用户名: 密码: 验证码:
基于内置多元传感器监测钢筋混凝土结构腐蚀状态研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在沿海环境或使用除冰盐的环境中,钢筋的腐蚀被公认是造成混凝土结构过早劣化的主要因素。对混凝土结构服役状态的评估与预测、维护周期的确定、防治技术的优化、全寿命周期的经济分析以及高耐久混凝土结构设计方法的完善,都需要实时、长效的多元耐久性参数监测体系,提供包括混凝土保护层质量以及钢筋的锈蚀状态的诸多耐久性参数。其中,钢筋表面状况包括钢筋的自腐蚀电位、脱钝时间、宏电池电流、钢筋锈蚀开始后的腐蚀电流密度等参数;混凝土保护层质量主要通过混凝土保护层的厚度及电阻率、氯离子的含量和分布状态以及混凝土中温、湿度变化规律等进行评估。
     考虑到上述多元耐久性参数对评估混凝土结构腐蚀状态的重要性,基于现有传感器和测试技术存在的缺陷,设计开发了以下传感器体系:(1)长寿命、免维护、可埋置式参比电极,提供长期稳定的基准电位,消除混凝土电压降对电化学测试结果的影响;(2)在参比电极提供稳定输出电位的基础上,基于交流阻抗技术开发了可埋置式混凝土电阻率测试单元;(3)在电阻率测试单元的基础上,复合使用钛基金属氧化物辅助电极,研制了可埋置式宏电池电流测试单元;(4)基于参比电极、混凝土电阻率测试单元、宏电池电流测试单元以及开发的氯离子传感器,确定了能够在线监测上述各耐久性参数的多元传感器的封装和测试技术;(5)基于阶跃电流方法,利用开发的多元传感器对混凝土电阻和极化电阻进行了快速原位监测。同时,综合考虑混凝土介质环境的特殊性以及各传感器在氯化物污染混凝土中的适用性,确定了合理的电化学参数以及监测方法。
     首先,对阳极沉积工艺制备的参比电极的电化学性能的研究表明:采用恒电位沉积工艺制备的电极,沉积体表面的活性物质为γ-MnO_2,电极在孔隙溶液中的电位稳定性随着沉积电位的升高而降低。在碱性孔隙溶液中,电极电位取决于γ-MnO_2还原生成的均一相的相组成和电极的表面状况;碳基电极基体由于表面易吸附含氧基团,导致其电极电位稳定性较差,而采用钛基体的电极表现出了更理想的电位稳定性、抗极化能力以及抵抗氯离子干扰的能力。由于表面张力作用以及基体与沉积层间温度膨胀系数的差别,采用阳极沉积工艺制备的电极电位重现性控制在[-45,-37.5]mV之间。将封装后的阳极沉积MnO_2参比电极在线性极化测试进行了应用,通过埋置在待测钢筋附近消除了混凝土电阻产生的电压降对测试结果的影响,得到更加接近真实值的钢筋极化电阻和腐蚀速率。
     其次,针对阳极沉积工艺制备的参比电极电位重现性一般的问题,通过粉末固化工艺制备了以Mn和β-MnO_2为主要电极活性物质的参比电极。结果表明通过添加Mn元素提高了电极电位的稳定性和重现性,通过在碱性孔隙溶液中电极的电化学反应机理分析可知,其稳定性和重现性的提高主要是因为电极由MnOx—MnO_2—MnOOH非均一相组成,具有较强的抵抗外界环境干扰的能力。考虑到混凝土耐久性监测涉及的电化学测试对参比电极高、低频性能的要求,采用交流阻抗谱法对参比电极的高低频性能进行了研究,结果表明参比电极的高频时阻抗模数为测试仪器阻抗的1/400,而低频时阻抗模数更低,高低频性能非常理想。并通过对参比电极的电位——温度曲线确定了制备的参比电极的温度响应系数为-0.65mV/℃。
     第三,基于交流阻抗技术,确定了可埋入混凝土内部的电阻率测试单元的封装测试方法,深入研究了不同频率范围内电阻率传感器在混凝土中的交流阻抗行为,确定了适合混凝土体系的电阻率采样频率范围为0.01kHz~20kHz;在此频率范围内,混凝土与传感器间的界面表现常相位角元件的电化学特征,并根据此频段的线性特性确定了混凝土电阻的采样频率对应频点(fcutoff)的取值方法。对不同氯化物掺量的砂浆电阻以及半环电极的极化电阻测试结果表明:砂浆电阻随氯化物的掺量增高而减小,随着保护层厚度的增加而增大,同时发现半环电极的极化电阻与对应的砂浆保护层电阻变化规律一致,从而在未掺氯化物的砂浆中建立了Rs与Rp之间的简化关系模型。
     第四,开发了可埋置于混凝土保护层内的宏电池电流传感器,研究了宏电池电流的衰减规律,确定了宏电池电流标准采样时间为30s。在不同氯化物掺量砂浆及混凝土中对宏电池电流进行测试的结果表明:宏电池电流随着氯化物掺量的增加而增大,意味着氯盐污染严重的混凝土中的钢筋存在着更高的腐蚀风险。首次对宏电池电流的电化学本质进行了研究,并结合加速渗透的方法,对宏电池电流传感器在混凝土中氯离子的响应行为进行了研究,结果表明:宏电池电流随着加速试验的持续进行逐渐增大,加速后期出现一个稳定平台区,此时的腐蚀速率取决于阳极半环表面的氧气浓度,整个反应过程受阴极还原反应速率控制。
     第五,研究了多元耐久性参数传感器的封装工艺,实现了对宏电池电流、锈蚀电位、保护层电阻、保护层氯离子含量以及阳极的极化电阻的实时监测。基于EIS和LPR方法的测试结果表明:较高的氯化物掺量以及较薄的保护层厚度都会导致混凝土电阻的降低以及腐蚀风险的增大。建立了基于混凝土保护层电阻和氯离子含量相关的腐蚀速率预测模型,基于该模型,通过对混凝土保护层电阻和氯离子含量的监测,实现了对服役钢筋腐蚀状态和保护层劣化状况的评估。
     最后,基于阶跃电流法的暂态原位测试技术,在混凝土中确定了混凝土保护层的电阻值以及对应钢筋的极化电阻值。结果表明:GPT技术的应用避免了外界环境杂散电流的干扰,基于该技术的传感器十分适合现场原位测试。建立了混凝土耐久性分级预警系统,其中分布式数据采集系统DDAS进行实时的数据采集,然后远程传输至数据处理终端DEE,后者进行数据的处理和分析,并在终端显示实测数据并作出决策和维护建议。根据宏电池电流测试单元中显示的数据,将预警系统划分为蓝、红以及黄色三级预警,对混凝土保护层的服役状态进行全面的评估,提高了测试仪器的效率。
Corrosion of steel is regarded as the most important factor to cause deterioration of reinforced concrete structures when they are in the coastal environment or using de-icing salt and other chloride environments. Regarding to the assessment and prediction of service status of concrete structure, identification of maintenance cycles, the technology optimization of damage prevention and control, economic analysis of service life cycle as well as improvement of design methods of high durable concrete structure, a real, long-term multi-parameter monitoring system will be indeed needed to provide the quality of concrete cover and the various durability parameters of rebar corrosion state. Among them, the steel surface conditions parameters include the corrosion potential of reinforcing steel, dispassivation time, the macro cell current and corrosion current density after the beginning of the corrosion; The quality of concrete protection layer was primarily assessed by the thickness and resistivity of concrete cover, chloride ion content and distribution as well as the changes of concrete temperature and humidity.
     Based on the importance of these multiple parameters to assess the durability of concrete corrosion and eliminate the shortcomings of testing technology and existing sensor, the following sensor systems were developed in this study: (1) Long life-maintenance-free- embedded reference electrode: provide long-term and stable reference potential ,eliminate the voltage drop of concrete in electrochemical tests; (2) Embedded type concrete resistivity test unit based on a stable reference electrode potential output and impedance-based technology;(3) Embedded macro cell current testing unit based on the resistivity test cell and titanium based metal oxide auxiliary electrode; (4) Based on the reference electrode, concrete resistivity test cell, macro cell current testing unit and the developed chloride ion sensor testing principle, the assembly and test techniques of multi-parameter sensor were determined; (5) Based on the current step method, the multi-sensor was to monitor the resistance and polarization resistance of concrete at the original position. At the same time, considering the particularity of concrete media environment as well as the sensor in the applicability of chloride contaminated concrete, the reasonable electrochemical monitoring techniques and parameters were determined.
     First of all, the electrochemical properties results of the reference electrode prepared by constant potential anode-deposition method showed that the active substance on the deposition surface of electrode wasγ-MnO_2. The stability of electrode potential in the pore solution increased with the lower deposition potential and the electrode potential depended on the homogeneous phase composition and surface conditions ofγ-MnO_2 in alkaline solution. The carbon-based electrode substrate adsorbed oxygen groups easily, resulting in poor stable electrode potential, while the use of titanium substrate electrode showed a better potential stability, anti-polarization capability and the ability to resist chloride ion interference, although the role of surface tension as well as the differences in temperature coefficient of expansion between matrix and the deposition layers, leading to low reproducibility to prepare the same potential anode electrode. Taking into account its simple production technology and good potential stability, the packaged MnO_2 anode reference electrode can be used in linear polarization analysis due to its low demanding for the potential reproducibility. The accurate polarization resistance of rebar can also be obtained by eliminating voltage drop of the resistance of concrete through the embedded sensor in the vicinity of tested steel.
     Second, in order to improve the reproducibility of potential of anode reference electrod by deposition process, the powder-solid-process and package technology were deal with the reference electrode with Mn andβ-MnO_2 active material. The results show that the addition of Mn element can improve the electrode potential stability and reproducibility in the alkaline pore solution by the electrochemical reaction mechanism analysis. The reason was mainly due to electrode made of the non-uniform phase of MnOx-MnO_2-MnOOH with strong resistance to external interference. The high and low frequency performance of the reference electrode were investigated by AC impedance spectroscopy. The analysis results showed that the impedance modulus of reference electrode at high frequency was the impedance test equipment of 1/400, while the low frequency impedance modulus was much lower to meet the performance requirement better. And the temperature response coefficient to prepare reference electrode through the reference electrode potential-temperature curve was determined as -0.65mV/℃.
     Third, based on AC impedance technique, the packaging and testing technology of embedded concrete resistivity test unit were investigated. The impedance behavior of concrete and sensor electrode within different frequency range was discussed and the sampling frequency range of concrete resistivity was determined as 0.01kHz ~ 20kHz. In this frequency the interface between the sensor electrode showed typical characteristics of constant phase angle element, and the values of the sampling frequency (fcutoff) based on this linear features was determined. The test results for mortar resistance with different chloride content and the polarization resistance of half-ring electrode resistance showed that the resistance of mortar increased with the chloride content decreased and the protective layer thickness increased. It is also found that the polarization resistance of half-ring electrode was corresponding to the changes of the protective layer resistance of mortar, therefore, the simplified relationship mode between Rs and Rp without chloride doped in the mortar was established.
     Fourth, the macro cell current sensors can be embedded into the cover-zone concrete were developed. By studying the attenuation rule of the macro cell current, the standard acquisition time of 30s was determined. The macro cell current test results in mortar and concrete different chloride content showed that the macro cell current increased with the increase of chloride content, which meant higher corrosion risk. The electrochemical nature of the macro cell current was analysed of and by the method of accelerated penetration, the response behavior of the macro cell current sensor to chloride ion in concrete was studied.The results showed that the macro cell current increased with the time of accelerated testing prolonged and later a curve plateau ouucred, at this time the steel corrosion rate depended on the oxygen concentration of the anode half-ring surface, controlled by the cathodic reduction reaction rate.
     Fifth, the packaging technology of the multi-parameter durability sensor was developed. Based on these sensors, the macro cell current, corrosion potential, protective layer resistance, chloride ion content of protective layer and the anode polarization resistance of can be perform the real-time monitoring. The test results based on EIS and LPR methods showed that higher chloride content and the thinner protective layer of concrete will result in lower resistance and higher risk of corrosion. A corrosion rate prediction model related to concrete layer resistance and chloride ion content was established. Based on the model, the service status and the assessment of protective layer of corrosion degradation can be implementated.
     Finally, the transient current method based on step-situ testing techniques was determined concrete resistance and the polarization resistance of the corresponding reinforcement in concrete protective layer. The results showed that GPT Technology avoided the interference of stray current in external environment and was suitable for on-site test in situ. The warning system for durability classification was established. The distributed data acquisition system DDAS was used as real-time data acquisition, and then transferred to a remote data processing terminal DEE. DEE was for data processing and analysis, and displayed the measured data in the terminal and made decisions and provided maintenance recommendations. According to the data of the macro cell current test cell, the early warning system was divided into blue, red and yellow three-level warning, which provided a comprehensive assessment of the service state of the concrete protective layer. The data processing and analysis was simple and feasible, and the efficiency of the test apparatus was improved.
引文
1张誉,蒋利学,张伟平,屈文俊.混凝土结构耐久性概论.上海科学技术出版社. 2003:.
    2王曦,陆荣.危机下四万亿投资计划的短期作用与长期影响.中山大学学报(社会科学版). 2009, (04):180-188
    3陈肇元,徐有邻,钱稼茹.土建结构工程的安全性与耐久性.建筑技术. 2002, (04):248-253
    4赵卓,蒋晓东.受腐蚀混凝土结构耐久性检测诊断.黄河水利出版社. 2006:131-134
    5李克非,陈肇元.混凝土结构耐久性设计中钢筋保护层的规定与建议.东南大学学报(自然科学版). 2006, (2):23-26
    6 S. Lay, S. Liebl, H. Hilbig and P. Schiessl. New Method to Measure the Rapid Chloride Migration Coefficient of Chloride-Contaminated Concrete. Cement and Concrete Research. 2004, 34(3):421-427
    7 V. Saraswathy, S. Muralidharan, R. M. Kalyanasundaram, K. Thangavel and S. Srinivasan. Evaluation of a Composite Corrosion-Inhibiting Admixture and Its Performance in Concrete under Macrocell Corrosion Conditions. Cement and Concrete Research. 2001, 31(5):789-794
    8白常举. pH值与钢筋的锈蚀.混凝土及建筑构件. 1982, (1):23-26
    9史波.氯盐环境下基于概率和性能的混凝土结构耐久性研究.大连理工大学博士论文. 2009:53-61.
    10李永芳,李丽艳,董经付.混凝土结构碳化模型及耐久性分析.铁道建筑技术. 2006, (02):69-72
    11 W.Morris, A. Vico and M. Vazquez. Chloride Induced Corrosion of Reinforcing Steel Evaluated by Concrete Resistivity Measurements. Electrochi. Acta. 2004, 49:4447-4453
    12 G. R. Meira, C. Andrade, I. J. Padaratz, C. Alonso and J. C. Borba. Chloride Penetration into Concrete Structures in the Marine Atmosphere Zone - Relationship between Deposition of Chlorides on the Wet Candle and Chlorides Accumulated into Concrete. Cement & Concrete Composites. 2007,29(9):667-676
    13 C. Alonso, M. Castellote and C. Andrade. Chloride Threshold Dependence of Pitting Potential of Reinforcements. Electrochimica Acta. 2002, 47(21):3469-3481
    14 M. Manera, Q. Vennesland and L. Bertolini. Chloride Threshold for Rebar Corrosion in Concrete with Addition of Silica Fume. Corrosion Science. 2008, 50:554-560
    15 M. F. Montemor, A. M. P. Simoes and M. G. S. Ferreira. Chloride-Induced Corrosion on Reinforcing Steel: From the Fundamentals to the Monitoring Techniques. Cement & Concrete Composites. 2003, 25(4-5):491-502
    16 M. J. KANE. Corrosion Mechanisms of Steel Reinforcement in Concrete. University of Rhode Island. 1996:161.
    17 S. Ahmad. Reinforcement Corrosion in Concrete Structures, Its Monitoring and Service Life Prediction—a Review. Cement & Concrete Composites. 2003, 25(4-5):459-471
    18 S. Ahmad. In-Situ Measurement of Corrosion Rate of Rebar Embedded in Concrete. Science. 1995, 37(5):781-791
    19 B. Pradhan, B. Bhattacharjee. Performance Evaluation of Rebar in Chloride Contaminated Concrete by Corrosion Rate. Construction and Building Materials. 2009, 23(6):2346-2356
    20 M. A. Pech-Canul, P. Castro. Corrosion Measurements of Steel Reinforcement in Concrete Exposed to a Tropical Marine Atmosphere. Cement and Concrete Research. 2002, 32(3):491-498
    21 S. L. Amey, D. A. Johnson, M. A. Miltenberger and H. Farzam. Predicting the Service Life of Concrete Marine Structures: An Environmental Methodology. Aci Structural Journal. 1998, 95(2):205-214
    22 C. Andrade, M. Castellote and P. Zuloaga. Some Principles of Service Life Calculation of Reinforcements and in Situ Corrosion Monitoring by Sensors in the Radioactive Waste Containers of El Cabril Disposal (Spain). Journal of Nuclear Materials. 2006, 358:82-95
    23 J. P. Broomfield, D.B. Kevin and K. Hladky. The Use of Permanent Corrosion Monitoring in New and Existing Reinforced Concrete Structures. Cement&Concerte Composites. 2002, 24(1):27-34
    24 Y. Chen, R. T. Sun, A. H. Zhou and N. Zaveri. Fractional Order Signal Processing of Electrochemical Noises. Journal of Vibration and Control. 2008, 14(9-10):1443-1456
    25 S. Feliu, J. A. Gonzalez, J. M. Miranda and V. Feliu. Possibilities and Problems of in Situ Techniques for Measuring Steel Corrosion Rates in Large Reinforced Concrete Structures. Corrosion Science. 2005, 47(1):217-238
    26 Y. Sato, K. Kanno and M. Suzuki. New Rapid Evaluation Method for Metal Corrosion Rate in Solution. Toshiba Review. 1978, (116):35-37
    27 B. Elsener. Half-Cell Potential Mapping to Assess Repair Work on Rc Structures. Construction and Building Materials. 2001, 15(2-3):133-139
    28 B. Elsener, J. Gulikers, R. Polder and M. Raupach. Half-Cell Potential Measurements- Potential Mapping on Reinforced Concrete Structures. Materials and Structures. 2003, 36(9):461-471
    29 M. A. Ismail, H. Soleymani and M. Ohtsu. Early Detection of Corrosion Activity in Reinforced Concrete Slab by Ae Technique. Program. 2006, (9):5-6
    30 V. Leelalerkiet, J.-w. Kyung, M. Ohtsu and M. Yokota. Analysis of Half-Cell Potential Measurement for Corrosion of Reinforced Concrete. Construction and Building Materials. 2004, 18(3):155-162
    31 ASTM Standard Test Method for Half-Cell Potentials of Uncoated Reinforcing Steel In. Corrosion. 1999, 03
    32 S. Qian, D. Cusson. Electrochemical Evaluation of the Performance of Corrosion-Inhibiting Systems in Concrete Bridges. Composites. 2004, 26:217-233
    33刘超英,孙伯永.水工混凝土中钢筋锈蚀检测技术与应用.浙江水利科技. 2003, 2:33-37
    34 D. W. Law, J. Cairns, S. G. Millard and J. H. Bungey. Measurement of Loss of Steel from Reinforcing Bars in Concrete Using Linear Polarisation Resistance Measurements. Corrosion. 2004, 37(5):381-388
    35 D. W. Law, S. G. Millard, and J. H. Bungey. Linear Polarisation Resistance Measurements Using a Potentiostatically Controlled Guard Ring. System. 2000, 35(2):15-21
    36 Y. Liu, R. E. Weyers. Comparison of Guarded and Unguarded Linear Polarization Ccd Devices with Weight Loss Measurements. Cement andConcrete Research. 2003, 33(7):1093-1101
    37 J. R. Scully. Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 2000, 56(2):199-218
    38 H. W. Song, V. Saraswathy, S. Muralidharan, C. H. Lee, and K. Thangavel. Corrosion Performance of Steel in Composite Concrete System Admixed with Chloride and Various Alkaline Nitrites. Corrosion Engineering Science and Technology. 2009, 44(6):408-415
    39 M. Bojko, P. Nova. Limitations of the Linear Polarization Method to Determine Stainless Steel Corrosion Rate in Concrete Environment. Cement&Concrete Composites. 2006, 28(3):220-225
    40 M. Raupach. Chloride-Induced Macrocell Corrosion of Steel in Concrete--Theoretical Background and Practical Consequences. Building. 1996, 10(5):329-338
    41 M. Raupach, P. Schieβl. Macrocell Sensor Systems for Monitoring of the Corrosion Risk of the Reinforcement in Concrete Structures. Ndt & E International. 2001, 34(6):435-442
    42 B. Elsener. Macrocell Corrosion of Steel in Concrete-Implications for Corrosion Monitoring. Cement&Concrete Composites. 2002, 24(1):65-72
    43 C. M. Hansson, A. Poursaee, and A. Laurent. Macrocell and Microcell Corrosion of Steel in Ordinary Portland Cement and High Performance Concretes. Cement and Concrete Research. 2006, 36(11):2098-2102
    44 S. C. Kranc, A. A. Sag. Detailed Modeling of Corrosion Macrocells on Steel Reinforcing in Concrete. Corrosion Science. 2001, 43(7):1355-1372
    45 S. Y. Qian, J. Y. Zhang and D. Y. Qu. Theoretical and Experimental Study of Microcell and Macrocell Corrosion in Patch Repairs of Concrete Structures. Cement&Concrete Composites. 2006, 28(8):685-695
    46 D. G. John, P. C. Searson and J. L. Dawson. Use of Ac Impedance Technique in Studies on Steel in Concrete in Immersed Conditions. British Corrosion Journal. 1981, 16(2):102-106
    47 J. A. Gonzalez, A. Molina, M. L. Escudero and C. Andrade. Errors in the Electrochemical Evaluation of Very Small Corrosion Rates .1. Polarization Resistance Method Applied to Corrosion of Steel in Concrete. Corrosion Science. 1985, 25(10):917-930
    48 J. A. Gonzalez, A. Molina, M. L. Escudero and C. Andrade. Errors in the Electrochemical Evaluation of Very Small Corrosion Rates .1. Polarization Resistance Method Applied to Corrosion of Steel in Concrete. Corrosion Science. 1985, 25(10):917-930
    49 D. D. Macdonald, M. C. H. Mckubre and M. Urquidimacdonald. Theoretical Assessment of Ac Impedance Spectroscopy for Detecting Corrosion of Rebar in Reinforced-Concrete. Corrosion. 1988, 44(1):2-7
    50 V. Barranco, S. Feliu and S. Feliu. Eis Study of the Corrosion Behaviour of Zinc-Based Coatings on Steel in Quiescent 3 % Nacl Solution. Part 2: Coatings Covered with an Inhibitor-Containing Lacquer. Corrosion Science. 2004, 46(9):2221-2240
    51胡融刚,钢筋/混凝土体系腐蚀过程的电化学研究.厦门大学博士论文:2004, 13-22
    52胡融刚,杜荣归,林昌健.氯离子侵蚀下钢筋在混凝土中腐蚀行为的EIS研究.电化学. 2003, 02:189-195
    53 V. Feliu, J. A. Gonzalez, C. Andrade and S. Feliu. Equivalent Circuit for Modelling the Steel-Concrete Interface. I. Experimental Evidence and Theoretical Predictions. Corrosion Science. 1998, 40(6):975-993
    54 V. Feliu, J. A. Gonzalez, C. Andrade and S. Feliu. Equivalent Circuit for Modelling the Steel-Concrete Interface. II. Complications in Applying the Stern-Geary Equation to Corrosion Rate Determinations. Corrosion Science. 1998, 40(6):995-1006
    55 V. Feliu, S. Feliu. A Method of Obtaining the Time Domain Response of an Equivalent Circuit Model. Journal of Electroanalytical Chemistry. 1997, 435(1-2):1-10
    56 J. A. Gonzalez, J. M. Miranda and S. Feliu. Considerations on Reproducibility of Potential and Corrosion Rate Measurements in Reinforced Concrete. Corrosion Science. 2004, 46(10):2467-2485
    57 S. Feliu, C. Andrade, J. A. Gonzdlez, C. Alonso, C. Nacional, D. I. Metah and A. Gregorio. A New Method for in-Situ Measurement of Electrical Resistivity of Reinforced Concrete. Methods. 1996, 29(7):362-365
    58 W. Morris, A. Vico, M. Vazquez, and R. S. Sanchez. Corrosion of Reinforcing Steel Evaluated by Means of Concrete Resistivity Measurements. CorrosionScience. 2002, 44(1):81-99
    59 P. J. Tumidajski, A. S. Schumacher, S. Perron, P. Gu and J. J. Beaudoin. On the Relationship between Porosity and Electrical Resistivity in Cementitous Systems. Cement and Concrete Research, 1996, 26(4):539-544
    60 J. F. Lataste, C. Sirieix, D. Breysse and M. Frappa. Electrical Resistivity Measurement Applied to Cracking Assessment on Reinforced Concrete Structures in Civil Engineering. Cement and concrete Research, 2003, 36:383-394
    61 M. Chiarello, R. Zinno. Electrical Conductivity of Self-Monitoring CFRC. Cement& Concrete Composites. 2005, 27(1):463-469
    62 S. Sathiyanarayanan, P. Natarajan, K. Saravanan, S. Srinivasan, G. Venkatachari. Cement&Concrete Composite. 2006(28):630-637
    63 D. S. Law, S. G. Millard and J. H. Bungey. Galvanostatic Pulse Measurements of Passive and Active Reinforcing Steel. in concrete, Corrosion. 2000, 56:48-56
    64 K. I. Kanno, M. Suzuki, and Y. Sato. Application of Coulostatic Method for Rapid Evaluation of Metal Corrosion Rate in Solution. Journal of the Electrochemical Society. 1978, 125(9):1389-1393
    65宋明霞,赵永韬,秦勃.恒电量腐蚀测量数据解析系统的设计与实现计算机测量与控制. 2006, 11:1174-1176
    66吴建华,赵永韬.钢筋混凝土的腐蚀监测/检测.腐蚀与防护. 2003, 10:421-427
    67赵永韬,郭兴蓬,董泽华.基于恒电量的腐蚀测试系统研究.仪器仪表学报. 2003, 2:108-110
    68 S. Mabbutt, N. Simms and J. Oakey. High Temperature Corrosion Monitoring by Electrochemical Noise Techniques. Corrosion Engineering Science and Technology. 2009, 44(3):186-195
    69 F. Mansfeld, Z. Sun and C. H. Hsu. Electrochemical Noise Analysis (Ena) for Active and Passive Systems in Chloride Media. Electrochimica Acta. 2001, 46(24-25):3651-3664
    70 A. Nagiub, F. Mansfeld. Evaluation of Corrosion Inhibition of Brass in Chloride Media Using Eis and Ena. Corrosion Science. 2001, 43(11):2147-2171
    71 J. J. Perdomo, P. M. Singh. Electrochemical Noise (Ecn) Measurements as a Corrosion Monitoring Tool: A Review. Corrosion Reviews. 2002, 20(4-5):359-378
    72 A. P. Shashikala, J. Ramasubramanian, and G. Janakiraman. Investigations into the Statistical Properties of Ecn from Corroding Marine Systems. Journal of Offshore Mechanics and Arctic Engineering-Transactions of the Asme. 2008, 130(3):131-133
    73 N. Zaveri, R. T. Sun, N. Zufelt, A. H. Zhou, and Y. Q. Chen. Evaluation of Microbially Influenced Corrosion with Electrochemical Noise Analysis and Signal Processing. Electrochimica Acta. 2007, 52(19):5795-5807
    74范颖芳,受腐蚀钢筋混凝土构件性能研究.大连理工大学博士论文. 2002: 45-46
    75刘志勇,基于环境的海工混凝土耐久性试验与寿命预测方法研究.东南大学博士论文. 2006:81-101.
    76季明堂,牟肇荤,杨芳英,倪湘毓.钢筋混凝土中的镶嵌式参比电极的研制与测试.海洋工程. 1993, 11:40-45
    77李成保.一种微渗漏参比电极的研制与性能.化学传感器. 1989, 9:50-54
    78黄国胜,吴建华, and陈光章.二氧化锰参比电极的制作及其性能评定.材料保护. 2005, 08:39-41
    79石小燕,邱富荣,黄亚敏,林金龙,郑忠立,许世力.用于混凝土结构的参比电极.腐蚀科学与防护技术. 1994, 7:284-287
    80郑忠立,许世力,石小燕,邱富荣.用于海洋钢筋混凝土结构阴极保护的永久参比电极.材料保护. 1994, 27:16-19
    81 S. Muralidharan, T. Ha, J. Bae, Y. Ha, H. Lee, K. Park and D. Kim. Electrochemical Studies on the Solid Embeddable Reference Sensors for Corrosion Monitoring in Concrete Structure. Materials Letters. 2006, 60(5):651-655
    82 S. Muralidharan, T. H. Ha, J. H. Bae, Y. C. Ha, H. G. Lee, K. W. Park and D. K. Kim. Electrochemical Studies on the Performance Characteristics of Solid Metal-Metal Oxide Reference Sensor for Concrete Environments. Sensors and Actuators B-Chemical. 2006, 113(1):187-193
    83 S. Muralidharan, T. H. Ha, J. H. Bae, Y. C. Ha, H. G. Lee, K. W. Park and D. K. Kim. Electrochemical Studies on the Solid Embeddable Reference Sensors forCorrosion Monitoring in Concrete Structure. Materials Letters. 2006, 60(5):651-655
    84 S. Muralidharan, T. Hyun and J. Hyo. A Promising Potential Embeddable Sensor for Corrosion Monitoring Application in Concrete Structures. Measurement. 2007, 40:600-606
    85 S. Muralidharan, V. Saraswathy, A. Madhavamayandi, K. Thangavel and N. Palaniswamy. Electrochimica Acta Evaluation of Embeddable Potential Sensor for Corrosion Monitoring in Concrete Structures. 2008, 53:7248-7254
    86 S. Muralidharan, V. Saraswathy, A. Madhavamayandi, K. Thangavel and N. Palaniswamy. Evaluation of Embeddable Potential Sensor for Corrosion Monitoring in Concrete Structures. Electrochimica Acta. 2008, 53(24):7248-7254
    87 S. Muralidharan, V. Saraswathy, S. P. M. Nima and N. Palaniswamy. Evaluation of a Composite Corrosion Inhibiting Admixtures and Its Performance in Portland Pozzolana Cement. Materials Chemistry and Physics. 2004, 86(2-3):298-306
    88杜荣归,黄若双,胡融刚,赵冰,林玉华,谭建光,林昌健.埋置式复合探针原位测定钢筋/混凝土界面氯离子和pH值.分析化学. 2005, 01:29-32
    89黄若双,胡融刚,杜荣归,谭建光,林昌健. IrO2-pH微电极的研制及钢筋/混凝土界面pH的测量.中国仪器仪表学会仪表材料分会. 2001.厦门.
    90 M. A. Climent-Llorca, E. Viqueira-perez. Embeddable Ag/AgCl Sensors for in-suit Monitoring Chloride Contents in Concrete. Cement and Concrete Research. 1996, 26(8):1157-1161
    91 E. Viqueira, C. Andrade, M. A. Climent and G. D. Vera. A Test Method for Measuring Chloride Diffusion Coefficients through Nonsaturated Concrete Part I . The Instantaneous Plane Source Diffusion Case. Cement and Concrete Research. 2002, 32(6):1113-1123
    92 M. G. S. Ferreira, M. F. Montemor and A. M. P. Sim. Chloride-Induced Corrosion on Reinforcing Steel: From the Fundamentals to the Monitoring Techniques. Cement&Concrete Composites. 2003, 25(9):491-502
    93 M. F. Montemor, A. J. S. Costa, A. J. Appleton and M. G. S. Ferreira. Multiprobe Chloride Sensor for in Situ Monitoring of Reinforced Concrete Structures. Cement& Concrete Composites. 2006, 28(1):233-236
    94 P. Upreti, P. S. Lehtola and L. E. Metzger. Influence of Calcium, Phosphorus, Residual Lactose, and Salt-to-Moisture Ratio on Cheese Quality: Ph Changes During Ripening. Journal of Dairy Science. 2004, 87(8):93-93
    95 P. Upreti, L. E. Metzger and P. Buhlmann. Glass and Polymeric Membrane Electrodes for the Measurement of Ph in Milk and Cheese. Talanta. 2004, 63(1):139-148
    96 M. Nogami, M. Matsumura and Y. Daiko. Hydrogen Sensor Prepared Using Fast Proton-Conducting Glass Films. Sensors and Actuators B-Chemical. 2006, 120(1):266-269
    97陈东初,郑家燊,付朝阳. Ir/Irox金属氧化物电极的h+响应行为研究.稀有金属材料与工程. 2004, 08:831-834
    98 I. A. Ges, B. L. Ivanov, D. K. Schaffer, E. A. Lima, A. A. Werdich and F. J. Baudenbacher. Thin-Film Irox Ph Microelectrode for Microfluidic-Based Microsystems. Biosen. Bioelectron. 2005, 21(2):248-256
    99 I. A. Ges, B. L. Ivanov, A. A. Werdich and F. J. Baudenbacher. Differential Ph Measurements of Metabolic Cellular Activity in Nl Culture Volumes Using Microfabricated Iridium Oxide Electrodes. Biosensors and Bioelectronics. 2007, 22(3):1303-1310
    100 C. Terashima, T. N. Rao, B. V. Sarada, N. Spataru and A. Fujishima. Electrodeposition of Hydrous Iridium Oxide on Conductive Diamond Electrodes for Catalytic Sensor Applications. Journal of Electroanalytical Chemistry. 2003, 544(13):65-74
    101 P. Periasamy, B. R. Babu and S. V. Iyer. Electrochemical Behaviour of Teflon-Bonded Iron Oxide Electrodes in Alkaline Solutions. Journal of Power Sources. 1996, 63(1):79-85
    102 G. Arrhenius, C. Schimmel and C. Raub. Experimental Boundaries on Thermal History of Refractory Minerals in Carbonaceous Meteorites. Meteoritics. 1980, 15(4):260-260
    103 M. R. Yang, K. S. Chen. Humidity Sensors Using Polyvinyl Alcohol Mixed with Electrolytes. Sensors and Actuators B-Chemical. 1998, 49(3):240-247
    104 J. K. Atkinson, A. W. J. Cranny, W. V. Glasspool and J. A. Mihell. An Investigation of the Performance Characteristics and Operational Lifetimes of Multi-Element Thick Film Sensor Arrays Used in the Determination of WaterQuality Parameters. Sensors and Actuators B-Chemical. 1999, 54(3):215-231
    105 P. A. M. Basheer, P. R. V. Gilleece, A. E. Long and W. J. McCarter. Monitoring Electrical Resistance of Concretes Containing Alternative Cementitious Materials to Assess Their Resistance to Chloride Penetration, Cem. Concr. Compos. 2002, 24:437-449
    106 P. A. M. Basheer, E. Nolan. Near-Surface Moisture Gradients and in Situ Permeation Tests. Construction and Building Materials. 2001, 15(2-3):105-114
    107 P. A. M. Basheer, E. A. Nolan, W. J. McCarter and A. E. Long. Effectiveness of in Situ Moisture Preconditioning Methods for Concrete. Journal of Materials in Civil Engineering. 2000, 12(2):131-138
    108 G. Baronio, M. Berra, L. Bertolini and T. Pastore. Steel Corrosion Monitoring in Normal and Total-Lightweight Concretes Exposed to Chloride and Sulphate Solutions .2. Polarisation Resistance Measurements. Cement and Concrete Research. 1996, 26(5):691-696
    109 M. A. ClimentLlorca, E. ViqueiraPerez and M. M. LopezAtalaya. Embeddable Ag/Agcl Sensors for in-Situ Monitoring Chloride Contents in Concrete. Cement and Concrete Research. 1996, 26(8):1157-1161
    110 S. Muralidharan, V. Saraswathy, K. Thangavel and S. Srinivasan. Competitive Role of Inhibitive and Aggressive Ions in the Corrosion of Steel in Concrete. Journal of Applied Electrochemistry. 2000, 30(11):1255-1259
    111黄庆华,王先友,汪形艳,李俊,黄伟国.超级电容器电极材料——Mno2的电化学制备及其性能.电源技术. 2005, 29(7):470-473
    112乔国富,混凝土结构钢筋腐蚀的电化学特征与监测传感器系统,哈尔滨工业大学博士论文.哈尔滨. 2008:70-93
    113黄行康,二氧化锰的制备、结构表征及其电化学性能.厦门大学博士论文. 2006:139.
    114 M. M. Thackeray. Manganese Oxides for Lithium Batteries. Progress in Solid State Chemistry. 1997, 25(1-2):1-71
    115雷佩琼,鹿玉理,徐国宪.二氧化锰电极的电极行为.山东大学学报(自然科学版). 1979, 3:83-106
    116 P. Ruetschi. Discharge Mechanism of MnO2 Electrodes as Influenced by Solubility of Reaction-Products. Journal of the Electrochemical Society. 1976, 123(4):495-500
    117夏熙,孙巍伟.掺杂λ-Mno2的制备及其在KOH水溶液中的电化学性质.应用化学. 1999, 16(3):62-66
    118 S. Joiret, M. Keddam, C. Rangel and H. Takenouti. Use of Eis , Ring-Disk Electrode , Eqcm and Raman Spectroscopy to Study the Film of Oxides Formed on Iron in 1 M Naoh Voa. Electrochimica Acta. 2002, 24:7-15
    119 S. F. Jr, V. Barranco. Comparative Eis and Xps Studies of the Protective Character of Thin Lacquer Films Containing Cr or P Salts Formed on Galvanised Steel , Galvanneal and Galfan Substrates. Electrochimica Acta. 2004, 49:951-964
    120 C. Andrade, L. Soler, C. Alonso, X. R. Novoa and M. Keddam. The Importance of Geometrical Considerations in the Measurement of Steel Corrosion in Concrete by Means of Ac Impedance. Corros. Sci. 1995, 37(12):20-23
    121 D. A. Jones. Principle and Prevention of Corrosion. 2 ed. Prentice Hall. 1996:472.
    122 J. J. Chang, J. K. Wu. Correlation between Corrosion Potential and Polarization Resistance of Rebar in Concrete Ran Huang As. Corrosion. 1996, 28(10):445-450
    123 T. Lius, R. E. Weyers. Modeling the Dynamic Corrosion Process in Chloride Contaminated Concrete Structures. Cement and Concrete Research. 1998,
    28(3):365-379
    124 M. J. Correia. Sensor for Oxygen Evaluation in Concrete. Concrete. 2006, 28(7):226-232
    125 F. Hunkeler. Monitoring of Repaired Reinforced Concrete Structures by Means of Resistivity Measurement. materials science forum. 1997, 247:93-106
    126胡融刚,钢筋/混凝土体系腐蚀过程的电化学研究.厦门大学博士论文. 2004:14-64
    127 C. J. Haecker, E. J. Garboczi, J. W. Bullard, R. B. Bohn, Z. Sun, S. P. Shah and T. Voigt. Modeling the Linear Elastic Properties of Portland Cement Paste, Cem. Concr. Res. 2005, 35(7):1960
    128 T. Liu, R. W. Weyers. Modeling the Dynamic Corrosion Process in Chloride Contaminated Concrete Structures. Cement and Concrete Research. 1998, 28(3):365-379
    129 K. Videm, R. Myrdal. Electrochemical Behavior of Steel in Concrete and Evaluation of the Corrosion Rate. Methods. 1997, (9):9312-9312
    130 K. Y. Ann, H.-w. Song. Chloride Threshold Level for Corrosion of Steel in Concrete. Corrosion Science. 2007, 49:4113-4133
    131 B. Elsener, U. Angst. Mechanism of Electrochemical Chloride Removal. Corrosion Science. 2007, 49:4504-4522
    132 C. Andrade, J. Sarria and C. Alonso. Relative Humidity in the Interior of Concrete Exposed to Natural and Artificial Weathering. Cement and Concrete Research. 1999, 29(8):1249-1259
    133 E. J. Garboczi, D. I. Bentz. Modelling of the Microstructure Properties of Concrete. Science. 1996, 10(5):293-300
    134 N. J. Kidner, Z. J. Homrighaus, T. O. Mason, and E. J. Garboczi. Modeling Interdigital Electrode Structures for the Dielectric Characterization of Electroceramic Thin Films. Thin Solid Films. 2006, 496:539-545

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700