用户名: 密码: 验证码:
锂离子电池正极材料LiFePO_4与Li_2FeSiO_4的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
该论文系统地对锂电池正极材料LiFePO4和Li2FeSiO4的合成、改性及其电化学性能进行了研究。
     采用液相共沉淀-碳热还原法合成了LiFePO4,首次研究了反应物溶液浓度对前躯体FePO4·xH2O和LiFePO4的影响。结果表明:反应物溶液浓度为0.1M、0.3M、0.5M、1.0M和1.5M时制备的FePO4·xH2O均为纯相,1.0M条件下合成的FePO4·xH2O含两个结晶水,即x=2。以反应物浓度为1.0M时合成的FePO4·xH2O为原料制备出的LiFePO4电化学性能最好,以O.1C倍率首次放电容量达159mAh·g-1,循环30次后容量保持率为99.7%。
     采用线性极化法和恒电位阶跃法,研究了LiFePO4在不同嵌锂状态下的动力学性能。结果表明LiFePO4材料的交换电流密度随嵌锂量的增加而增大,锂离子在LiFePO4材料中的扩散系数数量级为10-15-10-14cm2·s-1,体相掺杂能改变LiFePO4材料的交换电流密度和锂离子在LiFePO4材料中的扩散系数。
     通过Mg、Ni掺杂对LiFePO4进行了改性,对掺杂后的LiFePO4的晶形结构、表面形貌及电化学性能进行了系统地研究。结果表明,通过Mg、Ni掺杂后LiFePO4的橄榄石型结构没有发生变化,但颗粒的粒度均有所减小且分布较为均匀。虽然掺杂后的样品的首次充放电容量均有所减小,但其库仑效率和循环性能明显得到了提高。LiFePO4、LiMg0.02Fe0.98PO4、LiNi0.03Fe0.97PO4样品的首次放电容量分别为159、158和156mAh·g-1,在0.5C倍率条件下循环100次后放电容量分别为114、139和134 mAh·g-1;在1C倍率条件下循环50次后的放电容量分别为106、128和120 mAh·g-1。对LiMg0.02Fe0.98PO4和LiNi0.03Fe0.97PO4电极进行交流阻抗研究,发现LiMgo.02Feo.98PO4和LiNio.03Feo.97PO4电极的电化学阻抗减小。对LiMg0.02Fe0.98PO4和LiNi0.03Fe0.97PO4样品进行了循环伏安研究。结果表明氧化峰和还原峰的电位差分别减小到0.24V和0.29V,电极反应的可逆性得到了明显的提高。
     采用新型机械活化-高温固相法制备了铁位掺镍的Li2Fe1-xNixSiO4和铁位掺锰的Li2Fe1-xMnxSiO4/C复合材料。通过镍掺杂对Li2FeSiO4的结构、形貌和电化学性能的影响进行了系统地研究。研究表明:适量的镍掺杂对Li2FeSiO4材料基本结构不会有任何影响,产物的表面形貌得到了改善,颗粒形貌趋于规则,一定程度上提高了材料的充放电容量和循环性能,其中Li2Fe0.7Ni0.3SiO4样品放电容量和容量保持率最好。首次放电容量为118.7 mAh·g-1,循环30次后放电容量为103.5 mAh·g-1,容量保持率为87.2%。在C/8倍率下的首次放电容量和循环性能都有大幅度的下降,其首次放电容量为102.6 mAh·g-1,循环30次放电容量仅为74.9 mAh·g-1,容量衰减率为27%。同时,系统研究了掺锰量、焙烧温度、焙烧时间、Li/Si配比对Li2Fe1-xMnxSiO4/C复合材料物理性能及电化学性能影响,对优化合成条件下制备的Li2Fe1-xMnxSiO4/C材料的倍率性能及不同含量的蔗糖和葡萄糖为碳源的Li2Fe1-xMnxSiO4/C复合材料的电化学性能进行了系统地考察。结果表明:Li2Fe0.9Mn0.1SiO4/C材料最佳的合成条件为:Li/Si=2.04、合成温度为600℃、反应时间为16h。在最佳的合成条件下产品Li2Fe0.9Mn0.1SiO4/C具有最佳的电化学性能:以C/16倍率条件充放电,在1.5-4.8V电压区间首次放电比容量为149.8mAh·g-1,循环30次后的容量保持率仍有90.1%。随着碳含量的增加,Li2Fe0.9Mn0.1SiO4/C颗粒逐渐减小。与蔗糖相比,葡萄糖作为碳源合成的材料的粒径分布更均匀,颗粒的表面形貌更规则,葡萄糖掺入量为15%的样品具有较好的电化学性能,在0.1C倍率下的首次放电比容量为154.7mAh/g,循环30次后的容量保持率为92.2%。
     首次采用循环伏安(CV)和交流阻抗图谱法(EIS)对改性前后的Li2FeSiO4的嵌锂动力学过程进行了研究,并提出与之匹配的等效电路图。从动力学方面进一步阐明了材料改性前后的性能差异。
The synthesis, modification and electrochemical performance of rechargeable lithium batteries and cathode materials were reviewed in detail.
     The cathode material LiFePO4 for lithium ion battery was prepared by co-precipitation-carbothermal reduction reaction method. The effect of solution concentration on the FePO4·xH2O precursor and LiFePO4 was studied. The results show that no impurities exist in the FePO4·xH2O synthesized with solution concentration from 0.1M to 1.5M. LiFePO4/C made from FePO4·2H2O precursor under the condition that the solution concentration of 1M show excellent electrochemical performance. The initial discharge capacity of LiFePO4 prepared under the optimized condition was 159 mAh·g-1 at 0.1 C rate and capacity retention remains 99.7 % after 30 cycles.
     The kinetics behaviors of LiFePO4 material for lithium ion battery were investigated by means of linear sweep voltammetry and chronoamperometry. It is shown that with lithium interaction into LiFePO4 material, the exchange current density was increased gradually. Meanwhile, the level of diffusion coefficient (DLi+) for LiFePO4 material is between 10-15 cm2·s-1 and 10-14 cm2·s-1.And doping has something with the exchange current density and diffusion coefficient (DLi+).
     The modification of LiFePO4 by Mg and Ni doping was investigated. The crystal structure, surface morphology and electrochemical properties of LiFePO4 were systematically researched. The results indicated that the structure of the material wasn't changed after Mg and Ni doping. Appropriate amount of Mg and Ni doping can get the particle size of LiFePO4 smaller and uniform distribution. Apparently, the initial charge and discharge capacity of LiFePO4 samples went down but the corresponding coulombic efficiency and cycling performance were enhanced. The discharge capacity of LiFePO4, LiMgo.o2Fe0.98P04, and LiNi0.03Fe0.97PO4 were 159,158 and 156 mAh·g-1, respectively. And, the capacity was respectively kept 114,139 and 134 mAh·g-1 at 0.5 C after 100 cycles and the capacity retained 106,128 and 120 mAh·g-1 cycling at 1 C after 50 cycles. The Mg-doped and Ni-doped LiFePO4 samples were discussed by AC impedance and the Rct value of LiMg0.02Fe0.98PO4 and LiNi0.03Fe0.97PO4 was decreased. The potential difference between the oxidation potential and the reduction potential of LiMgo.o2Fe0.98PO4 and LiNi0.03Fe0.97PO4 were decreased to 0.24V and 0.29V respectively, resulting in the obvious enhancement of the reversibility of electrode reaction.
     Li2FeSi04 materials doped with Ni and Mn were synthesized via a novel mechanical activation-high temperature solid state method. The effect of Ni doping on physical structure and electrochemical performance of Li2FeSiO4 was investigated. The results were shown that appropriate Ni doping was unable to influence the structure of product. And then, the morphology of product tended to be regular, increasing the charge-discharge capacity and improving the cycle performance. Li2Fe0.7Ni0.3SiO4 shows the highest discharge capacity and the best cyclying stability. The initial discharge capacity was 118.7 mAh·g-1 and capacity retention remains 87.2% after 30 cycles. The effect of Mn doping, sintering temperature, sintering time and Li/Si ratio on Li2Fe1-xMnxSiO4/C's performance were systematically researched. The cycle performance of Li2Fe1-xMnxSiO4/C prepared at 600℃for 16h and a Li/Si moral ratio of 2.04 as the optimum condition and the electrochemical properties of Li2Fe0.9Mn0.1SiO4/C synthetized using sucrose and glucose as carbon source and reductant. It delivered an initial capacity of 149.8mAh/g between 1.5V and 4.8V at C/16 rate and a capacity retention ratio of 90.1% after 30 cycles. The cycle performance of Li2Fe0.9Mn0.1SiO4/C became worse with increasing the discharge rate and capacity remains 74.9 mAh·g-1 after 30 cycles. Simultaneously, Li2Fe0.9Mn0.1SiO4/C with different content of sucrose and glucose were prepared. The grain size of Li2Fe0.9Mn0.1SiO4/C decreased with the increase of carbon content. Compared with Li2Fe0.9Mn0.1SiO4/C using sucrose as carbon source, Li2Fe0.9Mn0.1SiO4/C using glucose displayed smaller particles and more homogeneous distribution. the sample with 15%(wt,%) glucose exhibited excellent performance, with an initial discharge capacity of 154.7mAh/g and a capacity retention rate of 92.2% after 30 cycles.
     The lithium deintercalation-intercalation kinetics of modified Li2FeSiO4 materials were investigated by cyclic voltammetry, electrochemical impedance spectroscopy methods, and a fitting equivalent circuit diagram was raised. The results further proved the modified Li2FeSi04 had better electrochemical performance than the pristine one.
引文
[1]郭炳焜,李新海,杨松青.化学电源—电池原理及制造技术[M].长沙:中南工业大学出版社,2000:145-148.
    [2]郭炳焜,徐徽,王先友,等.锂离子电池(第一版)[M].长沙:中南大学出版社,2000:74-80.
    [3]吴川,吴锋,陈实.锂离子电池正极材料的研究进展[J].电池,2000,30(3):36-38.
    [4]M Yoshio, H Tanaka, K Tominaya, H Noguchi. Synthesis of LiCoO2 from cobalt-organic acid complexes and its electrode behavior in a lithium secondary battery[J]. Journal of Power Sources,1992,40(3):347-353.
    [5]M M Thackeray. Structural considerations of layered and spinel lithiated oxides for lithium ion battery[J]. Journal of the Electrochemical Society,1995,142(8): 2558-2563.
    [6]A Rougier, P Gravereau, C Delmas. Optimization of composition of the Li1-zNi1+zO2 electrode material:Structural, magnetic and electrochemical studies [J]. Journal of the Electrochemical Society,1996,143(4):1168-1175.
    [7]T Ohzuku, M Kitagawa, T Hiral. Electrochemistry of manganese dioxide in lithium nonaqueous cell[J]. Journal of the Electrochemical Society,1990,137(3): 769-775.
    [8]T A Chirayil, P Y Zavalij, M S Whitetingham. Anew vanadium dioxide cathode[J]. Journal of the Electrochemical Society,1996,143(9):193-195.
    [9]H Fujimoto, A Mabuchi, K Tokumitsu, et al. Effect of crystallite size on the chemical compostion of the stage 1:alkali metal-graphite intercalation compounds [J]. Carbon,1994,32(4):193-198.
    [10]A Mabuchi. Charge-discharge characteristics of the mesocarbon micrbeads heat-treated at different temperatures[J]. Journal of the Electrochemical Society, 1995,142(4):1041-1046.
    [11]J O Besenhard, M Wachtler, M Winter, R Andreaus, I Rom, W Sitte. Kinetics of Li insertion into polycrystalline and nanocrystalline'SnSb'alloys investigated by transient and steady state techniques[J]. Journal of Power Sources,1999, 81-82:268-272.
    [12]H Li, X Huang, L Chen. Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries[J]. J. Power Sources, 1999, (81-82):340-345.
    [13]Y Idota, T Kubota, A Matsufuji, et al. Tin-based amorphous oxide:a high-capacity lithium-ion-storage material [J]. Science,1997,276:1395-1397.
    [14]J Chouvin, C Branci, J Sarradin, et al. Lithium intercalation in tin oxide. Journal of Power Sources,1999,81-82:277-281.
    [15]吴宇平,万春荣,姜长印,等.锂电池非水电解质盐的制备LiPF6[J].电源技术,1999,23:99-101.
    [16]黄小倩,张培新,许启明,等.不同碳源对LiFePO4/C复合材料性能的影响[J].功能材料,2008,36(7):1154-1157.
    [17]E S Takeuchi, H Gan, M Palazzo, et al. Anode passivation and electrolyte solvent disproportionation:mechanism of ester exchange reaction in lithium-ion batteries [J]. Journal of the Electrochemical Society,1997,144(6):1944-1948.
    [18]M C Smart, B V Ratnakumar, S Surampudi, et al. Irreversible capacities of graphite in low temperature electrolytes for lithium-ion batteries[J]. Journal of the Electrochemical Society,1999,146(11):3963-3969.
    [19]任学佑.锂离子电池及其发展全景[J].电池,2000,30(1):36-38.
    [20]M Eudo, C Kim, K Nishimura. Recent development of carbon materials for li ion batteries[J]. Carbon,2000,138(2):183-197.
    [21]M Winter, J O Besenhard, O Besenhard. Insertion electrode materials for rechargeable lithium batteries[J]. Processes Advanced Materials and Processes, 1998,10:742-745.
    [22]P Poizot, S Laruelle, S Grugeon. Nano-sized transition-metal oxides as negative electrode materials for lithium ion batteries[J]. Nature,2000,407:496-499.
    [23]B Boone, Owens. Solid state electrolytes; overview of materials and applications during the last third of the Twentieth Century[J]. Journal of Power Sources,2000, 90:2-8.
    [24]Jacek Lipkowski, Philip N Ross. The Electrochemistry of novel materials[M]. New York:VCH,1994:116.
    [25]刘建睿,王猛,尹大川,等.锂离子蓄电池正极材料锂钒氧化物研究进展[J].电源技术,2001,25(3):308-311.
    [26]张胜利,余仲宝,韩周群.锂离子电池的研究与进展[J].电池工业,1999,4(1):26-28.
    [27]K Miura, A Yamada, M Tanaka. Electric states of spinel LixNi2O4 as a cathode of the rechargeable battery[J]. Electrochimica Acta,1996,41:249-256.
    [28]周恒辉,慈云祥,刘昌炎.锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94.
    [29]Y X Li, C Y Jiang, C R Wan, et al. Research and development status lithium-ion battery[J]. China international battery fair,1999,99(6):202-226.
    [30]K Mizushima, P C Jones, P J Wiseman. LixCoO2(0    [31]K Kubo, M Fujiwara, S Yanana, et al. Synthesis and electrochemical properties for LiNiO2 substituted by other elements[J]. Journal of Power Sources,1997,68: 553-557.
    [32]M Broussely, F Perton, J Labat. Li/LixNiO2 and rechargeable system: comparative study and performance of practical cells[J]. Journal of Power Sources,1993,43-44:209-216.
    [33]Z H Lu, X J Huang, H Huang, et al. The phase transition and the optical synthesis temperature of LiNiO2[J]. Solid State Ionics,1993,120:103-107.
    [34]T Ohzuku, H Komori. New route to prepare lithium nickel dioxide for 4volts secondary lithium cells[J]. Chemistry Express,1992,7:689-694.
    [35]A D Wadsley. Crystal chemistry of nonstoichiometric quinquevalent vanadium oxides:crystal structure of Li1+xV3O8[J]. Acta Crystallogram,1957,10: 261-267.
    [36]A L Picciotto, M M Thackeray, G Pictoia. An electrochemical study of the lithium vanadate system Li1+xV2O4 and Li1-xVO2[J]. Solid State Ionics,1988,30: 1364-1370.
    [37]G T K Fey, W Li, J R Dahn. LiNiVO4: a 4.8-volt electrode material for lithium cells[J]. Journal of the Electrochemical Society,1994,141(9):2279-2282.
    [38]G Pistoia, M Pasquali, A L Picciotto, et al. Further electrochemical studies on Li/LiV2O4 secondary cells [J]. Journal of Power Sources,1991,34:199-200.
    [39]K Shiraishi, K Dokko, K Kanamura. Formation of impurities on phospho-olivine LiFePO4 during hydrothermal synthesis[J]. Journal of Power Sources,2005,8(2): 555-558.
    [40]L Z Hua, Z D Ming, Y F Xia. Developments of lithium-ion batteries and challenges of LiFePO4 as one promising cathode material[J]. Journal of Materials Science,2009,2(2):2435-2443.
    [41]A K Padhi, K S Nanjundaswamy, J B Goodenough. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. Journal of the Electrochemical Society,1997,144(4):1188-1194.
    [42]A Yamada, S C Chung, K Hinokuma. Optimized LiFePO4 for lithium battery cathodes[J]. Journal of the Electrochemical Society,2001,148(3):224-229.
    [43]G Arold, J Garche, R Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. Journal of Power Sources,2003,119-121:247-251.
    [44]C Yada, Y Iriyama, S K Jeong, et al. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition[J]. Journal of Power Sources,2005, 8(1-2):559-564.
    [45]薛明喆,傅正文.脉冲激光沉积LiFePO4阴极薄膜材料及其电化学性能[J].物理化学学报,2005,21(7):707-710.
    [46]S L Bewlay, K Konstantinov, G X Wang, et al. Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source[J]. Materials Letters, 2004,4(11):1788-1791.
    [47]M Takahashi, S Tobishima, K Takei, et al. Characterization of LiFePO4 as the cathode material for rechargeable lithium batteries [J]. Journal of Power Sources, 2001,97-98:508-511.
    [48]唐致远,高飞,薛建军,等.锂离子电池正极材料LiFePO4的制备及电化学性能研究[J].天津大学学报,2007,40(4):468-472.
    [49]黄兰香,史鹏飞,吴仕明.高性能LiFePO4材料的研究[J].化工新型材料,2007,35(10):50-52.
    [50]高飞,唐致远,薛建军.喷雾干燥-高温固相法制备纳米LiFePO4与LiFePO4/C材料及性能研究[J].无机化学学报,2007,23(9):1603-1608.
    [51]李军,黄慧民,魏关锋,等.改进固相法制备LiFePO4/C正极材料及其性能[J].化工新型材料,2007,35(6):46-48.
    [52]K S Park, J T Son, H T Chung, et al. Synthesis of LiFePO4 by coprecipitation and microwave heating[J]. Electrochemistry Communication,2003,5(10):839-842.
    [53]H Masashi, K Keiichi, A Yasuo, et al. Synthesis of LiFePO4 cathode material by microwave processing[J]. Journal of Power Sources,2003,119-121:258-261.
    [54]李琪,宋洋,周明堂,等.微波法合成掺杂型磷酸亚铁锂[J].辽宁石油化工大学学报,2006,26(4):32-37.
    [55]王志高,李建玲,王新东.LiFePO4/C的微波法制备和性能[J].电池,2006,36(2):142-143.
    [56]李于华,金头男,杨丽娟,等.锂离子电池正极材料LiFePO4的微波合成及结构表征[J].分子科学学报,2005,21(5):14-18.
    [57]S Franger, F Le Cras, B Bourbon, et al. LiFePO4 synthesis routes for enhanced electrochemical performance[J]. Journal of the Electrochemical Society,2002, 5(10):231-233.
    [58]刘旭恒,赵中伟,李洪桂.锂离子蓄电池正极材料LiFePO4的改性研究[J].电源技术,2008,32(5):296-298.
    [59]F Croce, A D Epifanio, J Hassoun, et al. A novel concept for the synthesis of an improved LiFePO4 liuthium battery cathode[J]. Electrochemical and Solid-State Letters,2002,5(3):A47-A50.
    [60]雷敏,应皆荣,姜长印,等.高密度球形LiFePO4的合成及性能[J].电源技术,2006,30(1):11-13.
    [61]童汇,胡国华,胡国荣,等.锂离子电池正极材料的合成研究[J].无机化学学报,2006,22(12):2159-2164.
    [62]徐峙晖,赖琼钰,吉晓洋.用碳热还原法合成LiFePO4及其电化学性能研究[J].四川大学学报(工程科学版),2005,37(4):77-80.
    [63]朱炳权,李新海,张宝,等.改进的碳热还原法制备正极材料LiFePO4/C[J].电池,2005,35(6):445-447.
    [64]陈召勇,胡国荣,肖劲,等.第12届国际锂电池会议评述[J].电池,2004,34(4):255-258.
    [65]Y A Chihiro, I Yasutoshi. Electrochemical properties of LiFePO4 thin films prepared by pulsed laser deposition[J]. J. Power Sources,2005,146:559-564.
    [66]陈赞华,杨勇.一氧化碳还原法制备磷酸铁锂—反应机理和动力学[J].电化学,2008,14(4):388-393.
    [67]H Huang, S C Yin, L F Nazar. Approaching theoretical capacity of a LiFePO4 at room temperature at high rates[J]. Electrochemical and Solid State Letters,2001, 4(10):A170-A172.
    [68]J Yang, X J John. Synthesis and characterization of carbon-coated lithium transition metal phosphates LiMPO4(M=Fe, Mn, Co, Ni) prepared via a nonaqueous sol-gel route[J]. Journal of the Electrochemical Society,2006, 153(4):716-723.
    [69]Y Q Hu, M M Doeff, R Kostecki, R Finones. Electrochemical performance of sol-gel synthesized LiFePO4 in lithium batteries[J]. Journal of the Electrochemical Society,2004,151(8):1279-1285.
    [70]麻明友.锂离子电池正极材料LiFePO4/C的制备与表征[J].吉首大学学报(自然科学版),2004,25(3):64-67.
    [71]徐峙晖,徐亮,赖琼钰,等.改进Sol-gel法合成LiFePO4正极材料及其电化学性能[J].四川大学学报(工程科学版),2006,38(5):112-116.
    [72]Y S Feng, S Y Ning, N Katana, et al. Performance of LiFePO4 as lithium battery cathode and comparison with manganese and vanadium oxides[J]. Journal of Power Sources,2003,119-121:239-246.
    [73]S Yang, P Y Zabalij, M S Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Coummunications,2001,3(9):505-508.
    [74]M C Tucker, M M Doeff, T J Richardson, et al.7Li and 31P magic angle spinning nuclear magnetic resonance of LiFePO4 type materials[J]. Electrochemical and Solid-State Letters,2002,5(5):A95-A98.
    [75]A K Padhi, K S Nanjundaswamy, C Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. J. Electrochem.Soc,1998,144(5): 1609-1613.
    [76]张俊玲.水热合成磷酸铁锂粉体的形貌控制[J].化工新型材料,2008,36(6):73-75.
    [77]李会林,詹晖,周运鸿.分散剂PVA对水热反应制备L iFePO4性能的影响[J].电化学,2006,12(3):262-265.
    [78]P P Prosini, M L, D Zane, et al. Determination of the chemical diffusion coefficient of lithium in LiFePO4[J]. Solid State Ionics,2002,148:3517-3523.
    [79]P P Prosini, D Zane, M Pasquali. Improved electrochemical performance of a LiFePO4-based composite cathode[J]. Electrochimica Acta,2001,46: 3517-3523.
    [80]G Arnold, J Garche, R Hemmer, et al. Fine-particle lithium iron phosphate LiFePO4 synthesized by a new low-cost aqueous precipitation technique[J]. Journal of Power Sources,2003,119-121:247-251.
    [81]沈湘黔,占云,周建新,景茂祥.共沉淀-焙烧法制备LiFePO4[J].功能材料,2006,37(8):1198-1200.
    [82]韩恩山,冯智辉,魏子海,等.共沉淀法合成磷酸铁锂掺碳复合正极材料[J].无机盐工业,2008,40(1):22-25.
    [83]杨蓉,赵铭姝,杜宝中,等.共沉淀法制备正极材料LiFePO4的研究[J].稀有金属材料与工程,2007,36(2):631-634.
    [84]徐峙晖,赖琼钰,吉晓洋.微乳液法合成LiFePO4/C正极材料及其电化学性 能[J].无机化学学报,2006,22(9):1610-1613.
    [85]X Xin, W Z Xiang, C L Quan. Regeneration and characterization of air-oxidized LiFePO4[J]. Electrochemistry Communications,2008,10(10):1442-1444.
    [86]Y Sundarayya, K C Kumara Swamy, C S Sunandana. Oxalate based non-aqueous sol-gel synthesis of phase pure sub-micron LiFePO4[J]. Materials Research Bulletin,2007,11(11):1942-1948.
    [87]G X Guang, H G Rong, P Z Dong, et al. LiFePO4 cathode power with high energy density synthesized by water quenching treatment[J]. Electrochimica Acta,2009,2(21):4777-4782.
    [88]H Y Hui, R H Bo, Y S Yu, et al. Synthesis of LiFePO4/C composite with high-rate performance by starch sol assisted rheological phase method[J]. Journal of Power Sources,2010,1(2):610-613.
    [89]X Z Bing M M You. Preparation and characterization of LiFePO4 thin films as cathode materials for lithium ion battery[J]. Transactions of Nonferrous Metals Society of China,2006,16(z2):273-278.
    [90]S J Ho, W A Henderson, S Scaccia, et al. Solid-state Li/LiFePO4 polymer electrolyte batteries incorporating an ionic liquid cycled at 40℃[J]. Journal of Power Sources,2006,9(2):560-566.
    [91]N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources,2001,97-98:503-507.
    [92]Z Chen, J R Dahn. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy[J]. Journal of the Electrochemical Society,2002, 149(9):A1184-A1189.
    [93]N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources,2001,97-98:503-507.
    [94]王桂香,张西慧,韩恩山,等.不同碳源掺杂磷酸亚铁锂正极材料电化学性能研究[J].无机盐工业,2008,40(8):35-37.
    [95]谢辉,周震涛.碳掺杂方式对磷酸铁锂电化学性能的影响[J].电源技术,2006,30(11):908-910.
    [96]唐致远,阮艳莉.不同碳源对LiFePO4/C复合正极材料性能的影响[J].化学学报,2005,63(16):1500-1504.
    [97]张宝,罗文斌,李新海,等LiFePO4/C锂离子电池正极材料的电化学性能[J].中国有色金属学报,2005,15(2):300-303.
    [98]谢辉,刘建庄.复合材料LiFePO4/C的制备及电性能研究[J].湖南人文科技 学院学报,2008,2:19-21.
    [99]张冬云,袁秋华,张培新,等.柠檬酸包覆合成LiFePO4/C工艺的优化[J].功能材料,2009,40(5):763-766.
    [100]王伟,焦丽芳,袁华堂.聚苯胺掺杂对C-LiFePO4复合正极材料性能的影响[J].电化学,2008,14(2):146-149.
    [101]K S Park, J T Son, H T Chung, et al. Synthesis of LiFePO4 by co-precipitation and microwave heating[J]. Electrochemistry Communications,2003,10(10): 839-842.
    [102]韩翀,沈湘黔,周建新.LiFePO4/Ni复合微球的制备[J].硅酸盐学报,2008,36(4):559-564.
    [103]张亚利,高立军.LiFePO4/Cu复合正极材料的制备及电化学性能[J].有色金属,2008,(3):48-50.
    [104]S Y Chung, J T Blocking, Y M Chiang. Electronically conductive Phospho-olivinnes as lithium storage electrodes[J]. Nature Mater,2002,2: 123-128.
    [105]D Y Zhang, L Zhang, P X Zhang, et al. Modification of LiFePO4 by Citric Acid Coating and Nb5+ Doping[J]. Advanced Materials Research,2010,15: 167-173.
    [106]仇卫华,赵海雷.Mn掺杂对LiFePO4材料电化学性能的影响[J].电池,2003,33(3):134-135.
    [107]W Z Xiang, C L Quan, H X Jie, et al. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations[J]. Physical Review B,2003,68(19):1951-1958.
    [108]胡环宇,仇卫华,李发喜,等.正极材料LiFePO4的电化学性能的改进[J].北京科技大学学报,2003,12(6):549-551.
    [109]倪江锋,周恒辉,陈继涛等.铬离子掺杂对LiFePO4电化学性能的影响[J].物理化学学报,2004,20(6):582-586.
    [110]陈猛,张维维.Co改性LiFeCoPO4材料的结构与性能[J].电池工业,2008,13(5):295-298.
    [111]郑明森,刘善科,孙世刚,等.Cu2+掺杂LiFePO4的制备及其电化学性能[J].电化学,2008,14(1):1-5.
    [112]张宝,李新海,罗文斌,等.LiFe1-xMgxPO4锂离子电池正极材料的电化学性能[J].中南大学学报,2006,37(6):1094-1097.
    [113]胡成林,代建清,戴永年,等.Ti离子掺杂对LiFePO4材料性能的影响[J]. 材料导报,2007,21(7):147-149.
    [114]文衍宣,郑绵平,童张法,等.掺杂元素对锂离子电池正极材料LiFePO4的影响[J].无机盐工业,2005,37(4):12-14.
    [115]王晓琼,李新海,王志兴,等.LiFePO4掺镍的改性研究[J].电池,2005,35(5):371-373.
    [116]陈宇,王忠丽,于春洋,等.掺杂Mo的LiFePO4正极材料的电化学性能[J].物理化学学报,2008,24(8):1498-1502.
    [117]L S Hua, T Z Long, L J Biao, et al. Physical and electrochemical properties of La-doped lithium iron phosphate electrodes[J]. Rare Metal Material and Engineering,2007,36(8):1366-1369.
    [118]鲁道荣,吴彬,谭晓艳.Zn2+掺杂对锂离子电池正极材料LiFePO4性能的影响[J].金属功能材料,2008,15(6):26-29.
    [119]章明,焦丽芳,袁华堂.Mo03氧化物掺杂改善LiFePO4/乙炔黑电化学性能研究[J].无机化学学报,2006,22(5):839-844.
    [120]倪江锋,周恒辉,陈继涛,等.金属氧化物掺杂改善LiFePO4电化学性能[J].无机化学学报,2005,21(4):472-476.
    [121]唐致远,焦延峰,陈玉红,等.金属氧化物掺杂改善LiFePO4电化学性能[J].电源技术,2007,31(12):951-952.
    [122]周鑫,赵新兵,余红明,等.F掺杂LiFePO4/C的固相合成及电化学性能[J].无机材料学报,2008,23(3):587-591.
    [123]A Nyten, A Ali, M Armand, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material[J]. Electrochemistry Communications,2005, 7(2):156-160.
    [124]A Nyten, M Stjerndahl, H Rensmo, et al. Surface characterization and stability phenomena in Li2FeSiO4 studied by PES/XPS[J]. Journal of Materials Chemistry,2006,16(34):3483-3488.
    [125]A Nyten, S Kamali, L Haggstrom, et al. The lithium extraction/insertion mechanism in Li2FeSiO4[J]. Journal of Materials Chemistry,2006,16(23): 2266-2272.
    [126]A Nyten, T Gustafsson, J Thomas. The Li2FeSiO4 structure under battery cycling[J]. Acta Cryst,2007, A63:190-191.
    [127]E David, S Marten, A Nyten. A comparative XPS surface study of Li2FeSiO4/C cycled with LiTFSI-and LiPF6-based electrolytes[J]. Journal of Materials Chemistry,2009,19(1):82-88
    [128]M E Arroyo y de Dompablo, J M Gallardo-Amores, J Garcia-Martinez, et al. Is it possible to prepare olivine-type LiFeSiO4? A joint computational and experimental investigation[J]. Solid State Ionics,2008,179:1758-1762
    [129]K Zaghib, S A Ait, N Ravet, et al. Structural, magnetic and electrochemical properties of lithium iron orthosilicate [J]. Journal of Power Sources,2006, 160(2):1381-1386
    [130]D M E Arroyo-de, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:an exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications,2006,8(8):1292-1298
    [131]A Kokalj, R Dominko, G Mali, et al. Beyond One-Electron Reaction in Li Cathode Materials:Designing Li2MnxFe1-xSiO4[J]. Chemistry of Materials, 2007,19(15):3633-3638
    [132]M E Arroyo, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni) [J]. Electrochemistry Communications,2006,8:1292-1298.
    [133]C Deng, S Zhang, S Y Yang. Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel method[J]. Journal of Alloys and Compounds, 2009,487(1-2):L18-L23.
    [134]A Kokalj, R Dominko, G Mali, et al. Beyond One-Electron Reaction in Li Cathode Materials:Designing Li2MnxFe1-xSiO4[J]. Chemistry of Materials, 2007,19:3633-3640.
    [135]A Boulineau, C Sirisopanaporn, R Dominko, et al. Polymorphism and structural defects in Li2FeSiO4[J]. Dalton Transactions,2010, (27):6310-6316.
    [136]F Zhou, M Cococcioni, K Kang, et al. The Li intercalation potential of LiMPO4 and LiMSiO4 olivines with M=Fe, Mn, Co, Ni[J]. Electrochemistry Communications,2004,6:1144-1148.
    [137]向楷雄,郭华军,李新海,等.合成温度对Li2FeSiO4/C电化学性能的影响[J].功能材料,2008,39(9):1455-1457.
    [138]左朋建,王振波,尹鸽平,等.锂离子电池聚阴离子型硅酸盐正极材料的研究进展[J].材料导报,2009,23(11):28-31.
    [139]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展, 2005,17(4):604-613.
    [140]S I Nishimura, S Hayase, R Kanno, et al. Structure of Li2FeSi04[J]. Journal of the American Chemical Society,2008,130(40):13212-13213.
    [141]A K Padhi, K S Nanjundaswamy, C Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates[J]. Journal of the Electrochemical Society,1997,144(5):1609-612.
    [142]P Larsson, R Ahujia, A Nyten, et al. An ab initio study of the Li-battery cathode material Li2FeSi04[J]. Electrochemistry Communications,2006,8(5): 797-800.
    [143]G H Jun, X K Xiong, C Xuan, et al. Preparation and characteristics of Li2FeSiO4/C composite for cathode of lithium ion batteries[J]. Transactions of Nonferrous Metals Society of China,2009,19:166-169.
    [144]任冰,许云华,杨蓉,等.固相法合成锂离子电池正极材料Li2FeSi04[J].热加工工艺,2009,38(14):41-43.
    [145]L L Ming, G H Jun, L X Hai, et al. Effects of roasting temperature and modification on properties of Li2FeSiO4/C cathode[J]. Journal of Power Sources,2009,189:45-50.
    [146]R Dominko. Li2MSi04 (M=Fe and/or Mn) cathode materials[J]. Journal of Power Sources,2008,184:462-468.
    [147]S Q Wua, Z Z Zhu, Y Yang, et al. Structural stabilities, electronic structures and lithium deintercalation in LixMSiO4 (M=Mn, Fe, Co, Ni):A GGA and GGA+ U study[J]. Computational Materials Science,2009,44:1243-1251.
    [148]Z L Gong, Y X Li, Y Yang. Nanostructured Li2FeSiO4 electrode material synthesized through hydrothermal-assisted sol-gel process[J]. Electrochemical and Solid-state Letters,2008,11(5):A60-A63.
    [149]R Dominko, D E Conte, D Hanzel, et al. Impact of systhesis conditions on the structure and performance of Li2FeSiO4[J]. Journal of Power Sources,2008, 178(2):842-847.
    [150]胡国荣,曹雁冰,彭忠东,等.微波合成法制备锂离子电池正极材料Li2FeSiO4[J].物理化学学报,2009,25(5):1004-1008.
    [151]彭忠东,曹雁冰,胡国荣,等.锂离子电池正极材料Li2FeSiO4/C的微波合成[J].中国有色金属学报,2009,19(8):1449-1454.
    [152]P Z Dong, C Y Bing, H G Rong, et al. Microwave synthesis of Li2FeSi04 cathode materials for lithium-ion batteries[J]. Chinese Chemical Letters,2009, 20:1000-1004.
    [153]A S Andersson, J O Thomas. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97-98:498-502.
    [154]R Dominko, M Bele, M Gaberscek, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials [J]. Electrochemistry Communications,2006,8(2):217-222.
    [155]R Dominko, I Arcon, A Kodre, et al. In-situ XAS study on Li2MnSiO4 and Li2FeSi04 cathode materials[J]. Journal of Power Sources,2009,189:51-58.
    [156]J Moskon, R Dominko, R C Korosec, et al. Morphology and electrical properties of conductive carbon coatings for cathode materials[J]. Journal of Power Sources,2007,174:683-688.
    [157]Z L Gong, Y X Li, Y Yang. Synthesis and Characterization of Li2MnxFe1-xSiO4 as a Cathode Material for Lithium-ion Batteries[J]. Electrochemical and Solid-state Letters,2006,9(12):A542-A544.
    [158]N Ravet, Y Chouinard, J F Magnan, et al. Electroactivity of natural and synthetic triphylite[J]. Journal of Power Sources,2001,97-98:503-507.
    [159]A S Andersson, B Kalska, L Haggstrom, et al. Lithium extraction/insertion in LiFePO4:an X-ray diffraction and Mossbauer spectroscopy study[J]. Solid State Ionics,2000,130(1-2):41-52.
    [160]A K Padhi, K S Nanjundaswamy, C Masquelier, et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation [J]. Journal of the Electrochemical Society,1997,144(8): 2581-2586.
    [161]M Takahashi, S-i Tobishima, K Takei, Y Sakurai. Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries[J]. Solid State Ionics, 2002,148(3-4):283-289.
    [162]M C Tucker, M M Doeff, T J Richardson, et al. Hyperfine Fields at the Li Site in LiFePO4-Type Olivine Materials for Lithium Rechargeable Batteries:A 7Li MAS NMR and SQUID Study[J]. Journal of the American Chemical Society, 2002,124(15):3832-3833.
    [163]吕正中,周震涛.LiFePO4/C复合正极材料的结构与性能[J].电池,2003,33(5):269-271.
    [164]I Belharouak, C Johnson, K Amine. Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4[J]. Electrochemistry Communications, 2005,7(10):983-988.
    [165]S F Yang, P Y Zavalij, M S Whittingham. Hydrothermal synthesis of lithium iron phosphate cathodes[J]. Electrochemistry Communications,2001,3(9):505-508.
    [166]S Franger, F Le Cras, C Bourbon, H Rouault. LiFePO4 synthesis routes for enhanced electrochemical performance[J]. Electrochemical and Solid State Letters,2002,5(10):A231-A233.
    [167]K Dokko, K Shiraishi, K Kanamura. Identification of surface impurities on LiFePO4 particles prepared by a hydrothermal process[J]. Journal of the Electrochemical Society,2005,152(11):2199-A2202.
    [168]K F Hsu, S Y Tsay, B J Hwang. Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods[J]. J. Power Sources,2005,146(1-2):529-533.
    [169]L Wang, Y Huang, R Jiang, D Jia. Preparation and characterization of nano-sized LiFePO4 by low heating solid-state coordination method and microwave heating[J]. Electrochimica Acta,2007,52(24):6778-6783.
    [170]J D Wilcox, M M Doeff, M Marcinek, R Kostecki. Factors influencing the quality of carbon coatings on LiFePO4[J]. Journal of the Electrochemical Society,2007, 154(5):A389-A395.
    [171]张鉴清.电化学测试技术[M].北京:化学工业出版社,2010:154.
    [172]P Liu, H Q Wu. Diffusion of lithium in carbon[J]. Solid State Ionics,1996,92: 91-97.
    [173]C Bohnke, O Bohnke, J L Fourquet. Electrochemical intercalation of lithium into LiLaNb2O7[J]. Journal of the Electrochemical Society,1997,144(4): 1151-1158.
    [174]M Umeda, K Dokko, Y Fujita, et al. Elcetrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part Ⅰ: Graphitized carbon[J]. Electrochimica Acta,2001,47:885-890.
    [175]M Umeda, K Dokko, Y Fujita, et al. Elcetrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode part Ⅱ: Disordered carbon[J]. Electrochimica Acta,2001,47:933-938.
    [176]E Deiss. Spurious potential dependence of diffusion coefficients in Li+ insertion electrodes measured with PITT[J]. Electrochimica Acta,2002,47:4027-4034.
    [177]J M McGraw, C S Bahn, P A Parilla, et al. Li ion diffusion measurements in V2O5 and Li(Co1-xAlx)O2 thin-film battery cathodes[J]. Electrochimica Acta, 1999,45:187-196.
    [178]S C Chung, Y M C hiang.Microscale Measurement of the electrical conductivity of doped LiFePO4[J]. Electrochemical and Solid-State Letters,2003,6(12): 278-281.
    [179]方俊鑫,殷之文.电介质物理学[M].北京:科学出版社,1989:74.
    [180]A Kokal, R Dominko, G Mali. Beyond one-electron reaction in Li cathode materials:designing Li2MnxFe1-xSiO4[J]. Chemistry of Materials,2007,19(15): 3633-3638.
    [181]M E Dompablo, M Armand, J M Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li2MSiO4 system (M=Fe, Mn, Co, Ni)[J]. Electrochemistry Communications,2006,8(8):1292-1298.
    [182]闵新民,张文芹,许德华.LiFePO4系列电池材料的电子结构与性能研究[J].化学与生物工程,2005,22(4):38-39.
    [183]张宝.锂离子电池正极材料LiFePO4[D].长沙:中南大学,2007.
    [184]胡辉,高艳阳.低热固相法制备纳米氧化镍[J].应用化工,2003,32(5):30-32.
    [185]A Nyten, S Kamali, L Haggstrom, et al. The lithium extraction/insertion mechanism in Li2FeSiO4[J]. Journal of Materials Chemistry,2006,16: 2266-2272.
    [186]A S Andersson, J O Thomas. The source of first-cycle capacity loss in LiFePO4[J]. Journal of Power Sources,2001,97-98:498-502.
    [187]W Xing, J S Xue, J R Dahn. Optimizing pyrolysis of sugar carbons for use as anode materials in lithium-ion batteries[J]. Journal of the Electrochemical Society,1996,143(10):3046-3052.
    [188]田昭武.电化学研究方法[M].北京:科学出版社,1986:4-29.
    [189]M Thomas. S R G, P G Bruce, J B Goodenough, et al. AC impedance analysis of polycrystalline insertion electrodes:application to Li1-xCoO2[J]. Journal of The Electrochemical Society,1985,132(7):1521-1528.
    [190]蔡铎昌.电化学研究方法[M],成都:电子科技大学出版社,2006:240-246.
    [191]舒余德,陈白珍.冶金电化学研究方法[M],长沙:中南工业大学出版社,1990:95-113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700