用户名: 密码: 验证码:
人工湿地基质植物除钼机理与效能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属钼不仅是动植物生长必需的营养元素之一,同时也是非常重要的战略资源。然而常因钼矿开采技术相对落后,尾矿管理力度不够,导致部分地区产生了相对严重的钼污染事件,如美国科罗拉多州钼矿区、加拿大哥伦比亚地区钼矿区以及辽宁省葫芦岛市钼矿区等。目前对重金属钼的研究工作主要集中在缺钼对动植物带来的影响及危害,对钼污染导致的环境问题及解决方法研究很少见,因此对重金属钼污染的治理研究是很有必要的。辽宁省葫芦岛市2005年因乌金塘水库水源地的钼污染,全市必须另找水源,虽然目前采用化学工艺法对水库钼污水进行治理,使其能够供水,但远远不能满足当地居民的需求,且该方法对入库河流的钼污染不能起到防治作用。本文以此为背景,以实现对重金属钼污染的沿程控制为目标,系统研究了人工湿地基质和植物对重金属钼的去除机理,通过静态和动态实验优选基质,作为人工湿地模型基质组成部分。考查了不同人工湿地模型除钼效果及规律,为人工湿地处理重金属钼污染技术提供理论支撑。本文主要研究内容与成果如下:
     (1)基质除钼的机理研究
     以黄棕土为对比基质,考察脱硫钢渣、转炉钢渣及煤渣对重金属钼的吸附性能。结果表明,基质对重金属钼吸附过程符合Langmuir等温吸附模型,且饱和吸附量由大到小依次为:脱硫钢渣>转炉钢渣>煤渣>土壤;各基质对重金属钼的吸附速率符合准二级动力学模型;吸附过程受体系pH影响较大,pH值为3.0-4.5时,四种基质对铝去除率最高,当pH>5.0时,去除率迅速降低,在pH为8.0时,去除率几乎为零;SO42-和P043-对基质吸附钼酸根离子影响较为显著,基质受其影响作用由大到小依次为:黄棕土>煤渣>转炉钢渣>脱硫钢渣,且P043-对基质吸附钼酸根离子的竞争作用强于S042-;四种基质对钼酸根离子的解吸作用由大到小依次为:黄棕土>煤渣>转炉钢渣>脱硫钢渣;等温吸附模型中表观能量E值及红外光谱的研究成果表明,基质去除钼酸根离子的主要机理为离子交换吸附。
     (2)除钼基质的筛选研究
     通过静态和动态两种方式,考察了改性煤渣和黄铁矿对重金属钼的去除效果,结果表明:煤渣经硫酸改性后对溶液中的M0042-产生了强烈的吸附作用,且当pH在4.0-6.0时,吸附量最大;与磁铁矿相比,黄铁矿具有较强的碱缓冲能力,在pH为中性时,去除率仍高于60%;硫酸改性煤渣与黄铁矿吸附钼酸根离子均符合准二级吸附动力学模型。由活化能状态函数E值表明,该吸附过程以物理吸附为主,吸附速率较快,且受温度的影响较小;硫酸改性煤渣与黄铁矿吸附钼酸根离子符合Langmuir等温线吸附模型。由于ΔG0<0、△S0>0、△H0>0,表明吸附都是吸热、熵增、自发的过程。改性煤渣和黄铁矿粒径分别为1-2mm及2-4mm时对钼吸附的穿透时间较长,且饱和吸附量分别为8.87g kg-1和5.0g kg-1;改性煤渣和黄铁矿与煤渣的组合比例分别为1:2和1:1时,去除效果最佳。
     (3)芦苇和香蒲富集钼机理研究
     研究了水生植物芦苇和香蒲对重金属钼的吸收特性。通过短期室内水培实验,对比考察了2种植物对重金属钼的耐毒性、动态去除率、吸收过程及富集情况,并对在不同浓度营养液中植物对重金属钼吸收的影响进行了分析。结果表明,2种植物钼中毒导致其茎叶发黄、蒸腾能力下降,在钼浓度为2-20mg L-1时,香蒲对重金属钼的耐毒性较芦苇强。香蒲对重金属钼的去除率高于芦苇,在钼浓度为2mg L-1时,香蒲和芦苇去除率分别为87%和62%。2种植物对重金属钼的吸收是一个动态平衡过程,且以被动吸收为主。香蒲对钼的富集量较芦苇高,且植物地上部分重金属积累量大于根部,符合超积累植物特征之一。营养液浓度的增加不会提高植物对重金属钼的吸收量,反而会因离子竞争等因素使去除率有所下降。
     (4)人工湿地除钼效果及规律
     考察了含有芦苇和香蒲及不同基质的垂直潜力人工湿地对重金属钼的去除性能。结果表明,在14周的运行周期,黄铁矿组合基质的人工湿地除钼效率与其他湿地相比更加稳定、高效,且在水力停留时间为2d时,去除效果基本不受影响;重金属钼主要被黄铁矿吸附,且存在形态以水溶态为主;香蒲比芦苇对重金属钼的富集能力更强,但与基质的吸附量相比,植物的生物积累量相对很小。
Molybdenum (Mo) is an essential trace element for plants and animals, as well as an important stratagic resource. However, some Mo pollution incidents have been produced in partial area, such as Colorado in the USA, British Columbia Province in Canada and Liaoning Province, due to the backwardness of Mo mining exploitation technology and the poor management. Rencently, the research on Mo was mainly focused on the effect and harm on animal for lacking Mo. Little research has been done on controlling Mo pollution, so treating this pollution is necessary.
     People of Huludao City had to find another riverhead for the Mo pollution of Wujintang reservoir in2005. Although the reservoir have supplied certain water for the local inhabitants now, the water supply is not enough. Therefore, based on Mo tailings pollution in Liaoning province and the aim of on-way control for Mo pollution, the removal mechanism of Mo was studied by the substrates and plants of constructed wetlands. The substrates were tested in static and dynamic experiments for further applied in wetlands. Moreover, the removal effect, mechanism and influence factor for mo by different constructed wetlands was studied. So it could provide some valuable reference to practice application of constructed wetlands for mo removal. The main contents are as follows:
     (1) Study on the adsorption mechanism of Mo(VI) by the substrates.
     In this study, the removal efficiencies of Mo(VI) from aqueous solutions by desulfurization steel slag (DSS), converter steel slag (CSS) and cinder (CI) were investigated and compared against that of loessial soil (LS). The results showed that the sorption isotherms fitted the Langmuir model well, and the Langmuir adsorption capacity (Qo) of the four sorption media generally complied with the following order:DSS>CSS>CI>LS. Adsorption reaction was found to follow the pseudo second-order rate,and the adsorption of Mo(Ⅵ) was sensitive to pH values.The four adsorbents exhibited a significant Mo(Ⅵ) removal at low pH values (e.g.,3CI>CSS>DSS,and moreover,the effect of PO43-on the adsorption of Mo(Ⅵ) was observed stronger than that of SO42-. The desorption capacity of the four sorption media generally complied with the following order:LS>CI>CSS>DSS.The value of E calculated by the isotherm model and the results of FTIR indicated that the iron exchange adsorption was the main mechanism.
     (2) The screening experiment of substrates for Mo(Ⅵ) removal
     Mo(Ⅵ) removal by modified cinder and pyrite was investigated in static and dynamic experiments.The results showed that the surface pore of cinder was enhanced by the modification of sulphuric acid, and the adsorption amount of Mo(Ⅵ) was increased. Maximum adsorption of Mo(Ⅵ) by modified cinder occurred at pHs between4.0and6.0. Compared to magnetite,the pyrite was with large buffer capacity on alkali.When the pH was7.0,the removal rate was higher than60%.Kinetic studies showed that the adsorption generally obeyed a pseudo second-order model.The values of activation energy indicated the adsorption processes were governed by interactions of physical nature.Furthermore,Langmuir and Freundlich isotherms were used to model the adsorption equilibrium data and the adsorption behavior obeyed the Langmuir model.Finally, thermodynamic parameters such as△H0,△S0and△G0for the adsorption were also evaluated, which showed the adsorption of Mo(VI) on treated cinder and pyrite was endothermic,entropy increasing and spontaneous. The time of break-through was longer, when the particle size was1-2mm and2-4mm for modified cinder and pyrite, respectively. The maximum adsorption amount of Mo(Ⅵ) by modified cinder and pyrite in dynamic experiments was8.87g kg-1and5.0g kg-1,respectively. Moreover, the perfectly combination proportion of modified cinder/cinder and pyrite/cinder was1:2and1:1.
     (3) Study on the enrichment mechanism of Mo(Ⅵ) by reed and cattail
     The adsorption characteristics of reed and cattail to Mo(Ⅵ) were studied. The Mo(Ⅵ) toxicity, removal rate, adsorption process and accumulation of Mo (Ⅵ) were investigated in the short-term indoor-culture experiment.The effects of Mo(Ⅵ) adsorbed by two plants in nutrition solution of different concentration were also studied. Due to the Mo(Ⅵ) toxicity, the color of stems and leafs of the two plants had become scorch and the transpiration was declined. The tolerance to Mo(Ⅵ) toxicity of cattail was better than reed at Mo(Ⅵ) concentration of2-20mg·L-1. The removal rate of Mo(Ⅵ) by cattail was87%, which was higher than reed (62%) at Mo(Ⅵ) concentration of2mg·L-1. The absorption process of Mo(Ⅵ) by two plants was homeostasis, and the passivity absorption was the main absorption mechanism. Mo(Ⅵ) enrichment ammount in cattail was higher than that in reed, and Mo concentrations in shoot were higher than that in roots. The results displayed that the two plants were with Mo(Ⅵ) hyperaccumulative characteristics. The absorption of Mo(Ⅵ) was not enhanced with the increase of nutrition solution concentration, owing to the competition of other ions.
     (4) Study on the removal of Mo(VI) by simulated constructed wetlands
     The efficacy and capacity of using vertical subsurface water constructed wetlands to removal Mo(VI) was examined, employing reeds and cattail as well as granular media of different adsorption capacities.Results showed that the performance of wetland V (combined with pyrite) was found to be more stable and excellent than that of other wetlands during14-week of intermittent influent,and2-d HRT is sufficient for Mo(VI) removal in wetland V. Most Mo(VI) was adsorbed by the pyrite,which retained primarily in water-soluble fraction. Cattail was more suitable for Mo(VI) absorption than reeds, but the bioaccumulation accounted for a very small portion of the total removal.
引文
[1]Lee C G, Chon H T, Jung M C. Heavy metal contamination in the vicinity of the daduk au-ag-pb-zn mine in korea [J]. Applied Geochemistry.2001,16(11-12):1377-1386.
    [2]da Silva E F, Almeida S F P, Nunes M L, et al. Heavy metal pollution downstream the abandoned coval da mo mine (portugal) and associated effects on epilithic diatom communities [J]. Science of the Total Environment.2009,407(21):5620-5636.
    [3]Avila P F, Oliveira J M S, da Silva E F, et al. Geochemical signatures and mechanisms of trace elements dispersion in the area of the vale das gatas mine (northern portugal) [J]. Journal of Geochemical Exploration. 2005,85(1):17-29.
    [4]Concas A, Ardau C, Cristini A, et al. Mobility of heavy metals from tailings to stream waters in a mining activity contaminated site [J]. Chemosphere.2006,63(2):244-253.
    [5]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备.2001,2(3):42-46.
    [6]孙铁珩,周启星,李培军.污染生态学[M].北京:科学出版社,2001.
    [7]周怀东,彭文启.水环境与水环境修复[M].北京:化学工业出版社,2005.
    [8]陈清敏,张晓军.大宝山铜铁矿区水体重金属污染评价[J].环境科学与技术.2006,29(6):64-65.
    [9]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学.2003,25(6):15-17.
    [10]许秀琴,朱勇,杨挺.水体重金属的污染危害及其修复技术[J].污染防治技术.2007,20(4):67-69.
    [11]成新.太湖流域重金属污染亟待重视[J].水资源保护.2002,1(4):39-41.
    [12]赵璇,吴天宝,叶裕才.我国饮用水源的重金属污染及治理技术深化问题[J].给水排水.1998,24(10):22-25.
    [13]岳丽娟,史宝成.葫芦岛市近岸海域水生动物重金属污染状况的监测[J].中国环境监测.2001,17(4):46-47.
    [14]郭志军,王艳秋.乌金塘水库水体中钼污染现状及其防治对策[J].环境科学导论.2007,26(4):59-60.
    [15]Gupta C K. Extractive metallurgy of molybdenum [M]. CRC press,1992.
    [16]向铁根.钼冶金[M].长沙:中南大学出版社,2002.
    [17]张文征等.钼冶炼[M].西安:西安交通大学出版社,1991.
    [18]Namasivayam C, Sangeetha D. Removal of molybdate from water by adsorption onto zncl2 activated coir pith carbon [J]. Bioresource Technology.2006,97(10):1194-1200.
    [19]贾如宝.钼缺乏与钼过多生物学作用的研究进展[J].中国钼业.1995,19(4):49-53.
    [20]刘鹏,杨玉爱.大豆吸收钼的安全范围和吸收形态[J].应用与环境生物学报.2003.9(6):594-597.
    [21]Moret A, Rubio J. Sulphate and molybdate ions uptake by chitin-based shrimp shells [J]. Minerals Engineering.2003,16(8):715-722.
    [22]施咏梅.钼-人体必需微量元索[J].中国临床营养杂志.2005,13(2):120-123.
    [23]Martin J M, Meybeck M. Elemental mass-balance of material carried by major world rivers [J]. Marine Chemistry.1979,7(3):173-206.
    [24]Qu C H, Chen C Z, Yang J R, et al. Geochemistry of disserved and patticulate elements in the major rivers of china (the huanghe, changjiang, and zhunjiang rivers) [J]. Estuaries.1993,16(3A):475-487.
    [25]于常武,周立岱,陈国伟.钼污染物的产生及在环境中的迁移[J].化工环保.2008,28(5):413-417.
    [26]Amrhein C, Mosher P A, Brown A D. The effects of redox on mo, u, b, v, and as solubility in evaporation pond soils [J]. Soil Science.1993,155(4):249-255.
    [27]Pyrzynska K. Determination of molybdenum in environmental samples [J]. Analytica Chimica Acta.2007, 590(1):40-48.
    [28]Ghiasvand A R, Shadabi S, Mohagheghzadeh E, et al. Homogeneous liquid-liquid extraction method for the selective separation and preconcentration of ultra trace molybdenum [J]. Talanta.2005,66(4):912-916.
    [29]于常武,许士国,陈国伟,等.水体中钼污染物的迁移转化研究进展[J].环境污染与防治.2008,30(9):70-74.
    [30]Ferreiro E A, Helmy A K, Debussetti S G. Molybdate sorption by oxides of aluminum and iron [J]. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde.1985,148(5):559-566.
    [31]Fox P M, Doner H E. Accumulation, release, and solubility of arsenic, molybdenum, and vanadium in wetland sediments [J]. Journal of Environmental Quality.2003,32(6):2428-2435.
    [32]Crusius J, Calvert S, Pedersen T, et al. Rhenium and molybdenum enrichments in sediments as indicators of oxic, suboxic and sulfidic conditions of deposition [J]. Earth and Planetary Science Letters.1996,145(1-4): 65-78.
    [33]Collier R W. Molybdenum in the northeast pacific-ocean [J]. Limnology and Oceanography.1985,30(6): 1351-1354.
    [34]Goldberg S, Forster H S, Godfrey C L. Molybdenum adsorption on oxides, clay minerals, and soils [J]. Soil Science Society of America Journal.1996,60(2):425-432.
    [35]Lindsay W L. Chemical equilibria in soils [M]. New York:John Wiley & Sons,1979.
    [36]Dellwig O, Beck M, Lemke A, et al. Non-conservative behaviour of molybdenum in coastal waters: Coupling geochemical, biological, and sedimentological processes [J]. Geochimica Et Cosmochimica Acta. 2007,71(11):2745-2761.
    [37]陈绍强.法国洛代夫厂的工艺流程及技术经济指标[J].铀矿选冶通讯.1989,8(3):3-6.
    [38]彭显佐,梁建龙,曾毅君.碱性堆浸溶液中铀铝分离及回收的研究[J].铀矿冶.1995,14(3):200-204.
    [39]赵桂荣,张国维.季按型树脂吸附铝机理研究[J].铀矿冶.1987,6(4):23-27.
    [40]张启伟,熊春华.D301 r树脂吸附铝(Ⅵ)的研究[J].有色金属.2005,57(3):57-61.
    [41]何焕杰,王永红,赵得启.用D380阴离子交换树脂从硫酸按溶液中的提取铝[J].信阳师范学院学报.1992,5(2):194-195.
    [42]杨子超,王秀山,宋瑞莲,等.离子交换提取铝[J].稀有金属.1988,12:6-9.
    [43]熊春华,舒增年,王永江.4-2氨基毗淀树脂吸附铝(Ⅵ)[J].化工学报.2005,56(7):1267-1270.
    [44]刘敏婕,马全智,李辉.离子交换法综合处理铝酸按生产废水的研究[J].中国钼业.2006,30(3):27-29.
    [45]Hall K R, Eagleton L C, Acrivos A, et al. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions [J]. Industrial & Engineering Chemistry Fundamentals.1966,5(2):212-223.
    [46]Barrow N J. Comparison of adsorption of molybdate, sulfate and phosphate by soils [J]. Soil Science.1970, 109(5):282-284.
    [47]Yabe M J S, de Oliveira E. Heavy metals removal in industrial effluents by sequential adsorbent treatment [J]. Advances in Environmental Research.2003,7(2):263-272.
    [48]Afkhami A, Madrakian T, Amini A. Mo(VI) and W(VI) removal from water samples by acid-treated high area carbon cloth [J]. Desalination.2009,243(1-3):258-264.
    [49]Roy W R, Hassett J J, Griffin R A. Competitive interactions of phosphate and molybdate on arsenate adsorption [J]. Soil Science.1986,142(4):203-210.
    [50]Gersberg R M, Elkins B V, Goldman C R. Use of artificial wetlands to remove nitrogen from wastewater [J]. Journal Water Pollution Control Federation.1984,56(2):152-156.
    [51]黄铭洪.环境污染与生态恢复[M].北京:科学出版社,2003.
    [52]吴振斌,等.复合垂直流人工湿地[M].北京:科学出版社,2008.
    [53]Bavor H J, Schulz T J. Sustainable suspended solids and nutrient removal in large scale, solid matrix, constructed wetland systems [M]. In:Moshiri G A. Constructed wetlands for water quality improvement lewis pub boca raton. Boca Raton, Florida:CRC Press,1993:219-226.
    [54]Mitchell L K, Karathanasis A D. Treatment of metal-chloride-enriched waste-water by simulated constructed wetlands [J]. Environmental Geochemistry and Health.1995,17(3):119-126.
    [55]Buddhawong S, Kuschk P, Mattusch J,et al. Removal of arsenic and zinc using different laboratory model wetland systems [J]. Engineering in Life Sciences.2005,5(3):247-252.
    [56]Scholz M, Xu J, Dodson H I. Comparison of filter media, plant communities and microbiology within constructed wetlands treating wastewater containing heavy metals [J]. Journal of Chemical Technology and Biotechnology.2001,76(8):827-835.
    [57]Xu J C, Chen G, Huang X F. et al. Iron and manganese removal by using manganese ore constructed wetlands in the reclamation of steel wastewater[J]. Journal of Hazardous Materials.2009.169(1-3): 309-317.
    [58]Lim P E, Tay M G, Mak K Y, et al. The effect of heavy metals on nitrogen and oxygen demand removal in constructed wetlands [J]. Science of the Total Environment.2003,301(1-3):13-21.
    [59]黄淦泉,杨昌凤,靳立军,等.人工湿地处理重金属Pb、Cd污水的机理探讨[J].应用生态学报.1993,4(4):456-459.
    [60]徐丽花,周琪.人工湿地控制暴雨径流污染的实验研究[J].上海环境科学.2002,21(5):274-277.
    [61]Aube B C, Stroiazzo J. Molybdate treatment at brenda mines [C]. Proceedings of the 5th international conference of acid rock drainage, ICARD, SME, Littleton, Colorado. USA.,2000:1113.
    [62]崔理华,卢少勇.污水处理的人工湿地构建技术[M].北京:化学工业出版社,2009.
    [63]石太宏,贾世国,陈颖,等.改性天然矿物吸附废水中重金属离子的研究进展[J].水处理技术.2009,35(4):18-23.
    [64]Jones L H P. The solubility of molybdenum in simplified systems and aqueous soil suspensions [J]. Journal of Soil Science.1957,8(2):313-327.
    [65]Reyes E D, Jurinak J J. A mechanism of molybdate adsorption on aFe2O3 [J]. Soil Science Society of America Proceedings.1967,31(5):637-641.
    [66]Motta M M, Miranda C F. Molybdate adsorption on kaolinite, montmorillonite, and illite-constant capacitance modeling [J]. Soil Science Society of America Journal.1989,53(2):380-385.
    [67]Phelan P J, Mattigod S V. Adsorption of molybdate anion (MoO42-) by sodium-saturated kaolinite [J].Clays and Clay Minerals.1984,32(1):45-48.
    [68]Theng B K G. Adsorption of molybdate by some crystalline and amorphous soil clays [J].New Zealand Journal of Science.1971,14(4):1040-1042.
    [69]Bhattacharyya K G, Sen Gupta S. Adsorption of Fe(Ⅲ) from water by natural and acid activated clays: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions [J]. Adsorption-Journal of the International Adsorption Society.2006,12(3):185-204.
    [70]Arias M, Barral M T, Mejuto J C.Enhancement of copper and cadmium adsorption on kaolin by the presence of humic acids [J]. Chemosphere.2002.48(10):1081-1088.
    [71]古映莹,程化,邓鹏,等.高岭土-MBT复合体对某些重金属离子吸附性能的研究[J].精细化工中间体.2002,7(4):33-34.
    [72]Lazarevic S, Jankovic-Castvan l,Jovanovic D,et al. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites [J].Applied Clay Science.2007,37(1-2):47-57.
    [73]Demirbas O, Alkan M, Dogan M, et al. Electrokinetic and adsorption properties of sepiolite modified by 3-aminopropyltriethoxysilane [J].Journal of Hazardous Materials.2007,149(3):650-656.
    [74]罗道成,易平贵,陈安国,等.改性海泡石对废水中pb2+、Hg2+、Cd2+吸附性能的研究[J].水处理技 术.2003,29(2):89-91.
    [75]Khraisheh M A M, Al-Degs Y S, Mcminn W A M. Remediation of wastewater containing heavy metals using raw and modified diatomite [J]. Chemical Engineering Journal.2004,99(2):177-184.
    [76]Dantas T N D, Neto A A D, Moura M C P D. Removal of chromium from aqueous solutions by diatomite treated with microemulsion [J]. Water Research.2001,35(9):2219-2224.
    [77]Nah I W, Hwang K Y, Jeon C, et al. Removal of pb ion from water by magnetically modified zeolite [J]. Minerals Engineering.2006,19(14):1452-1455.
    [78]谢华林,李立波.改性沸石对重金属离子吸附性能的试验研究[J].非金属矿.2005,28(1):47-49.
    [79]Stathi P, Litina K, Gournis D, et al. Physicochemical study of novel organoclays as heavy metal ion adsorbents for environmental remediation [J]. Journal of Colloid and Interface Science.2007,316(2): 298-309.
    [80]马子川,王颖莉,贾密英,等.提高天然锰矿吸附水中重金属离子能力的方法[J].金属矿山.2006,3(9):78-80.
    [81]Moffat A S. Environmental biology-plants proving their worth in toxic metal cleanup [J]. Science.1995, 269(5222):302-303.
    [82]Heaton A C P, Rugh C L, Wang N J, et al. Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants [J]. Journal of Soil Contamination.1998,7(4):497-509.
    [83]Pilon-Smits E A H, Hwang S B, Lytle C M, et al. Overexpression of atp sulfurylase in indian mustard leads to increased selenate uptake, reduction, and tolerance [J]. Plant Physiology.1999,119(1):123-132.
    [84]周乃元,王仁武.植物修复-治理土壤重金属污染的新途径[J].中国生物工程杂志.2002,22(5):53-57.
    [85]Baker A J M, Reeves R D, Hajar A S M. Heavy-metal accumulation and tolerance in british populations of the metallophyte thlaspi-caerulescens j-and-c-presl (brassicaceae) [J]. New Phytologist.1994,127(1): 61-68.
    [86]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特性[J].科学通报.2002,47(3):207-210.
    [87]Smith R A H,Bradshaw A D. Use of metal tolerant plant-populations for the reclamation of metalliferous wastes [J]. Journal of Applied Ecology.1979,16(2):595-612.
    [88]蓝崇钰,束文圣.矿山废弃地植被恢复中的基质改良[J].生态学杂志.1996,15:55-59.
    [89]Williams J B. Phytoremediation in wetland ecosystems:Progress, problems, and potential [J]. Critical Reviews in Plant Sciences.2002,21(6):607-635.
    [90]Qian J H, Zayed A, Zhu Y L, et al. Phytoaccumulation of trace elements by wetland plants:Iii. Uptake and accumulation often trace elements by twelve plant species [J]. Journal of Environmental Quality.1999. 28(5):1448-1455.
    [91]Zayed A, Gowthaman S, Terry N. Phytoaccumulation of trace elements by wetland plants:I. Duckweed [J]. Journal of Environmental Quality.1998,27(3):715-721.
    [92]Zhu Y L, Zayed A M, Qian J H, et al. Phytoaccumulation of trace elements by wetland plants:Ii. Water hyacinth [J]. Journal of Environmental Quality.1999,28(1):339-344.
    [93]姚运先,王艺娟.人工湿地在酸性矿山废水处理中的应用[J].湖南有色金属.2005,21(4):26-29.
    [94]张洪刚,洪剑明.人工湿地中植物的作用[J].湿地科学.2006,4(2):146-154.
    [95]Weiss J, Hondzo N, Biesboer D, et al. Laboratory study of heavy metal phytoremediation by three wetland macrophytes [J]. International Journal of Phytoremediation.2006,8(3):245-259.
    [96]王凡路,吴瑞琴,兵杨,等.凡口铅锌矿湿地系统沉积物中重金属的分布[J].生态环境.2003,12(3):292-295.
    [97]徐健,张德纯,周广.微生物在城市污水处理系统中的应用与展望[J].中国微生态杂志.2006,18(1):75-77.
    [98]陈素华,孙铁珩,周启星,等.微生物与重金属间的相互作用及其应用研究[J].应用生态学报.2002,13(2):239-242.
    [99]谭长银,刘春平,周学军,等.湿地生态系统对污水中重金属的修复作用[J].水土保持学报.2003,17(4):67-70.
    [100]Daubert L N, Brennan R A. Passive remediation of acid mine drainage using crab shell chitin [J]. Environmental Engineering Science.2007,24(10):1475-1480.
    [101]Zhong C M, Xu Z L, Fang X H, et al. Treatment of acid mine drainage (amd) by ultra-low-pressure reverse osmosis and nanofiltration [J]. Environmental Engineering Science.2007,24(9):1297-1306.
    [102]Fathima N N, Aravindhan R, Rao J R, et al. Solid waste removes toxic liquid waste:Adsorption of chromium(vi) by iron complexed protein waste [J]. Environmental Science & Technology.2005,39(8): 2804-2810.
    [103]Noh J S. Schwarz J A. Estimation of the point of zero charge of simple oxides by mass titration [J].Journal of Colloid and Interface Science.1989,130(1):157-164.
    [104]Xuan Z M, Chang N B, Wanielista M, et al. Laboratory-scale characterization of a green sorption medium for on-site sewage treatment and disposal to improve nutrient removal [J]. Environmental Engineering Science.2010,27(4):301-312.
    [105]Kalal S H, Panahi A H. Faramarzi N, et al. New chelating resin for preconcentration and determination of molybdenum by inductive couple plasma atomic emission spectroscopy [J].Int. J. Environ. Sci.Tech.2011, 8(31):501-512.
    [106]Jaman H, Chakraborty D, Saha P. A study of the thermodynamics and kinetics of copper adsorption using chemically modified rice husk [J]. Clean-Soil Air Water.2009,37(9):704-711.
    [107]Renganathan S, Kalpana J, Kumar M D, et al. Equilibrium and kinetic studies on the removal of reactive red 2 dye from an aqueous solution using a positively charged functional group of the nymphaea rubra biosorbent [J]. Clean-Soil Air Water.2009,37(11):901-907.
    [108]Hu Q H, Qiao S Z, Haghseresht F, et al. Adsorption study for removal of basic red dye using bentonite[J]. Chem Res.2006,45:733-738.
    [109]Safa Z A, Erdem B. Adsorption of acid bluel93 from aqueous solutions onto na-bentonite and dtma-bentonite [J]. J Colloid Inter Sci 2004,280:44-54.
    [110]Ho Y S, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss flat [J]. Water Research.2000,34(3):735-742.
    [111]Horsfall M, Spiff A I, Abia A A. Studies on the influence of mercaptoacetic acid (maa) modification of cassava (manihot sculenta cranz) waste biomass on the adsorption of Cu2+ and Cd2+ from aqueous solution [J]. Bulletin of the Korean Chemical Society.2004,25(7):969-976.
    [112]Khezami L, Capart R. Removal of chromium(Ⅵ) from aqueous solution by activated carbons:Kinetic and equilibrium studies[J]. Journal of Hazardous Materials.2005,123(1-3):223-231.
    [113]Mahramanlioglu M, Kizilcikli I, Bicer I O. Adsorption of fluoride from aqueous solution by acid treated spent bleaching earth [J]. Journal of Fluorine Chemistry.2002,115(1):41-47.
    [114]Singh T S, Pant K K. Equilibrium, kinetics and thermodynamic studies for adsorption of As(Ⅲ) on activated alumina [J]. Separation and Purification Technology.2004,36(2):139-147.
    [115]Seki Y, Yurdakoc K. Paraquat adsorption onto clays and organoclays from aqueous solution [J]. Journal of Colloid and Interface Science.2005,287(1):1-5.
    [116]Hasany S M, Saeed M M, Ahmed M. Sorption of traces of silver ions onto polyurethane foam from acidic solution [J]. Talanta.2001,54(1):89-98.
    [117]Juang R S, Wu F C, Tseng R L. Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels [J]. Journal of Colloid and Interface Science.2000,227(2):437-444.
    [118]Elwakeel K Z, Atia A A, Donia A M. Removal of Mo(Ⅵ) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins [J]. Hydrometallurgy.2009,97(1-2):21-28.
    [119]Chang M Y, Juang R S. Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay [J]. Journal of Colloid and Interface Science.2004,278(1):18-25.
    [120]Krishnani K K, Meng X G, Christodoulatos C, et al. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk [J]. Journal of Hazardous Materials.2008.153(3):1222-1234.
    [121]lqbal M, Saeed A. Zafar S I. Ftir spectrophotometry. kinetics and adsorption isotherms modeling,ion exchange, and edx analysis for understanding the mechanism of Cd(2+) and Pb(2+) removal by mango peel waste [J]. Journal of Hazardous Materials.2009,164(1):161-171.
    [122]Gomes J F P, Pinto C G. Leaching of heavy metals from steelmaking slags [J]. Revista De Metalurgia. 2006,42(6):409-416.
    [123]Mayo D W, Foil A M, Hannah R W. Course notes on the interpretation of infrared and raman spectra [M]. Wiley-Interscience:New York,2004.
    [124]Wang L, Wang A. Adsorption properties of congo red from aqueous solution onto n,o-carboxymethyl-chitosan [J]. Bioresource Technology.2008,99(5):1403-1408.
    [125]Navarro C, Diaz M, Villa-Garcia M A. Physico-chemical characterization of steel slag. Study of its behavior under simulated environmental conditions [J]. Environmental Science & Technology.2010, 44(14):5383-5388.
    [126]Busca G, Centi G, Marchetti L. et al. Chemical and spectroscopic study of the nature of a vanadium-oxide monolayer supported on a high-surface-area tio2 anatase [J]. Langmuir.1986,2(5):568-577.
    [127]Namduri H, Nasrazadani S. Quantitative analysis of iron oxides using fourier transform infrared spectrophotometry [J]. Corrosion Science.2008,50(9):2493-2497.
    [128]Mauge F, Gallas J P, Lavalley J C, et al. Ft-ir and ft-fir studies of vanadium, molybdenum and tungsten-oxides supported on different carriers [J]. Mikrochimica Acta.1988,2(1-6):57-61.
    [129]Bourikas K, Hiemstra T, Van Riemsdijk W H. Adsorption of molybdate monomers and polymers on titania with a multisite approach [J]. Journal of Physical Chemistry B.2001,105(12):2393-2403.
    [130]Xu N, Christodoulatos C, Braida W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite:Effect of ph and competitive anions [J]. Chemosphere.2006,62(10):1726-1735.
    [131]Bostick B C,Fendorf S, Helz G R. Differential adsorption of molybdate and tetrathiomolybdate on pyrite (fes2) [J]. Environmental Science & Technology.2003,37(2):285-291.
    [132]Namasivayam C, Sureshkumar M V. Removal and recovery of molybdenum from aqueous solutions by adsorption onto surfactant-modified coir pith, a lignocellulosic polymer [J]. Clean-Soil Air Water.2009, 37(1):60-66.
    [133]Lattemann S, Hopner T. Environmental impact and impact assessment of seawater desalination [J]. Desalination.2008,220(1-3):1-15.
    [134]王红艳,张艳,周守勇,等.硫酸改性凹凸棒粘土的性能表征及吸附pb(Ⅱ)工艺研究[J].淮阴师范学院学报(自然科学版).2005,4(1):47-50.
    [135]自卯娟,褚衍洋.硫酸亚铁改性粉煤灰处理含磷废水[J].青岛科技大学学报(自然科学版).2008,29(3):213-216.
    [136]Moselhy M M E, Sengupta A K, Smith R. Carminic acid modified anion exchanger for the removal and preconcentration of mo(vi) from wastewater [J]. Journal of Hazardous Materials 2011,185:442-446.
    [137]Namasivayam C, Kadirvelu K. Uptake of mercury (ii) from wastewater by activated carbon from an unwanted agricultural solid by-product:Coirpith [J]. Carbon.1999,37(1):79-84.
    [138]Gupta V K, Gupta M, Sharma S. Process development for the removal of lead and chromium from aqueous solutions using red mud-an aluminium industry waste [J]. Water Research,2001,35(5): 1125-1134.
    [139]Nollet H, Roels M, Lutgen P, et al. Removal of pcbs from wastewater using fly ash [J]. Chemosphere. 2003,53(6):655-665.
    [140]Afkhami A, Norooz-Asl R. Removal, preconcentration and determination of mo(vi) from water and wastewater samples using maghemite nanoparticles [J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects.2009,346(1-3):52-57.
    [141]El-Moselhy M M, Sengupta A K, Smith R. Carminic acid modified anion exchanger for the removal and preconcentration of mo(vi) from wastewater [J]. Journal of Hazardous Materials.2011,185(1):442-446.
    [142]Namasivayam C, Prathap K. Uptake of molybdate by adsorption onto industrial solid waste Fe(Ⅲ)/Cr(Ⅲ) hydroxide:Kinetic and equilibrium studies [J]. Environmental Technology.2006,27(8):923-932.
    [143]Namasivayam C, Sangreetha D. Recycling of agricultural solid waste, coir pith:Removal of anions, heavy metals, organics and dyes from water by adsorption onto zncI2 activated coir pith carbon [J]. Journal of Hazardous Materials.2006,135(1-3):449-452.
    [144]马明广,周敏,蒋煜峰,等.不溶性腐殖酸对重金属离子的吸附及研究[J].安全与环境学报.2006,6(3):68-71.
    [145]丁世敏,封享华,汗玉庭,等.交联壳聚糖多孔微球对燃料的吸附平衡及吸附动力学分析[J].分析科学学报.2005,21(2):127-130.
    [146]Namasivayam C, Senthilkumar S. Removal of arsenic(V) from aqueous solution using industrial solid waste:Adsorption rates and equilibrium studies [J]. Industrial & Engineering Chemistry Research.1998, 37(12):4816-4822.
    [147]Yavuz O, Altunkaynak Y, Guzel F. Removal of copper, nickel, cobalt and manganese from aqueous solution by kaolinite [J]. Water Research.2003,37(4):948-952.
    [148]Vonoepen B, Kordel W, Klein W. Sorption of nonpolar and polar compounds to soils-processes, measurements and experience with the applicability of the modified oecd-guideline-106 [J]. Chemosphere. 1991,22(3-4):285-304.
    [149]Dunne E J, Culleton N, O'Donovan G, et al. Phosphorus retention and sorption by constructed wetland soils in southeast ireland [J]. Water Research.2005.39(18):4355-4362.
    [150]Brooks A S, Rozenwald M N, Geohring L D,et al. Phosphorus removal by wollastonite:A constructed wetland substrate [J].Ecological Engineering.2000,15(1-2):121-132.
    [151]张迎颖,丁为民,陈豪,等.人工湿地填料的静态吸附特性和动态除磷能力研究[J].江苏农业科学.2009,3:416-418.
    [152]鲁铌,章北平,刘真,等.人工湿地处理低浓度生活污水的填料优化级配[J].武汉理工大学学报.2006,28(1):81-84.
    [153]Yang J, Wang S, Lu Z B, et al. Converter slag-coal cinder columns for the removal of phosphorous and other pollutants [J]. Journal of Hazardous Materials.2009,168(1):331-337.
    [154]王军辉,史惠祥,汪大翠.固定床活性炭吸附元素态汞的试验研究[J].浙江大学学报.2008,35(1):68-72.
    [155]朱燕,李晔.改性微孔沸石球吸附柱去除氨氮的研究[J].净水技术.2005,24(6):14-17.
    [156]郭静,阮宜纶,林荣忱.水生植物对地热废水净化作用的研究[J].环境科学学报.1995,15(2):251-255.
    [157]Tassi E, Pouget J, Petruzzelli G, et al. The effects of exogenous plant growth regulators in the phytoextraction of heavy metals [J]. Chemosphere.2008,71(1):66-73.
    [158]Gohre V, Paszkowski U. Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation [J]. Planta.2006,223(6):1115-1122.
    [159]Fritioff A, Greger M. Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater [J]. International Journal of Phytoremediation.2003,5(3):211-224.
    [160]Weis J S, Weis P. Metal uptake, transport and release by wetland plants:Implications for phytoremediation and restoration [J]. Environment International.2004,30(5):685-700.
    [161]魏树和,周启星,王新,等.一种新发现的镉超积累植物龙葵(solanum nigrum 1) [J]科学通报.2004,49(24):2568-2573.
    [162]Deng H, Ye Z H, Wong M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in china [J]. Environmental Pollution.2004,132(1):29-40.
    [163]Gopal B, Goel U. Competition and allelopathy in aquatic plant-communities [J]. Botanical Review.1993, 59(3):155-210.
    [164]Grace J B, Wetzel R G. Long-term dynamics of typha populations [J]. Aquatic Botany.1998,61(2): 137-146.
    [165]Ingole N W, Bhole A G. Removal of heavy metals from aqueous solution by water hyacinth (eichhornia crassipes) [J]. Journal of Water Supply Research and Technology-Aqua.2003,52(2):119-128.
    [166]Jayaweera M W, Kasturiarachchi J C, Kularatne R K A, et al. Contribution of water hyacinth (eichhornia crassipes (mart.) solms) grown under different nutrient conditions to fe-removal mechanisms in constructed wetlands [J]. Journal of Environmental Management.2008.87(3):450-460.
    [167]Ebel M, Evangelou M W H, Schaeffer A. Cyanide phytoremediation by water hyacinths (eichhornia crassipes) [J]. Chemosphere.2007,66(5):816-823.
    [168]Trapp S, Zambrano K C, Kusk K O, et al. A phytotoxicity test using transpiration of willows [J]. Archives of Environmental Contamination and Toxicology.2000,39(2):154-160.
    [169]Wu F Y, Sun E J. Effects of copper, zinc, nickel, chromium and lead on the growth of water convolvulus in water culture [J]. Process Safety and Environmental Protection.1998,21(1):63-72.
    [170]Falbo M B, Weaks T E. A comparison of eichhornia-crassipes (pontederiaceae) and sphagnum-quinquefarium (sphagnaceae) in treatment of acid-mine water [J]. Economic Botany.1990, 44(1):40-49.
    [171]魏树和,周启星,王新.超积累植物龙葵及其对镉的富集特征[J].2005,26(3):167-171.
    [172]Wei S H, Zhou Q X. Identification of weed species with hyperaccumulative characteristics of heavy metals [J]. Progress in Natural Science.2004,14(6):495-503.
    [173]魏树和,杨传杰,周启星.三叶鬼针草等7种常见菊科杂草植物对重金属的超富集特征[J].环境科学.2008,29(10):2912-2918.
    [174]Warington K. The influences of high concentrations of communion and sodium molybdates on flax, soybean and pea grown in nutraient solutions containing deficient or excess [J]. Annals of Applied Biology.1955,43):709-719.
    [175]戴全裕.水生高等植物对太湖重金属的监测及其评价[J].环境科学学报.1983,3(3):213-223.
    [176]吴玉树.水生维管束植物对水体Pb污染的反应抗性和净化作用[J].生态学报.1983,3(3):185-195.
    [177]戴全裕.水生高等植物对废水Ag的净化与富集特性研究[J].生态学报.1990.10(4):343-348.
    [178]Hale K L, McGrath S P, Lombi E, et al. Molybdenum sequestration in brassica species. A role for anthocyanins? [J]. Plant Physiology.2001,126(4):1391-1402.
    [179]Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry [J]. Biorecovery.1989,1(2):81-126.
    [180]Reeves R D, Baker A J M. Metal-accumulating plants. In:Raskin h, ensley b d, eds. phytoremediation of toxic metals:Using plants to clean up the environment [M]. New York:John Wiley & Sons,2000.
    [181]Baker A J M, Brooks R R, Pease A J, et al. Study on copper and cobalt tolerance in three closely related taxa with in the genus silencel (caryophy llaceae) from zaire [J]. Plant and Soil.1983,73(3):377-385.
    [182]Wenzel W W, Jockwer F. Accumulation of heavy metals in plants grown on mineralised soils of the austrian alps [J]. Environmental Pollution.1999,104(1):145-155.
    [183]Carvalho K M, Martin D F. Removal of aqueous selenium by four aquatic plants [J]. Journal of Aquatic Plant Management.2001,39:33-36.
    [184]Stout P R, Meagher W R, Pearson G A. et al. Molybdenum nutrition of crop plants I. The influence of phosphate and sulfate on the absorption of molybdenum from soils and solution cultures [J]. Plant and Soil. 1951,3(1):51-87.
    [185]Kannan S, Ramani S. Studies on molybdenum absorption and transport in bean and rice [J]. Plant Physiology.1978,62(2):179-181.
    [186]Forbes M G, Dickson K L, Saleh F, et al. Recovery and fractionation of phosphorus retained by lightweight expanded shale and masonry sand used as media in subsurface flow treatment wetlands [J]. Environmental Science & Technology.2005,39(12):4621-4627.
    [187]Fox P M, Doner H E. Wetlands and aquatic processes-trace element retention and release on minerals and soil in a constructed wetland [J]. Journal of Environmental Quality.2002,31(1):331-338.
    [188]Yu C, Xu S, Gang M, et al. Molybdenum pollution and speciation in nver river sediments impacted with mo mining activities in western liaoning, northeast china [J]. International Journal of Environmental Research.2011,5(1):204-206.
    [189]孙鸿烈,刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    [190]Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace-metals [J]. Analytical Chemistry.1979,51(7):844-851.
    [191]Otte M L, Wijte A H B M. Environmental variation between habitats and uptake of heavy-metals by urtica-dioica [J]. Environmental Monitoring and Assessment.1993,28(3):263-275.
    [192]Carapeto C, Purchase D. Use of sequential extraction procedures for the analysis of cadmium and lead in sediment samples from a constructed wetland [J]. Bulletin of Environmental Contamination and Toxicology.2000,64(1):51-58.
    [193]何燧源.环境化学[M].上海:华东理工大学出版社,2005.
    [194]Cheng S P, Grosse W, Karrenbrock F, et al. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals [J]. Ecological Engineering.2002,18(3):317-325.
    [195]王恩德,王丹丽,王毅.铁矿物形成过程中的细菌作用研究[J].岩石矿物学杂质.2001,20(4):414-418.
    [196]蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿、黄铜矿和磁黄铁矿的生物氧化作用研究[J].科学通报.2007,52(15):1802-1813.
    [197]Lu J J, Lu X C,Wang R C,et al. Pyrite surface after thiobacillus ferrooxidans leaching at 30 degrees c [J]. Acta Geologica Sinica-English Edition.2006,80(3):451-455.
    [198]练建军,许士国,十常武,等.重金属钼的迁移特性及人工湿地处理研究[J].环境保护科学.2010,36(6):7-10.
    [199]薛玉,张旭,李旭东,等.复合沸石吸氮系统控制暴雨径流污染[J].清华大学学报.2003,43(6):854-857.
    [200]Chan S Y. Tsang Y F, Chua H, et al. Performance study of vegetated sequencing batch coal slag bed treating domestic wastewater in suburban area [J]. Bioresource Technology.2008,99(9):3774-3781.
    [201]尹军,崔玉波.人工湿地污水处理技术[M].北京:化学工业出版社,2006.
    [202]Gersberg R M. Role of aquatic plants in wastewater treatment by artuficial wetlands [J]. Water Research. 1986,20(3):363.
    [203]李文奇,曾平,孙东亚.人工湿地处理污水技术[M].北京:中国水利水电出版社,2009.
    [204]Chalk. E, G W. The root-zone process at holtby sewage-treatment works [J]. Water and Environmental Journal.1989,3(2):201-211.
    [205]崔丽娟,张曼胤,李伟,等.湿地基质恢复研究[J].世界林业研究.2011,24(3):11-15.
    [206]崔理华,游艳萍,张新明,等.人工湿地磷吸附饱和基质的化学再生研究[J].生态环境学报.2010,19(5):1221-1225.
    [207]付融冰,杨海真,顾国维.人工湿地中沸石对铵吸附能力的生物再生研究[J].生态环境.2006,15(1):6-10.
    [208]刘鸿亮,金相灿,荆一凤.湖泊底泥环境疏浚工程技术[J].中国工程科学.1999,1(1):81-84.
    [209]Hetland M, Gallagher J, Daly D, et al. Processing of plants used to phytoremediate lead-contaminated sites [M]. San Diego, California:Battelle Press,2001.
    [210]Zhao F J, Lombi E, Breedon T, et al. Zinc hyperaccumulation and cellular distribution in arabidopsis halleri [J]. Plant Cell and Environment.2000,23(5):507-514.
    [211]Reijnders L. Disposal, uses and treatments of combustion ashes:A review [J]. Resources Conservation and Recycling.2005,43(3):313-336.
    [212]Stucki S, Jakob A. Thermal treatment of incinerator fly ash:Factors influencing the evaporation of ZnCl2 [J]. Waste Management.1997,17(4):231-236.
    [213]Koppolu L, Clements L D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part 1:Preparation of synthetic hyperaccumulator biomass [J]. Biomass & Bioenergy.2003,24(1):69-79.
    [214]Koppolu L, Agblevor F A, Clements L D. Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part ii:Lab-scale pyrolysis of synthetic hyperaccumulator biomass [J]. Biomass & Bioenergy.2003,25(6):651-663.
    [215]任春晖,高文革.阿司匹林的用途及发展[J].中华临床内科杂志.2004,12(6):1045-1046.
    [216]石晋丽,朱甘培.中国香薷属植物的药用及开发前景[J].中药材.1994,17(12):10-13.
    [217]李锋民,熊治廷,胡洪营.海州香薷对制的蓄积及制的毒性效应[J].环境科学.2003,24(3):30-34.
    [218]Hammer D, Kayser A, Keller C. Phytoextraction of cd and zn with salix viminalis in field trials [J]. Soil Use and Management.2003,19(3):187-192.
    [219]白云峰,周卫星,张志勇,等.凤眼莲的饲料资源化利用[J].生态学报.2009,30(4):103-105.
    [220]Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment:Opportunities and limitations [J]. Ecological Engineering.1999,12(1-2):5-12.
    [221]王世和.人工湿地污水处理理论与技术[M].北京:科学出版社,2007.
    [222]Moshiri G A. Wastewater treatment in constructed wetlands:system design, removal proeesses and treatment performance in eonstructed wetlands for water quality improvement [M]. Chelsea, Michigan: CRC 1993.
    [223]Buchberger S G, Shaw G B. An approach toward rational design of constructed wetlands for waste-water treatment [J]. Ecological Engineering.1995,4(4):249-275.
    [224]吴晓磊.人工湿地废水处理机理[J].环境科学.1995,16(3):83-86.
    [225]Picard C R, Fraser L H, Steer D. The interacting effects of temperature and plant community type on nutrient removal in wetland microcosms [J]. Bioresource Technology.2005,96(9):1039-1047.
    [226]Munoz P, Drizo A, Hession W C. Flow patterns of dairy wastewater constructed wetlands in a cold climate [J]. Water Research.2006,40(17):3209-3218.
    [227]郑少奎,张燕燕,杨志峰,等.低温下表面流人工湿地中氨氮型富营养化水体净化研究[J].环境科学.2006,27(10):2014-2018.
    [228]高廷耀,顾国维.水污染控制工程[M].北京:高等教育出版社,2004.
    [229]Wallace S, Parkin G, Cross C. Cold climate wetlands:Design & performance [C]. The 7th International Conference on Wetland Systems for Water Pollution Control Florida, Lake Buena Vista,2000:11-16.
    [230]Kuschk P, Wiessner A, Kappelmeyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate [J]. Water Research.2003, 37(17):4236-4242.
    [231]Lin Y F, Jing S R, Wang T W, et al. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands [J]. Environmental Pollution.2002,119(3):413-420.
    [232]雒维国,王世和,黄娟,等.潜流型人工湿地冬季污水净化效果[J].中国环境科学2006,26(suppl): 32-35.
    [233]Pezeshki S R, Delaune R D. Effects of soil oxidation-reduction conditions on internal oxygen transport, root aeration, and growth of wetland plants [C]. Proceedings of a Conference on Sustainability of Wetlands and Water Resources, USA:University of Mississippi,2000:139-145.
    [234]Bachand P A M, Horne A J. Denitrification in constructed free-water surface wetlands:Ii. Effects of vegetation and temperature [J]. Ecological Engineering.2000,14(1-2):17-32.
    [235]崔玉波,郭智倩,姜廷亮.低温下人工湿地去除营养物的机理与效能[J].西安建筑科技大学学报.2008,40(1):121-125.
    [236]Mahenge A S,Mbwette T S A, Niau K N. Phosphorus sorption behaviours and properties of mbeya-pumice [C]. Proceedings of an International Conference on Advances in Engineering and Technology,2006:185-194.
    [237]关艳艳,佘宗莲,周艳丽,等.人工湿地处理污染河水的研究进展[J].水处理技术.2010,36(10):10-15.
    [238]邢奕,钱大益,应高祥.应用耐冷菌株改善寒冷地区冬季人工湿地系统生物脱氮效果[J].北京科技大学学报.2007,29(suppl.2):53-57.
    [239]海热提,范立维,谢涛,等.两级潜流人工湿地在中国东北高寒地区的应用研究[J].环境科学2007,28(11):2442-2447.
    [240]李亚峰,刘佳,王晓东,等.垂直流人工湿地在寒冷地区的应用[J].沈阳建筑大学学报.2006,22(2):281-284.
    [241]杨洪涛.人工湿地对我国北方城市生活污水的深度处理[D]:大连:大连理工大学,2008.
    [242]雒维国,王世和,黄娟,等.潜流型人工湿地低温域脱氮效果研究[J].中国给水排水.2005,21(8):37-40.
    [243]张建,邵文生,何苗,等.潜流人工湿地处理污染河水冬季运行及升温强化处理研究[J].环境科学.2006,27(8):1560-1564.
    [244]刘学燕,代明利,刘培斌.人工湿地在我国北方地区冬季应用的研究[J].农业环境科学学报.2004,23(6):1077-1081.
    [245]Jenssen P, Maehlum T, Zhu T. Design and performance of subsurface flow constructed wetlands in norway [C]. Presented at Constructed Wetlands in Cold Climates:Design, Operation,Performance Symposium, Niagara-on-the-Lake, Ontario,1996:
    [246]鄢璐,王世和,钟秋爽,等.人工湿地强化运行措施研究[J].中国工程科学.2007,9(10):88-90.
    [247]张一丁,王本德,刘伟,等.利用人工湿地法解决哈尔滨信义沟水污染问题[J].长春工程学院学报.2005,6(1):20-21.
    [248]张虎成,俞穆清,贾春明.吉林西部建设人工湿地污水处理系统可行性研究[J].东北师大学报自然科学.2005,37(1):99-103.
    [249]陈晓东,常文越,王磊,等.北方人工湿地污水处理技术应用研究与示范工程[J].环境保护科学.2007,33(2):25-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700