl原子顶端,甲醇通过羟基H与Cl原子间的相互作用吸附于催化剂表面,吸附过程中部分电子从甲醇转移到催化剂表面,同时甲醇羟基得到活化,使得氧化反应更容易进行。但是,在不同的含氯催化剂表面,甲醇氧化过程并不完全相同。在γ-Cu2(OH)3Cl(021)和-Cu2(OH)3Cl(011)催化剂表面上,甲醇氧化过程为Cl首先脱离催化剂表面,与甲醇羟基H原子作用,生成CH3O H Cl中间体结构;进而该中间体分解为甲氧基和HCl,而CH3O H Cl中间体的分解过程也是整个甲醇氧化羰基合成DMC反应的速率控制步骤。而在Cu(OH)Cl(001)和CuCl2(001),Pd/CuCl2(001),2Pd/CuCl2(001)催化剂表面上,甲醇氧化过程则为Cl直接与甲醇反应,生成甲氧基和HCl,不存在其他中间体,该步骤亦为这三种催化剂表面上甲醇氧化羰基合成DMC反应的速率控制步骤。
     在三种碱式氯化铜表面(γ-Cu2(OH)3Cl(021),-Cu2(OH)3Cl(011)和Cu(OH)Cl)上,CO为物理吸附。CO插入反应的产物CH3OCO的吸附稳定性对下一步反应,DMC生成的活化能影响较大,CH3OCO的吸附能越低,则生成DMC所需活化能越低。而在CuCl2(001)和Pd掺杂的CuCl2(001)(包括Pd/CuCl2(001),2Pd/CuCl2(001)两种)表面上,CO为化学吸附态,此时,CO的吸附位对CO插入反应活化能影响较小。且在Pd掺杂的CuCl2(001)表面上,反应产物CH3OCO的吸附位置和吸附构型则对DMC生成反应有较大影响,当CH3O和CH3OCO分别与Pd原子和Cu原子同时存在相互作用时,生成DMC较为容易。而当DMC脱离催化剂表面后,失去Cl的催化剂表面均可自发与体系中的O2和HCl反应,并释放大量的热。
As an important green chemical intermediate, dimethyl carbonate (DMC) is anenvironmentally benign compound with versatile chemical reactivity and excellentprospects of application. Two series of catalyst, supported chlorine containingcatalysts and exchanged zeolite catalysts, are known to be activated and investigatedmost in gas-phase oxidative carbonylation of methanol to form DMC. Comparingwith the zeolite catalysts, the chlorine containing catalysts show higher activity.However, the complicated composition of the supported chlorine containing catalystslimits the deeper investigation of the catalysts and the reaction details. The force ofthis dissertation is to investigate the reaction mechanism of the gas-phaseoxycarbonylation of methanol on different chlorine containing catalysts (includingγ-Cu2(OH)3Cl,-Cu2(OH)3Cl, Cu(OH)Cl, CuCl2, Pd/CuCl2,2Pd/CuCl2), thus toclarify the role of the catalyst components in the reaction and provide someinformation for catalyst improvements.
     On the surfaces of chlorine containing catalysts, the reaction mechanism can beseparated into four main steps: methanol oxidation, CO insertion, DMC formation andsurface reconstruction. During the reaction, the methanol molecularly adsorbed at thetop site of the Cl atom on the top slayer of the surface through the hydroxyl H atom,and the electron transfer between the CH3OH and the surface activated the CH3OH.However, the oxidation process is slightly different on different surfaces. On theγ-Cu2(OH)3Cl(021) and-Cu2(OH)3Cl(011) surfaces, the Cl atom escaped from thesurface and bonded with the methanol first (formed CH3O H Cl) then reacted withthe methanol to form adsorbed methoxyl and HCl; and the calculated results indicatethe decomposition of the CH3O H Cl is the rate-limit step of the whole methanoloxycarbonylation reaction. But on the surfaces of Cu(OH)Cl(001), CuCl2(001) andPd/CuCl2(001), the Cl atom reacted with the methanol directly to form the methoxyland HCl, and the methanol oxidation is also the rate-limit step of the mechanism onthese three surfaces.
     The CO species physically adsorbed on the surfaces of γ-Cu2(OH)3Cl(021),
     -Cu2(OH)3Cl(011) and Cu(OH)Cl(001). And the stability of the CH3OCO adsorptionwould further affect the DMC formation process, the lowest energy barrier for DMCformation step appears when the adsorption of CH3OCO is weakest. Comparatively, the CO species chemically adsorbed on CuCl2(001) and Pd/CuCl2(001) surfaces. Andthe adsorption site of CO has slight effect on the energy barrier of CO insertion.Meanwhile, the adsorption site of CH3OCO and CH3O will strongly affect the DMCformation process. The lowest energy barrier for DMC formation step appears whenCH3OCO and CH3O adsorbed on both Cu and Pd atoms. Furthermore, the surfacereconstruction process on all chlorine containing catalyst is spontaneous andexothermic, which needs the HCl and O2at the same time.
引文
[1] Ono Y, Dimethyl carbonate for environmentally benign reactions, Pure andApplied Chemistry,1996,68:2,367-375.
    [2] Ono Y, Catalysis in the production and reactions of dimethyl carbonate, anenvironmentally benign building block, Applied Catalysis A: General,1997,155:2,133-166.
    [3] Naejus R, Coudert R, Willmann P, Lemordant D, Ion solvation incarbonate-based lithium battery electrolyte solutions, Electrochimica Acta,1998,43:3–4,275-284.
    [4]肖洪林,酸二甲酯——有机化工的新“基块”,泸天化科技,1995,2,91-92.
    [5] Berhil M, Lebrun N, Tranchant A, Messina R, Reactivity and cycling behaviourof lithium in propylene carbonate-ethylene carbonate-dimethyl carbonatemixtures, Journal of Power Sources,1995,55:2,205-210.
    [6] Drake N L, Carter R M, Some representative carbonates and earbethoxyderivatives related to ethylene glycol, Journal of American Chemical Society,1930,52:3720-3724.
    [7]张少钢,骆有寿,酸二甲酯合成反应的工艺条件及动力学研究,化学反应工程与工艺,1991,1,10-19.
    [8] Boden E P, Fernandez I V, Method for preparing a dialkyl carbonate, and itsuse in the preparation of diaryl carbonates and polycarbonates, in,2004.
    [9] Weisz M, Influence of specific nuclear phenomena on the selection of metallicmaterials, Materiaux&Techniques,1977,6,311-320.
    [10]刘宗建,蔡晔,酯交换法合成酸二甲酯的催化剂研究,化工生产与技术,1998,5:4,13-15.
    [11]高志明,苏俊华,陈秀芝,酸二甲酯催化分成反应新途径的研究,北京理工大学学报,2006,7:26,651-654.
    [12]陈秀芝,胡长文,苏俊华,[bmim]BF4/CH3ONa催化一步法合成酸二甲酯,催化学报,2006,6:27,485-488.
    [13]崔洪友,王涛,戴猷元,超临界CO2萃取合成酸二甲酯,过程工程学报,2006,4:6,531-538.
    [14] Chang Y, Jiang T, Han B, Liu Z, Wu W, Gao L, Li J, Gao H, Zhao G, Huang J,One-pot synthesis of dimethyl carbonate and glycols from supercritical CO2,ethylene oxide or propylene oxide, and methanol, Applied Catalysis A: General,2004,263:2,179-186.
    [15] Choudary B M, Lakshmi Kantam M, Lakshmi Santhi P, New and ecofriendlyoptions for the production of speciality and fine chemicals, Catalysis Today,2000,57:1–2,17-32.
    [16] Brunel D, Functionalized micelle-templated silicas (MTS) and their use ascatalysts for fine chemicals, Microporous and Mesoporous Materials,1999,27:2–3,329-344.
    [17] Jiang Q, Yang Y, The Double Component Catalyst for the Direct Synthesis ofDimethyl Carbonate from Carbon Dioxide, Propylene Oxide and Methanol,Catalysis Letters,2004,95:3,127-133.
    [18] Yang J, Jiang Q, A novel highly active catalyst for the dirext shnthesis ofdimethyl carbonate, Chinese Journal of Catalysis,2004,25:4,253-254.
    [19]江琦,高智勤,李向召,稀土氧化物负载双组份催化剂用于直接合成酸二甲酯,天然气化工,2006,1:31,39-43.
    [20] Chang C D, Process for coproduction of diakyl carbonate and alkanediol, in,2000.
    [21] Hoffman W A, A convenient preparation of carbonates from alcohols andcarbon dioxide, The Journal of Organic Chemistry,1982,47:26,5209-5210.
    [22]肖雪,路嫔,韩媛媛等,二氧化与甲醇合成酸二甲酯反应的热力学探讨,天然气化工,2007,32:2,34-37.
    [23]赵天生,韩怡卓,甲醇和CO2合成酸二甲酯体系的热力学分析,天然气化工,1998,23:2,52-56.
    [24] Ballivet-Tkatchenko D, Chambrey S, Keiski R, Ligabue R, Plasseraud L,Richard P, Turunen H, Direct synthesis of dimethyl carbonate with supercriticalcarbon dioxide: Characterization of a key organotin oxide intermediate,Catalysis Today,2006,115:1–4,80-87.
    [25] Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K, Catalytic properties andstructure of zirconia catalysts for direct synthesis of dimethyl carbonate frommethanol and carbon dioxide, Journal of Catalysis,2000,192:2,355-362.
    [26]钟顺和,黎汉生, CO2和CH3OH直接合成酸二甲酯Cu-N/V2O5-SiO2催化剂,物理化学学报,2000,16:3,226-231.
    [27]钟顺和,黎汉生, CO2和CH3OH直接合成酸二甲酯用Cu-Ni/ZrO2-SiO2催化剂,催化学报,2000,21:2,117-120.
    [28]钟顺和,黎汉生,王建伟, CO2在Cu-Ni/MoO3-SiO2催化剂上的吸附与反应,燃料化学学报,1999,27,305-308.
    [29]黎汉生,钟顺和,王建伟等, K2O助剂对合成酸二甲酯用Cu-Ni/ZrO2-SiO2催化剂的吸附和催化性能的影响,催化学报,2001,22,353-357.
    [30]钟顺和,孔令丽,雷泽, KF在CO2和甲醇直接合成DMC负载型金属催化剂中的作用,分子催化,2002,16:6,1-6.
    [31] Li C-F, Zhong S-H, Study on application of membrane reactor in directsynthesis DMC from CO2and CH3OH over Cu–KF/MgSiO catalyst, CatalysisToday,2003,82:1–4,83-90.
    [32]钟顺和,王爱菊, Ni(OCH3)2/SiO2催化剂的制备及其合成酸二甲酯的反应性能,分子催化,2002,16:5,321-326.
    [33]钟顺和,程庆彦,黎汉生,负载型Sn2(OMe)2Cl2/SiO2催化剂的制备、表征与催化合成酸二甲酯,高等学校化学学报,2003,24:1,125-129.
    [34]钟顺和,负载型Sn2(OMe)4/SiO2催化剂的制备以及催化CO2和CH3OH直接很成酸二甲酯的性能,催化学报,2002,23:6,543-548.
    [35]钟顺和,孔令丽, Ti2(OMe)4/SiO2催化剂的制备及其合成酸二甲酯的反应性能,燃料化学学报,2002,30:5,454-484.
    [36]何永刚,淳远,固体碱在二氧化-甲醇法合成酸二甲酯反应中的作用,无机化学学报,2000,16:3,477-484.
    [37]江琦,林齐合,黄仲涛,甲醇镁作用下的酸二甲酯直接合成,华南理工大学学报(自然科学版),1996,24,49-53.
    [38]江琦,李涛,添加剂在酸二甲酯直接合成中的作用,应用化学,1999,16:5,115-116.
    [39]江琦,王书明,超细粒子催化剂作用下酸二甲酯的合成,微纳电子技术,2003,40:7,496-498.
    [40] Jung K T, Bell A T, Effects of Catalyst Phase Structure on the ElementaryProcesses Involved in the Synthesis of Dimethyl Carbonate from Methanol andCarbon Dioxide over Zirconia, Topics in Catalysis,2002,20:1,97-105.
    [41] Zhao T, Han Y, Sun Y, Novel reaction route for dimethyl carbonate synthesisfrom CO2and methanol, Fuel Processing Technology,2000,62:2–3,187-194.
    [42] Sakakura T, Choi J-C, Saito Y, Metal-Catalyzed Dimethyl Carbonate Synthesisfrom Carbon Dioxide and Acetals., Journal of Orgainc Chemistry,1999,64:12,4506-4508.
    [43] Sakakura T, Choi J-C, Saito Y, Syntheisi of dimethyl carbonate from carbondioxide: catalysis and mechanism, Polyhedron,2000,19:5,573-576.
    [44] Sakakura T, Saito Y, Okano M, Selective conversion of carbon dioxide todimethyl carbonate by molecular catalysis, Journal of Organic Chemistry,1998,63:20,7095-7096.
    [45] Fang S, Fujimoto K, Direct synthesis of dimethyl carbonate from carbondioxide and methanol catalyzed by base, Applied Catalysis A: General,1996,142:1, L1-L3.
    [46] Fujita S-i, Bhanage B M, Ikushima Y, Arai M, Synthesis of dimethyl carbonatefrom carbon dioxide and methanol in the presence of methyl iodide and basecatalysts under mild conditions: effect of reaction conditions and reactionmechanism, Green Chemistry,2001,3:2,87-91.
    [47] Hou Z, Han B, Liu Z, Jiang T, Yang G, Synthesis of dimethyl carbonate usingCO2and methanol: enhancing the conversion by controlling the phase behavior,Green Chemistry,2002,4:5,467-471.
    [48] Sakakura T, Kohno K, The synthesis of organic carbonates from carbon dioxide,Chemical Communications,2009:11,1312-1330.
    [49] Keller N, Rebmann G, Keller V, Catalysts, mechanisms and industrialprocesses for the dimethylcarbonate synthesis, Journal of Molecular CatalysisA: Chemical,2010,317:1-2,1-18.
    [50] Miyazaki H, Shiomi Y, Fujitsu S, Masunaga K, Process for the preparation ofoxalic acid diesters, in: p.U. Industries (Ed.),1983.
    [51] Nishimura K, Fujii K, Nishihira K, Uchiumi S, Process for preparing a diesterof oxalic acid, in,1980.
    [52] Matsuzaki T, Nakamura A, Dimethyl carbonate synthesis and other oxidativereactions using alkyl nitrites, Catalysis Surveys from Japan,1997,1:1,77-88.
    [53] Delledonne D, Rivetti F, Romano U, Developments in the production andapplication of dimethylcarbonate, Applied Catalysis A: General,2001,221:1-2,241-251.
    [54] Matsuzaki T, Shimamura T, Satoru S, Toriyahara Y, Method of producingcarbonic acid diester, in: p.U. Industries (Ed.),1994.
    [55] Matsuzaki T, Shimamura T, Satoru S, Toriyahara Y, Method of producingcarbonic acid diester, in: p.U. Industries (Ed.),1993.
    [56] Romano U, Tesel R, Cipriani G, Method for the preparation of esters ofcarbonic acid, in,1980.
    [57] Paret G, Donati G, Ghirardini M, Dimethyl carbonate preparation in reactorhaving two parallel vertical tubes, fresh and redydled gases being fed to thebasis of one, in: p. Enichem (Ed.),1991.
    [58] Rivetti F, The role of dimethylcarbonate in the replacement of hazardouschemicals, Comptes Rendus de l'Academie des Sciences-Series IIc: Chemistry,2000,3:6,497-503.
    [59] Romano U, Tesel R, Mauri M M, Rebora P, Synthesis of Dimethyl Carbonatefrom Methanol, Carbon Monoxide, and Oxygen Catalyzed by CopperCompounds, Industrial&Engineering Chemistry Product Research andDevelopment,1980,19:3,396-403.
    [60] Pacheco M A, Marshall C L, Review of Dimethyl Carbonate (DMC)Manufacture and Its Characteristics as a Fuel Additive, Energy&Fuels,1997,11:1,2-29.
    [61] Curnutt G L, Harley D L, Oxygen Complexes and Oxygen Activation byTransition Metals, Plenum Publishing Co., New York1988.
    [62] Han M S, Lee B G, Ahn B S, Moon D J, Hong S I, Surface properties ofCuCl2/AC catalysts with various Cu contents: XRD, SEM, TG/DSC andCO-TPD analyses, Applied Surface Science,2003,211:1-4,76-81.
    [63] Tomishige K, Sakaihori T, Sakai S I, Fujimoto K, Dimethyl carbonate synthesisby oxidative carbonylation on activated carbon supported CuCl2catalysts:Catalytic properties and structural change, Applied Catalysis A: General,1999,181:1,95-102.
    [64] Yamamoto Y, Matsuzaki T, Ohdan K, Okamoto Y, Structure and electronicstate of PdCl2-CuCl2catalysts supported on activated carbon, Journal ofCatalysis,1996,161:2,577-586.
    [65] Kriventsov V V, Klimov O V, Kikhtyanin O V, Ione K G, Kochubey D I,EXAFS study of Cu/C catalysts, Nuclear Instruments and Methods in PhysicsResearch, Section A: Accelerators, Spectrometers, Detectors and AssociatedEquipment,2000,448:1,318-322.
    [66] Punnoose A, Seehra M S, Dunn B C, Eyring E M, Characterization of CuCl2/PdCl2/activated carbon catalysts for the synthesis of diethyl carbonate,Energy and Fuels,2002,16:1,182-188.
    [67] Han M S, Lee B G, Suh I, Kim H S, Ahn B S, Hong S I, Synthesis of dimethylcarbonate by vapor phase oxidative carbonylation of methanol over Cu-basedcatalysts, Journal of Molecular Catalysis A: Chemical,2001,170:1-2,225-234.
    [68] Itoh H, Watanabe Y, Mori K, Umino H, Synthesis of dimethyl carbonate byvapor phase oxidative carbonylation of methanol, Green Chemistry,2003,5:5,558-562.
    [69] Fleet M, The crystal structure of paratacamite, Cu2(OH)3Cl, ActaCrystallographica Section B,1975,31:1,183-187.
    [70] Dunn B C, Guenneau C, Hilton S A, Pahnke J, Eyring E M, Dworzanski J,Meuzelaar H L C, Hu J Z, Solum M S, Pugmire R J, Production of diethylcarbonate from ethanol and carbon monoxide over a heterogeneous catalyst,Energy and Fuels,2002,16:1,177-181.
    [71] Yang P Q, Yu Y, Jin G, Tao Z L, Colloids Surf. B: Biointerf.,2003,32,1-10.
    [72] Ma Z X, Dai Z G, Lu T, Properties of neutron stars with hyperons in therelativistic mean field theory, A&A,2001,366:2,532-537.
    [73] Ma X, Zhao R, Xu G, He F, Chen H, Physico-chemical properties of supportedCu catalysts for production of dimethyl carbonate, Catalysis Today,1996,30:1-3,201-206.
    [74] Han M S, Lee B G, Ahn B S, Kim H S, Moon D J, Hong S I, The role of copperchloride hydroxides in the oxidative carbonylation of methanol for dimethylcarbonate synthesis, Journal of Molecular Catalysis A: Chemical,2003,203:1-2,137-143.
    [75] Rouco A J, Low-Temperature Ethylene Oxyhydrochlorination: Effects ofSupports and Promoters on the Mobilities of Active Species in Cucl2Catalysts,Journal of Catalysis,1995,157:2,380-387.
    [76] Park E D, Choi S H, Lee J S, Active states of Pd and Cu in carbon-supportedwacker-type catalysts for low-temperature CO oxidation, Journal of PhysicalChemistry B,2000,104:23,5586-5594.
    [77] Choi K I, Vannice M A, CO oxidation over Pd and Cu catalysts I. UnreducedPdCl2and CuCl2dispersed on alumina or carbon, Journal of Catalysis,1991,127:2,465-488.
    [78] Jiang R, Monroe T, McRogers R, Larson P J, Manufacturing challenges in thecommercial production of recombinant coagulation factor VIII, Haemophilia,2002,8: SUPPL.2,1-5.
    [79] Roh N S, Dunn B C, Eyring E M, Pugmire R J, Meuzelaar H L C, Production ofdiethyl carbonate from ethanol and carbon monoxide over a heterogeneouscatalytic flow reactor, Fuel Processing Technology,2003,83:1-3SPEC.,27-38.
    [80] Yanji W, Xinqiang Z, Baoguo Y, Bingchang Z, Jinsheng C, Synthesis ofdimethyl carbonate by gas-phase oxidative carbonylation of methanol on thesupported solid catalyst I. Catalyst preparation and catalytic properties, AppliedCatalysis A: General,1998,171:2,255-260.
    [81] Jiang R, Wang Y, Zhao X, Wang S, Jin C, Zhang C, Characterization ofcatalyst in the synthesis of dimethyl carbonate by gas-phase oxidativecarbonylation of methanol, Journal of Molecular Catalysis A: Chemical,2002,185:1-2,159-166.
    [82] Zhang Z, Ma X, Zhang J, He F, Wang S, Effect of crystal structure of copperspecies on the rate and selectivity in oxidative carbonylation of ethanol fordiethyl carbonate synthesis, Journal of Molecular Catalysis A: Chemical,2005,227:1-2,141-146.
    [83] Cao Y, Yang P, Yao C-Z, Yi N, Feng W-L, Dai W-L, Fan K-N, Impact ofpreparation strategy on the properties of carbon-supported Wacker-typecatalysts in vapor-phase dimethyl carbonate synthesis, Applied Catalysis A:General,2004,272:1-2,15-22.
    [84] Iwamoto M, Hamada H, Removal of nitrogen monoxide from exhaust gasesthrough novel catalytic processes, Catalysis Today,1991,10:1,57-71.
    [85] Torre-Abreu C, Ribeiro M F, Henriques C, Ribeiro F R, Copper-exchangedmordenites as active catalysts for NO selective catalytic reduction by propeneunder oxidising conditions: Effect of Si/Al ratio, copper content and Bronstedacidity, Applied Catalysis B: Environmental,1997,13:3-4,251-264.
    [86] Hernández-Maldonado A J, Yang R T, Desulfurization of Diesel Fuels byAdsorption via π-Complexation with Vapor-Phase Exchanged Cu(I)-Y Zeolites,Journal of the American Chemical Society,2004,126:4,992-993.
    [87] Takahashi A, Yang R T, Munson C L, Chinn D, Cu(I)-Y-zeolite as a superioradsorbent for diene/olefin separation, Langmuir,2001,17:26,8405-8413.
    [88] Gédéon A, Bonardet J L, Lepetit C, Fraissard J, Application of129Xe nuclearmagnetic resonance to the study of CuY zeolites: dehydration and redox effects,Solid State Nuclear Magnetic Resonance,1995,5:2,201-212.
    [89] Iwamoto M, Yahiro H, Tanda K, Mizuno N, Mine Y, Kagawa S, Removal ofnitrogen monoxide through a novel catalytic process.1. Decomposition onexcessively copper ion exchanged ZSM-5zeolites, Journal of PhysicalChemistry,1991,95:9,3727-3730.
    [90] Valyon J, Hall W K, Effects of reduction and reoxidation on the infrared spectrafrom Cu-Y and Cu-ZSM-5zeolites, Journal of Physical Chemistry,1993,97:27,7054-7060.
    [91] Larsen S C, Aylor A, Bell A T, Reimex J A, Electron paramagnetic resonancestudies of copper ion-exchanged ZSM-5, Journal of Physical Chemistry,1994,98:44,11533-11540.
    [92] Hernández-Maldonado A J, Yang F H, Qi G, Yang R T, Desulfurization oftransportation fuels by π-complexation sorbents: Cu(I)-, Ni(II)-, andZn(II)-zeolites, Applied Catalysis B: Environmental,2005,56:1-2SPEC. ISS.,111-126.
    [93] King S T, Oxidative carbonylation of methanol to dimethyl carbonate bysolid-state ion-exchanged CuY catalysts, Catalysis Today,1997,33:1-3,173-182.
    [94] King S T, Reaction mechanism of oxidative carbonylation of methanol todimethyl carbonate in Cu-Y zeolite, Journal of Catalysis,1996,161:2,530-538.
    [95] Shen Y, Meng Q, Huang S, Wang S, Gong J, Ma X, Reaction mechanism ofdimethyl carbonate synthesis on Cu/[small beta] zeolites: DFT and AIMinvestigations, RSC Advances,2012,2:18,7109-7119.
    [96] Anderson S A, Manthata S, Root T W, The decomposition of dimethylcarbonate over copper zeolite catalysts, Applied Catalysis A: General,2005,280:2,117-124.
    [97] Heitler W, London F, Wechselwirkung neutraler Atome und hom opolareBindung nach der Quantenmechanik, Zeitschrift für Physik A Hadrons andNuclei,1927,44:6,455-472.
    [98] John D, Oxford Dictionary of Chemistry, Oxford University Press, New York,2004.
    [99] Licker M, J., McGraw-Hill Concise Encyclopedia of Chemistry., McGraw-Hill,New York,2004.
    [100] Pauling L, The Nature of Chemical Bond, Cornell Univ. Press, New York,1948.
    [101] Willard W G, Resonance in Organic Chemistry, John Wiely&Sons, New York,1955.
    [102] Gerratt J, Cooper D L, Karadakov P B, Raimondi M, Modern valence bondtheory, Chemical Society Reviews,1997,26:2,87-100.
    [103] Cooper D L, Gerratt J, Raimondi M, Applications of spin-coupled valence bondtheory, Chemical Reviews,1991,91:5,929-964.
    [104] Yirong M, Wu Wei, Qian-er Z, Bond-distorted Orbitals and Their Applicationto Benzene, Chem. Res. Chin. Univ,1993,9:4,335-338.
    [105] Murphy R B, Messmer R P, A generalized valence bond representation ofcomplete-active-space self-consistent-field (CASSCF) wave functions, TheJournal of Chemical Physics,1993,98:10,7958-7968.
    [106] Voter A F, Goddard Iii W A, A method for describing resonance betweengeneralized valence bond wavefunctions, Chemical Physics,1981,57:3,253-259.
    [107] Voter A F, Goddard Iii W A, The generalized resonating valence bond method:Barrier heights in the HF+D and HCl+D exchange reactions, The Journal ofChemical Physics,1981,75:7,3638-3639.
    [108] Miller W H, Schaefer H F, Berne B J, Segal G A, Modern TheoreticalChemistry, Plenum Press,1976.
    [109] Hamilton J G, Palke W E, Bonding in cyclopropane, Journal of the AmericanChemical Society,1993,115:10,4159-4164.
    [110] Muller R P, Langlois J-M, Ringnalda M N, Friesner R A, Goddard Iii W A, Ageneralized direct inversion in the iterative subspace approach for generalizedvalence bond wave functions, The Journal of Chemical Physics,1994,100:2,1226-1235.
    [111] Karadakov P B, Gerratt J, Cooper D L, Raimondi M, Core-valence separation inthe spin-coupled wave function: A fully variational treatment based on asecond-order constrained optimization procedure, The Journal of ChemicalPhysics,1992,97:10,7637-7655.
    [112] Copper D L, Gerratt J, Raimondi M, The electronic structure of the benzenemolecule, Nature,1986,323:6090,699-701.
    [113] Radhakrishnan T P, Herndon W C, Graph theoretical analysis of water clusters,The Journal of Physical Chemistry,1991,95:26,10609-10617.
    [114] Hohenberg P, Kohn W, Inhomogeneous Electron Gas, Physical Review,1964,136:3B, B864-B871.
    [115] Kohn W, Sham L J, Self-Consistent Equations Including Exchange andCorrelation Effects, Physical Review,1965,140:4A, A1133-A1138.
    [116] Delley B, An all-electron numerical method for solving the local densityfunctional for polyatomic molecules, Journal of Chemical Physics,1990,92:1,508-517.
    [117] Delley B, Fast Calculation of Electrostatics in Crystals and Large Molecules,The Journal of Physical Chemistry,1996,100:15,6107-6110.
    [118] Delley B, From molecules to solids with the DMol3approach, Journal ofChemical Physics,2000,113:18,7756.
    [119] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J,Payne M C, First-principles simulation: ideas, illustrations and the CASTEPcode, Journal of Physics: Condensed Matter,2002,14,2717-2744.
    [120] Becke A D, Density-functional exchange-energy approximation with correctasymptotic behavior, Physical Review A,1988,38:6,3098-3100.
    [121] Lee C, Yang W, Parr R G, Development of the Colle-Salvetti correlation-energyformula into a functional of the electron density, Physical Review B,1988,37:2,785-789.
    [122] Monkhorst H J, Pack J D, Special points for Brillouin-zone integrations,Physical Review B,1976,13:12,5188-5192.
    [123] Halgren T A, Lipscomb W N, The synchronous-transit method for determiningreaction pathways and locating molecular transition states, Chemical PhysicsLetters,1977,49:2,225-232.
    [124] Henkelman G, Jónsson H, Improved tangent estimate in the nudged elastic bondmethod for finding minimum energy paths and saddle points, Journal ofChemical Physics,2000,113:22,9978-9985.
    [125] Perdew J P, Wang Y, Accurate and simple analytic representation of theelectron-gas correlation energy, Physical Review B,1992,45:23,13244-13249.
    [126] Palache C, H. Berman, C. Frondel (1951).
    [127] Curnutt G L, Harley D L, Oxygen Complexes and Oxygen Activation byTransition Metals, Plenum Publishing Co., New York1988.
    [128] Zhang R, Song L, Wang B, Li Z, A density functional theory investigation onthe mechanism and kinetics of dimethyl carbonate formation on Cu2O catalyst,Journal of Computational Chemistry,2012,33:11,1101-1110.
    [129] Engeldinger J, Richter M, Bentrup U, Mechanistic investigations on dimethylcarbonate formation by oxidative carbonylation of methanol over a CuY zeolite:an operando SSITKA/DRIFTS/MS study, Physical Chemistry ChemicalPhysics,2012,14:7,2183-2191.
    [130] Zheng X, Bell A T, A Theoretical Investigation of Dimethyl CarbonateSynthesis on Cu Y Zeolite, The Journal of Physical Chemistry C,2008,112:13,5043-5047.
    [131] Song Y B, Luo A G, Du Y H, Fang Y W, Synthesis of dimethyl carbonate bydirect vapor-phase oxycarbonylation of methanol, Progress in Chemistry,2008,20:2-3,221-226.
    [132] Ma X, Li Z, Wang B, Xu G, EFFECT OF Cu CATALYST PREPARATIONON THE OXIDATIVE CARBONYLATION OF METHANOL TODIMETHYL CARBONATE, Reaction Kinetics and Catalysis Letters,2002,76:1,179-187.
    [133] Yang P, Cao Y, Dai W-L, Deng J-F, Fan K-N, Effect of chemical treatment ofactivated carbon as a support for promoted dimethyl carbonate synthesis byvapor phase oxidative carbonylation of methanol over Wacker-type catalysts,Applied Catalysis A: General,2003,243:2,323-331.
    [134] Yang P, Cao Y, Hu J-C, Dai W-L, Fan K-N, Mesoporous bimetallicPdCl2-CuCl2catalysts for dimethyl carbonate synthesis by vapor phaseoxidative carbonylation of methanol, Applied Catalysis A: General,2003,241:1-2,363-373.
    [135] Yang P, Cao Y, Bao X H, Dai W L, Fan K N, Effect of promoters on structureand performance of activated carbon-supported Wacker-type catalysts forsynthesis of dimethyl carbonate, Chinese Journal of Catalysis,2004,25:12,995-999.
    [136] Wang R Y, Li Z, Zheng H Y, Xie K C, Catalytic Performance ofCu(2)(OH)(3)Cl Catalysts Supported on Various Supports for MethanolOxidative Carbonylation, Chinese Journal of Catalysis,2009,30:10,1068-1072.
    [137] Song J, Zhao T, Du Y, Supported Copper Catalysts for Direct Vapor-PhaseOxycarbonylation of Methanol, Chinese Journal of Catalysis,2006,27:5,386-390.
    [138] Tomishige K, Sakaihori T, Sakai S-i, Fujimoto K, Dimethyl carbonate synthesisby oxidative carbonylation on activated carbon supported CuCl2catalysts:catalytic properties and structural change, Applied Catalysis A: General,1999,181:1,95-102.
    [139] Huang K, Han R, Solid State Physics, Higher Education Press, Beijing,1980.
    [140] Amemiya K, Kitajima Y, Yonamoto Y, Terada S, Tsukabayashi H, YokoyamaT, Ohta T, Oxygen K-edge x-ray-absorption fine-structure study of surfacemethoxy species on Cu(111) and Ni(111), Physical Review B,1999,59:3,2307-2312.
    [141] Gomes J R B, Gomes J A N F, A DFT study of the methanol oxidationcatalyzed by a copper surface, Surface Science,2001,471:1-3,59-70.
    [142] Hofmann P, Schindler K M, Bao S, Fritzsche V, Ricken D E, Bradshaw A M,Woodruff D P, The geometric structure of the surface methoxy species onCu(111), Surface Science,1994,304:1-2,74-84.
    [143] Zhang Z, Ma X, Zhang P, Li Y, Wang S, Effect of treatment temperature on thecrystal structure of activated carbon supported CuCl2–PdCl2catalysts in theoxidative carbonylation of ethanol to diethyl carbonate, Journal of MolecularCatalysis A: Chemical,2007,266:1-2,202-206.
    [144] Jiang R, Wang S, Zhao X, Wang C, Zhang C, The effects of promoters oncatalytic properties and deactivation-regeneration of the catalyst in the synthesisof dimethyl carbonate, Applied Catalysis A: General,2003,238:1,131-139.
    [145] Casarin M, Tondello E, Vittadini A, A molecular cluster approach to the studyof the bonding of CO and NH3to a d10ion on ZnO(0001) and CuCl(111),Inorganica Chimica Acta,1995,235:1-2,151-158.
    [146]王霞,徐香兰,孙宝珍,陈文凯,甲醇在CuCl(111)表面吸附和解离的密度泛函理论研究, in:第十一届全国青年催化学术会议第十一届全国青年催化学术会议论文集(下)中国山东青岛,2007.
    [147]张震,乙醇氧化羰基合成酸二乙酯负载型Wacker催化剂的研究:[博士学位论文]天津;天津大学,2007.
    [148]翁诗甫,傅里叶变换红外光谱分析,化学工业出版社,北京,2010.
    [149] Dunn B C, Roh N S, Eyring E M, Dworzanski J, Meuzelaar H L C, Hu J Z,Pugmire R J, Continuous production of diethyl carbonate over a supportedCuCl2/PdCl2/KOH catalyst, Abstracts of Papers of the American ChemicalSociety,2002,223, U570-U570.
    [150] Babjak M, Remen L, Szolcsanyi P, Zalupsky P, Miklos D, Gracza T, Novelbicyclisation of unsaturated polyols in PdCl2-CuCl2-AcOH catalytic system,Journal of Organometallic Chemistry,2006,691:5,928-940.
    [151] Parise J B, Hyde B G, The structure of atacamite and its relationship to spinel,Acta Crystallographica Section C,1986,42:10,1277-1280.
    [152] Palache C, Berman H, Frondel C, Dana’s system of mineralogy (7th edition),1951.
    [153] Iitaka Y, Locchi S, Oswald H R, Kristallstruktur von CuOHCl, HelveticaChimica Acta,1961,2095-2103.
    [154]杨洋,碱式氯化铜晶型结构对甲醇氧化羰基反应催化性能的研究:[硕士学位论文]天津;天津大学,2008.
    [155] Yang P, Cao Y, Hu J-C, Dai W-L, Fan K-N, Mesoporous bimetallicPdCl2-CuCl2catalysts for dimethyl carbonate synthesis by vapor phaseoxidative carbonylation of methanol, Applied Catalysis A: General,2003,241:1–2,363-373.
    [156] Bergasova L B, Filatov S K, The new mineral tolbachite, CuCl2, DokladyAkademii Nauk SSSR,1983,270,415-417.
    [157] Han M S, Lee B G, Suh I, Kim H S, Ahn B S, Hong S I, Synthesis of dimethylcarbonate by vapor phase oxidative carbonylation of methanol over Cu-basedcatalysts, Journal of Molecular Catalysis A: Chemical,2001,170:1–2,225-234.
    [158] Fu Z H, Ono Y, Selective-Monomethylation of Phenylacetonitrile withDimethyl Carbonate or Methanol over Alkali-Exchanged Faujasites, Journal ofCatalysis,1994,145:1,166-170.
    [159] Ma X, Zhang Z, Wang S, Shi H, Zhang H, The influence of potassium promoteron synthesis of diethyl carbonate by oxidative carbonylation of ethanol, in:226th ACS National Meeting, Prepr. Pap.-Am. Chem. Soc., Div. Fuel Chem.,New York,2003,908-909.
    [160] Burns P C, Hawthorne F C, Tolbachite, CuCl2, the first example of Cu2+octahedrally coordinated by Cl-, American Mineralogist,1993,78,187-189.
    [161] Jahn H A, Teller E, Stability of Polyatomic Molecules in Degenerate ElectronicStates. I. Orbital Degeneracy, Proceedings of the Royal Society of London.Series A-Mathematical and Physical Sciences,1937,161:905,220-235.
    [162] Fu H, Liu Z-P, Li Z-H, Wang W-N, Fan K-N, Periodic Density FunctionalTheory Study of Propane Oxidative Dehydrogenation over V2O5(001) Surface,Journal of the American Chemical Society,2006,128:34,11114-11123.
    [163] Chen W, Yuan P, Zhang S, Sun Q, Liang E, Jia Y, Electronic properties ofanatase TiO2doped by lanthanides: A DFT+U study, Physica B: CondensedMatter,2012,407:6,1038-1043.
    [164] Bhanage B M, Fujita S I, Ikushima Y, Arai M, Synthesis of dimethyl carbonateand glycols from carbon dioxide, epoxides, and methanol using heterogeneousbasic metal oxide catalysts with high activity and selectivity, Applied CatalysisA: General,2001,219:1-2,259-266.
    [165] Blyholder G,23. Molecular orbital view of chemisorbed carbon monoxide: GBlyholder, J Phys Chem,68, Oct1964,2772–2778, Vacuum,1965,15:1,42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700