用户名: 密码: 验证码:
三维外形测量系统中的数据处理关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对现实世界的物理模型进行三维外形数据采集并构建其数字化模型,在航空、航天、汽车、船舶、机械制造、生物医学、游戏娱乐等行业有着广泛的应用需求,而对测量数据的处理是架设在数据采集与数据应用之间的桥梁,是三维外形测量技术中的重要环节。随着数字图像处理技术快速发展,以面阵摄像机为主要传感器件的三维外形测量技术可以快速获取物体表面的深度图,产生的稠密点云能在较高的分辨率下刻画被测物体上的细节特征。特别是近年来芯片制造技术的迅速发展、相应产品的价格不断下降,使得基于面阵摄像机的三维外形测量技术得到了长足的发展。本文深入研究了基于面阵摄像机三维外形测量系统中数据处理的若干关键技术,包括数据预处理、深度图粗配准、深度图精配准、深度图融合以及网格模型的光顺与简化。本文的主要内容和创新点总结如下:
     1、针对基于面阵摄像机的测量系统所获得的海量数据同时具有深度信息和像素结构信息的特点,分别提出了稠密点云三角化和自适应取样三角化方法。其中稠密点云三角化方法可以快速得到测量数据的全分辨率网格模型;自适应取样三角化方法通过对测量数据的不同区域进行不同比例取样,在简化显示测量数据的同时保持物体三维外形轮廓,解决了海量测量数据的实时显示问题。
     2、在对已有粗配准算法进行深入分析的基础上,提出了基于两种不同原理的深度图粗配准方法。第一种方法中首先提出一种新的基于多分辨最小主曲率的网格角点检测算法,通过该算法直接提取网格曲面上的角点特征,并查找两幅深度图间相匹配的角点,利用最小二乘法实现深度图的粗配准。第二种方法根据深度图数据的特点,利用深度图中每个空间点的形状指数,将深度图映射为二维合成灰度图像,并利用二维图像领域的特征检测与匹配技术提取合成灰度图像上的特征点,再通过映射关系间接地在深度图网格上提取三维匹配特征点对,最后通过进一步去除误匹配的优化策略实现深度图粗配准。大量实验表明,两种粗配准算法对噪声和数据重叠度均具有较高的鲁棒性,特别地,当深度图上几何特征较少时,第二种方法表现出更高的稳定性。
     3、深入研究了多视角测量数据的精配准理论和方法,对基于虚拟弹簧力系统的全局精配准算法提出了改进。主要的改进之处有两点:一是克服了原算法中不存在外点的假设条件,在最近对应点查找算法中增加边界约束,并依据迭代过程中的配准误差自动设置相应的权重,提高了配准精度;二是针对算法计算效率较低的问题,采用基于GPU的高效并行加速技术,明显提高了对应点的搜索效率。
     4、提出了一种基于网格融合的多视点深度图同时融合算法。算法依次将每幅深度图定义为基准图,在基准图基础上同时对其它多幅深度图重叠区域进行检测和优化调整,有效降低了融合累积误差。为使去除冗余后的基准图之间的缝隙能够光滑连接,融合算法中提出了边界重叠对应点约束方法以及设置层次边界加权方法,在缝隙缝合过程中综合考虑了数据的重叠与删除信息,简化了缝合难度,使得无需重新三角化或增加新点即可缝合多视图之间的缝隙,形成单一拓扑流形的融合网格曲面。在实现几何数据融合的同时,提出了一种纹理融合方法,能够在几何数据融合的统一框架下得到平滑过渡的纹理融合结果。多个实际测量模型的融合实验结果验证了本文融合算法有很好的效果。
     5、提出了一种具有各向异性的混合滤波算法。该算法定义了一种基于二阶邻域面的双边滤波算子,并通过分析比较该算子与基于一阶邻域点的双边滤波算子对光顺噪声和保持特征的不同原理,将这两种算子通过自适应设置的权重进行加权合并得到新的混合滤波算子,新算子可以在对噪声进行有效光顺的同时对光滑区域起到很好的保持作用,并有效抑制了多次光顺迭代所产生的网格模型收缩或扩张。
     6、提出了一种二次误差测度(QEM)网格简化法的改进算法。算法提出了网格简化的支撑域概念,在简化过程中通过查找折叠边在初始网格上的支撑域,建立简化边与初始网格之间的联系。在折叠过程中增加计算折叠边的新顶点到初始网格上相应支撑域的全局误差,并将此误差引入到QEM的误差测度中。实验表明,在相同简化率下,改进的简化算法比原始QEM算法较为明显地降低了简化误差,同时更好地保持了初始网格的细节特征。
Digital model construction by measuring the shape of real-world objects has been widely used in an extensive range of fields, such as aerospace, automotive, shipbuilding, machinery manufacturing, biomedical, gaming and entertainment, etc. As a bridge built between the data acquisition and the data application, data processing is an important part of the 3D shape measurement. With the rapid development of digital imaging and image processing technology, 3D measurement systems with area-array cameras as the main sensors have made great progress in recent years. Several key techniques of data processing in this type of systems are studied in this paper, including data preprocessing, crude registration and fine registration of multi-view range images, range images integration, mesh smoothing and simplification. The main contents and innovations are summarized as follows.
     By utilizing both the depth information and the pixel structure information, a dense point clouds triangulation method and an adaptive sampling triangulation method are presented respectively. With the dense point clouds triangulation method, a full resolution mesh model of the range image can be quickly constructed. Whereas the adaptive sampling triangulation method, which is designed for real-time display of the massive measurement data, generates a mesh model with high appearance fidelity from significantly reduced points.
     Two crude registration methods are put forward based on two different principles. In the first one, the feature points are extracted directly from the 3D meshes by a new corner detection algorithm proposed. Having established the correspondences between two range images, the crude registration is achieved by the least square method. In the second one, the range image is mapped into a 2D artificial intensity image according to the shape index of every point in the range image. By using feature detection and matching methods for intensity image, feature points in the artificial image are extracted and matched, and then the 3D point matches are obtained indirectly by the mapping. After further steps for removing mismatches, the crude registration is carried out finally. Experiments show that both proposed methods are robust against the overlapping extent and the noise. The second method shows higher stability to register the range images with less geometric features.
     The theories and methods of fine registration of multi-view measurement data are deeply studied. In particular, an algorithm is proposed to improve the global fine registration which is based on the virtual spring force. There are two major improvements. First, to overcome the assumption in the original algorithm that the external points do not exist, the boundary constraint is imposed on the process searching for the nearest corresponding points. The corresponding weights are adaptively set according to the registration error in each iteration to improve the registration accuracy. Besides, the parallel acceleration technology based on GPU is adopted to improve the efficiency of the correspondance searching process.
     An algorithm for simultaneously merging the registered range images is proposed. Each range image is in turn defined as the benchmark image, and on this basis, the overlapping areas between the benchmark with the other range images are detected simultaneously and adjusted optimally to reduce the accumulated error. To connect the gaps smoothly between the images after redundancy removal, an overlapping constraint as well as a weighing scheme for the boundary points is presented. The overlapping and removal information are took into account in the stitching process, which simplifies the stitching algorithm, and a complete topological manifold mesh surface can be generated without re-triangulation or additional new points. Together with the geometric data integration, a texture blending method is presented to generate smooth texture fusion under the same framework. Experiments demonstrate the validity and efficiency of the proposed algorithm.
     A hybrid filtering algorithm with anisotropic is proposed. The bilateral filtering operator based on two-order neighborhood faces is defined and compared with another operator based on one-order neighborhood points in detail, The different performance of the two operators in smoothing noise and preserving features is considered, and a new hybrid filtering operator is proposed by combining the two operators with adaptive weights. The new operator is effective in filtering noise while keeping the smooth areas little changed. It is also superior in suppressing the mesh contraction or expansion that could be available after lots of iterations.
     An improvement to the quadric-error-metrics(QEM)-based mesh simplification algorithm is presented. The support region on the original mesh is defined and searched for the every collapse edge in the simplifying process. The connection between the collapse edge and the original mesh is accordingly established. The quadric error from the new vertex of the collapse edge to its support region is calculated as the global simplification error and is introduced into the total cost function of QEM. Experimental results demonstrate that the improved algorithm reduces the simplification error obviously and preserves the original mesh details better.
引文
[1]张宏伟,张国雄,李真等.飞机发动机叶片的非接触测量.航空精密制造技术,2004,40(4):34-36.
    [2]韩清华,郑保,郭宏利等.采用激光跟踪测量飞机外形.航空计测技术,2004,24(1):15-16, 33.
    [3]周军.光学扫描测量技术在汽车产品质量控制中的应用.机械工人冷加工,2006,3:63, 79.
    [4]王建军,王颖.光栅法在船体横扭角测量中的应用.光学精密工程,2005,13(3):371-375.
    [5]喻彩丽,曹淼龙.工业坐标测量系统的应用研究.计量与测试技术,2005,32(3):10-11.
    [6]刘贵民.无损检测技术.北京,国防工业出版社,2006.
    [7]查选平.计算机辅助投射条纹乳房三维形体测量系统的研制[D].广州:第一军医大学,2005.
    [8]彭荣华,钟约先,张吴明.人体三维无接触测量系统的研究.计量技术,2004,(2):36-38.
    [9]王晶,张秀山,王锋.虚拟现实技术在军校教育中的应用研究.计算机与数字工程,2006,34(12):97-99.
    [10]张伟,赵新灿,徐兴民.增强现实技术及其在航空发动机维修中的应用.江苏航空,2006,(1):21-23.
    [11]丁军,赵明泽,陈祖军.利用近景摄影测量进行安丙家族墓文物考古测绘.工程勘察,2002,(4):54-56.
    [12]吴立军,肖玉军.浅谈数字化测量技术在田野考古中的应用.江汉考古,2006,(3):74-77.
    [13] T. Varady, R. Martin, J. Cox. Reverse engineering of geometric models——an introduction. Computer Aided Design, 1997, 29(4): 255-268.
    [14]邾继贵,王浩,任同群等.便携式激光扫描三维形貌测量系统.机械工程学报,2005,41(2):166-169.
    [15]刘之生.反求工程技术.北京,机械工业出版社,1996.
    [16]张丽艳.逆向工程中模型重建关键技术研究[D].南京:南京航空航天大学,2001.
    [17]郑亚红,廖金玉.逆向工程中三维曲面测量技术应用.沈阳工业大学学报,2006,28(4):446-448.
    [18] P. Debevec. Rendering synthetic objects into real scenes: bridging tranditional and image-based graphics with global illumination and high dynamic range photography. Computer Graphics,Annual Confernce Series, ACM SIGGRAPH, New Orlean, 1996: 11-20.
    [19] F. Losasso, H. Hoppe. Geometry clipmaps: terrain rendering using nested regular grids. ACM Transactions on Graphics, 2004, 23(3): 769-776.
    [20]许智钦,孙长库.3d逆向工程技术.北京,中国计量出版社,2002.
    [21]金涛,童水光.逆向工程技术.北京,机械工业出版社,2003.
    [22]刘祚时,倪潇娟.三坐标测量机(CMM)的现状和发展趋势.机械制造,2004,42(480):32-34.
    [23]张国雄.坐标测量技术发展方向.红外与激光工程,2008,37(4):1-5.
    [24]刘升平,王剑,葛红.超声波测距系统的开发与研究.计算机工程与应用,2009,45(25):78-81.
    [25]何永强,卜英勇,任凤跃.用于微地形探测的超声波测距系统.设计与计算,2005,(12):114-116.
    [26]王贤刚,郭志平,彭亚辉.用几何参数实现快速三维重建CT图像.清华大学学报,2002,42(5):655-658.
    [27]王贤刚,叶青,郭志平等.两种典型三维CT系统及应用.CT理论与应用研究,2009,18(4):26-33.
    [28]姜千辉,姜长胜,葛庆平等.红外热波序列图像的图像分割与三维显示.无损检测,2008,30(2):100-103.
    [29]陈晓荣,蔡萍,施文康.光学非接触三维形貌测量技术新进展.光学精密工程,2002,10(5):528-532.
    [30]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量.北京,科学出版社,2002.
    [31]黄桂平,李广云,王保丰等.单目视觉测量技术研究.计量学报,2004,25(4):314-317.
    [32] S. D. Cochran, G, R. Medioni. 3-d surface description from binocular stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14 (10): 981-994.
    [33] J. Mulligan, V. Isler, K. Daniilidis. Trinocular stereo: a real-time algorithm and its evaluation. International Journal of Computer Vision, 2002, 47 (1-3): 51-61.
    [34] R. Klette, K. Schluns, A. Koschan. Computer vision: three-dimensional data from images. Singapore, Springer, 1998.
    [35]郑德华,陈光保,王守光.三维激光扫描数据处理的研究综述.测绘与空间地理信息,2008,31(5):1-4.
    [36] D. M. Meadows, W. O. Johnson, J. B. Allen. Generation of surface contours by moire pattern. Applied Optics, 1970, 9(4): 942-947.
    [37]韩建栋.结构光测量中若干关键技术研究[D].北京:北京邮电大学,2009.
    [38]解则晓,刘世晶,王琨.一种基于线结构光的五轴扫描测量系统.光学技术,2009,35(4):519-522.
    [39] J. Salvi, C. Matabosch, D. Fofi, et al. A review of recent range image registration methods with accuracy evaluation. Image and Vision Computing, 2007, 25(5): 578-596.
    [40] M. Rodrigues, R. Fisher, Y. Liu. Special issue on registration and fusion of range images. Computer Vision and Image Understanding, 2002, 87(1-3): 1-7.
    [41]龙玺,钟约先,李仁举等.结构光三维扫描测量的三维拼接技术.清华大学学报(自然科学版),2002,42(4):477-480.
    [42]李宏庆.基于视觉的六自由度机械臂控制技术研究[D].南京:南京理工大学,2009.
    [43]张辉.基于随机光照的双目立体测量关键技术及其系统研究[D].南京:南京航空航天大学,2009.
    [44]罗先波,钟约先,李仁举等.基于标志点的多视角三维测量数据配准技术的研究.计量技术,2004,(5):20-22.
    [45]许晓栋,赵毅,李从心.结构光测量中多视拼合技术与算法实现.2005,(10):137-140.
    [46] R. J. Campbell, P. J. Flynn. A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding, 2001, 81 (2): 166-210.
    [47] A. Johnson. Spin-images: a representation for 3-d surface matching [D].Pittsburgh: Carnegie Mellon University, 1997.
    [48] J. Feldmar, N. Ayache. Rigid and affine registration of smooth surfaces using differential properties. Proceedings of the 3rd European Conference on computer Vision, Stockholm, Sweden, 1994: 397-406.
    [49] C. Chen, Y. P. Hung, J. B. Cheng. A fast automatic method for registration of partially overlapping range images. International Conference on Computer Vision, Bombay, 1998: 242-248.
    [50] C. Chen, Y. Hung, J. Cheng. Ransac-based darces: a new approach to fast automatic registration of partially overlapping range images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(11): 1229-1234.
    [51] C. S. Chua, R. Jarvis. Point signatures: a new representation for 3D object recognition. International Journal of Computer Vision, 1997, 25(1): 63-85.
    [52] K. Brunnstrom, A. J. Stoddart. Genetic algorithms for free-form surface matching. Proceedings of the International Conference on Pattern Recognition, IEEE Computer Society, 1996:689-693.
    [53]吴维勇,王英惠.基于多尺度特征点识别与局部谱特征的离散数据匹配.计算机应用,2009,29(11):3011-3014.
    [54] N. Gelfand, N. J. Mitra, L. J. Guibas, et al. Robust global registration. Proceeding Of the Third Eurographics Symposium on Geometry Processing, Vienna, Austria, Eurographics Association, 2005: 197-206.
    [55] X. Li, I. Guskov. Multiscale features for approximate alignment of point-based surfaces. Symposium on Geometry Processing, Eurographics Association, 2005: 217-226.
    [56] H. T. Ho, D. Gibbins. A curvature based approach for multi-scale feature extraction from 3D meshes and unstructured point clouds. IET Computer Vision, 2009, 3(4): 201-212.
    [57] J. V. Wyngaerd, L. Van Gool. Automatic crude patch registration: toward automatic 3D model building. Computer Vision and Image Understanding, 2002, 87(1-3): 8-26.
    [58] I. Stamos, M. Leordeanu. Automatic feature-based range registration of urban scenes of large scale. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003: 555-561.
    [59] J. P. Tarel, H. Civi, D. B. Cooper, et al. Pose estimation of free-form 3D objects without point matching using algebraic surface models. Proceedings of IEEE Worshop Model Based 3D Image Analysis, Mumbai, India, 1998: 13-21.
    [60] D. Chung, Y. D. S. Lee. Registration of multiple-range views using the reverse-calibration technique. Pattern Recognition, 1998, 31(4): 457-464.
    [61] D. Brujic, M. Ristic. Monte carlo simulation and analysis of free-form surface registration. Journal of Engineering Manufacture, 1997, 211(8): 605-617.
    [62] P. J. Besl, N. D. Mckay. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
    [63] S. Rusinkiewicz, M. Levoy. Efficient variants of the ICP algorithm. Proceeding of 3-D Digital Imaging and Modeling, Quebec City, Canada, 2001: 145-152.
    [64] J. A. Williams, M. Bennamoun. Simultaneous registration of multiple corresponding point sets. Computer Vision and Image Understanding, 2001, 81(1): 117-142.
    [65] R. Benjemaa, F. Schmitt. A solution for the registration of multiple 3D point sets using unit quaternions. Proceedings of the 5th European Conference on Computer Vision-Volume II, Berlin, Springer-Verlag, 1998: 34-50.
    [66] S. Krishnan, P. Y. Lee, J. B. Moore, et al. Global registration of multiple 3D point sets viaoptimization-on-a-manifold. Proceedings of the Third Eurographics Symposium on Geometry Processing, Vienna, Austria, Eurographics Association, 2005: 187-196.
    [67] A. J. Stoddart, A. Hilton. Registration of multiple point sets. Proceedings of the 13th International Conference on Pattern Recognition, Vienna , Austria, IEEE Computer Society, 1996: 40-44.
    [68] H. Gagon, M. Soucy, R. Bergevin, et al. Registration of multiple range views for automatic 3-d model-building. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, 1994: 581-586.
    [69] P. Claes, D. Vandermeulen, L. Van Gool, et al. Automatic, robust and accurate 3D modeling based on variantional implicit surfaces. Belgium: Katholieke Universiteit Lenven, 2004.
    [70] W. E. Lorensen, H. E. Cline. Marching cubes: a high resolution 3D surface construction algorithm. SIGGRAPH Computer Graphics, 1987, 21 (4): 163-169.
    [71] H. M, Ller, M. Stark. Adaptive generation of surfaces in volume data. The Visual Computer, 1993, 9 (4): 182-199.
    [72] V. Tsai. Delaunay triangulations in tin creation: an overview and a linear-time algorithm. International Journal of Geographical Information Science, 1993, 7(6): 501-524.
    [73] D. T. Lee, B. J. Schachter. Two algorithms for constructing a delaunay triangulation. International Journal of Parallel Programming, 1980, 9(3): 219-242.
    [74] A. Hilton, A. J. Stoddart, J. Illingworth, et al. Marching triangles: range image fusion for complex object modelling. International Conference on Image Processing, Lausanne, Switzerland, 1996: 381-384.
    [75] H. Edelsbrunner, E. P. Mücke. Three-dimensional alpha shapes. ACM Transactions on Graphics, 1994, 13 (1): 43-72.
    [76] N. Amenta, S. Choi, T. K. Dey, et al. A simple algorithm for homeomorphic surface reconstruction. Proceedings of the Sixteenth Annual Symposium on Computational Geometry, Clear Water Bay, Kowloon, Hong Kong, ACM, 2000: 213-222.
    [77] Y. Yemez, C. J. Wetherilt. A volumetric technique for surface reconstruction from silhouette and range data. Computer Vision and Image Understanding, 2007, 105(1): 30-41.
    [78] K. N. Kutulakos, S. M. Seitz. A theory of shape by space carving. International Journal of Computer Vision, 2000, 38(3): 199-218.
    [79] B. Curless, M. Levoy. A volumetric method for building complex models from range images. Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques,New York, ACM, 1996: 303-312.
    [80] R. Sagawa, K. Nishino, K. Ikeuchi. Adaptively merging large-scale range data with reflectance properties. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 392-405.
    [81] A. Hilton, J. Illingworth. Geometric fusion for a hand-held 3D sensor. Machine Vision and Applications, 2000, 12(1): 44-51.
    [82] H. Hoppe, T. DeRose, T. Duchamp, et al. Surface reconstruction from unorganized points. Proceedings of the 19th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, ACM, 1992: 71-78.
    [83] S. Park, M. Subbarao. Automatic 3D model reconstruction based on novel pose estimation and integration techniques. Image and Vision Computing, 2004, 22(8): 623-635.
    [84] M. D. Wheeler, Y. Sato, K. Ikeuchi. Consensus surfaces for modelling 3D objects from multiple range images. Proceedings of the Sixth International Conference on Computer Vision, Washington, DC, USA, IEEE Computer Society, 1998: 917-924.
    [85] A. Hilton, J. Illingworth. Multi-resolution geometric fusion. International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Los Alamitos, 1997: 181-188.
    [86] X. K. Li, W. G. Wee. Range image fusion for object reconstruction and modeling. Proceedings of the 1st Canadian Conference on Computer and Robot Vision, Washington, DC, IEEE Computer Society, 2004: 306-313.
    [87] C. Dorai, G. Wang, A. K. Jain, et al. Registration and integration of multiple object views for 3D model construction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20 (1): 83-89.
    [88] H. Zhou, Y. Liu. Accurate integration of multi-view range images using k-means clustering. Pattern Recognition, 2008, 41(1): 152-175.
    [89] G. Roth, E. Wibowoo. An efficient volumetric method for building closed triangular meshes from 3-d image and point data. Proceedings of the conference on Graphics interface, British Columbia, Canada, Canadian Information Processing Society, 1997: 173-180.
    [90] H. Zhou, Y. Liu. Incremental point-based integration of registered multiple range images. Industrial Electronics Society, 31st Annual Conference of IEEE, Raleigh, 2005: 468-473.
    [91] C. Rocchini, P. Cignoni, F. Ganovelli, et al. The marching intersections algorithm for merging range images. The Visual Computer, 2004, 20(2): 149-164.
    [92]曹巨明,吾守尔·斯拉木,梁晋等.移动最小二乘增量式多视点云数据融合算法.西安交通大学学报,2009,43(9):46-49.
    [93] M. Soucy, D. Laurendeau. A dynamic integration algorithm to model surfaces from multiple range views. Machine Vision and Applications, 1995, 8(1): 53-62.
    [94] M. Soucy, D. Laurendeau. A general surface approach to the integration of a set of range views. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(4): 344-358.
    [95] M. Rutishauser, M. Stricker, M. Trobina. Merging range images of arbitrarily shaped objects. IEEE Conference on Computer Vision and Pattern Recognition, Seattle, 1994: 573-580.
    [96] R. Pito. Mesh integration based on co-measurements. International Conference on Image Processing, Lausanne, Switzerland, 1996: 397-400.
    [97] Y. Sun, C. Dumont, M. Abidi. Mesh-based integration of range and color images. AeroSense: Aerospace Defense Sensing and Controls, Sensor Fusion: Architectures, Algorithms, and Applications, Orlando, Florida, 2000: 110-117.
    [98] Y. Sun, J. Paik, A. Koschan, et al. Surface modeling using multi-view range and color images. Integrated Computer-Aided Engineering, 2003, 10 (1): 37-50.
    [99] G. Turk, M. Levoy. Zippered polygon meshes from range images. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, Orlando, ACM SIGGRAPH, 1994: 311-318.
    [100]张宗华,彭翔,胡小唐.深度图像合成的主次缝合线方法.工程图学学报,2001,22(2):102-109.
    [101] G. H?usler, S. Karbacher. Reconstruction of smoothed polyhedral surfaces from multiple range images. 3D Image Analysis and Synthesis, Infix Verlag, Sankt Augustin, 1997: 191-198.
    [102] L. Kobbelt. Discrete fairing. the 7th IMA Conference on the Mathematics of Surfaces, 1996: 101-131.
    [103] W. Welch, A. Witkin. Free-form shape design using triangulated surfaces. Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques, ACM, 1994: 247-256.
    [104]朱心雄.自由曲线曲面造型技术.北京,科学出版社,2000.
    [105] S. Karbacher, G. Haeusler. New approach for the modeling and smoothing of scattered 3D data. Three-Dimensional Image Capture and Applications SPIE, 1998: 168-177.
    [106]刘胜兰,周儒荣,聂军洪等.主曲率均匀的网格光顺.计算机学报,2004,27(1):79-84.
    [107] G. Taubin. A signal processing approach to fair surface design. Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, ACM, 1995: 351-358.
    [108] M. Desbrun, M. Meyer, P. Schr, et al. Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of the 26th Aannual Conference on Computer Graphics and Interactive Techniques, ACM Press Addison-Wesley Publishing Co., 1999: 317-324.
    [109] J. Vollmer, R. Mencl, H. Muller. Improved laplacian smoothing of noisy surface meshes. Computer Graphics Forum, 1999, 18(3): 131-138.
    [110] S. Fleishman, I. Drori, D. Cohen-Or. Bilateral mesh denoising. ACM Transactions on Graphics, 2003, 22 (3): 950-953.
    [111] L. Kobbelt, S. Campagna, J. Vorsatz, et al. Interactive multi-resolution modeling on arbitrary meshes. Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, ACM, 1998: 105-114.
    [112] C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images. Proceeding of the Sixth International Conference on Computer Vision, Bombay, Narosa Pablishing House, 1998: 839-846.
    [113] T. Jones, D. Durand, M. Desbrun. Non-iterative, feature-preserving mesh smoothing. ACM SIGGRAPH, San Diego, California, ACM, 2003: 943-949.
    [114]胡国飞,彭群生.基于顶点预测的特征保持网格光顺算法.浙江大学学报(工学版),2004,38(12):1535-1539.
    [115]章雅娟,李泽安.一种特征保持的自适应三角网格模型光顺算法.南通大学学报,2008,7(3):44-49.
    [116]何晖光,田捷,张晓鹏等.网格模型化简综述.软件学报,2002,13(12):2215-2224.
    [117] J. Rossignac, P. Borrel. Multi-resolution 3D approximation for rendering complex scenes. Proceedings of the 2nd Conference Modeling in Computer Graphics: Methods and Applications, Berlin, Springer-Verlag, 1993: 453-465.
    [118] K. L. Low, T. S. Tan. Model simplification using vertex-clustering. Proceedings of the 1997 Symposium on Interactive 3D Graphics, ACM SIGGRAPH, 1997: 75-82.
    [119] D. Kalvin, H. Taylor. Surfaces: polygonal mesh simplification with bounded error. IEEE Computer Graphics and Applications, 1996, 16(3): 64-77.
    [120] J. Li, Z. Tang. Realtime, continuous level of detail rendering for 3D complex models. Fifth International Conference on Computer-Aided Design & Computer Graphics, Shenzhen, International Academic Publishers, 1997: 101-106.
    [121] G. Turk. Re-tiling polygonal surfaces. Proceedings of the Computer Graphics, SIGGRAPH, ACM, 1992: 55-64.
    [122] T. He, L. Hong. Voxel-based object simplification. Proceedings of the 6th Conference on Visualization, IEEE Computer Society, 1995: 296-303.
    [123] P. S. Heckbert, M. Garland. Survey of polygon surface simplification algorithm. Proceedings of the SIGGRAPH, Multiresolution Surface Modeling Course, 1997: 1-31.
    [124] H. Hoppe, T. DeRose, T. Duchamp, et al. Mesh optimization. The 20th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, New York: ACM, 1993: 19-26.
    [125] B. Hamann. A data reduction scheme for triangulated surface. Computer Aided Geometric Design, 1994, 11(2): 197-214.
    [126] M. Garland, S. H. P. Surface simplification using quadric error metrics. the 24th Annual Conference on Computer Graphics and Interactive Techniques, New York, New York: ACM, 1997: 209-216.
    [127] E. Matthias, T. DeRose, T. Duchamp, et al. Multi-resolution analysis of arbitrary meshes. Proceedings of the Computer Graphics, Annual Conference Series, SIGGRAPH, Los Angeles, 1995: 71-78.
    [128] V. Isler, H. L. R. W, M. Green. Real-time multi-resolution modeling for complex virtual environments. Proceedings of the VRST, Hong Kong, 1996: 11-19.
    [129] H. Hoppe. Progressive meshes. Proceeding of the SIGGRAPH, New Orleans, Addison-Wesley Professional, 1996: 99-108.
    [130] J. Xia, A. Varshney. Dynamic view-dependent simplification for polygonal models. Proceedings of the 7th Conference on Visualization, Los Alamitos, USA, IEEE Computer Society Press, 1996: 327-334.
    [131] A. Ciamplini, P. Cignoni, C. Montani, et al. Multiresolution decimation based on global error. The Visual Computer, 1997, 13(5): 228-246.
    [132] Y. Wu, Y. He, H. Cai. Qem-based mesh simplification with global geometry features preserved. The 2nd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, Singapore, New York: ACM, 2004: 50-57.
    [133] S. Kim, C. Kim, D. Levin. Surface simplification using a discrete curvature norm. Computers & Graphics, 2002, 26(5): 657-663.
    [134]李现民,李桂清,张小玲等.基于子分规则的边折叠简化方法.计算机辅助设计与图形学学报,2002,14(01):8-13.
    [135]刘晓利,刘则毅,高鹏东等.基于尖特征度的边折叠简化算法.软件学报,2005,16(5):669-675.
    [136] M. Hussain, Y. Okada, K. Niijima. Efficient and feature-preserving triangular mesh decimation. Journal of WSCG, 2004, 12(1): 167-174.
    [137]唐慧,罗立民,周正东.基于曲线曲率的网格简化方法.中国图象图形学报,2008,13(11):2224-2230.
    [138] C. H. Lee, A. Varshney, D. W. Jacobs. Mesh saliency. ACM SIGGRAPH 2005, New York, USA, ACM, 2005: 659-666.
    [139]吴庆阳.线结构光三维传感器中关键技术研究[D].成都:四川大学,2006.
    [140]陶立.彩色三维激光扫描测量系统关键技术的研究[D].天津:天津大学,2005.
    [141]张宗华.多视场深度图像的计算机辅助造型[D].天津:天津大学,2000.
    [142]高鹏东.深度像配准及曲面细分技术的研究与应用[D].天津:天津大学,2006.
    [143] A. Hilton, A. J. Stoddart, J. Illingworth, et al. Implicit surface-based geometric fusion. Computer Vision and Image Understanding, 1998, 69(3): 273-291.
    [144] M. Mantyla. An introduction to solid modeling. New York, USA, Computer Science Press, 1988.
    [145] M. McGuire. The half-edge data structure. http://www.flipcode.com/articles/article_half- edge. shtml.
    [146] S. Chen, J. Wu. Estimating normal vectors and curvatures by centroid weights. Computer Aided Geometric Design, 2004, 21 (5): 447-458.
    [147] Stanford University. The stanford 3D scanning repository. http://graphics.stanford.edu/data/ 3Dscanrep.
    [148] X. Chen, F. Schmitt. Intrinsic surface properties from surface triangulation. Proceedings of the Second European Conference on Computer Vision, Santa Margherita Ligure, Springer-Verlag, 1992: 739-743.
    [149] K. Watanabe, A. G. Belyaev. Detection of salient curvature features on polygonal surfaces. Computer Graphics Forum, 2002, 20(3): 385-392.
    [150] M. Meyer, M. Desbrun, P. S. Der, et al. Discrete differential-geometry operators for triangulated 2-manifolds. Proceeding of Visualization and Mathematics III, Berlin, Springer-Verlag, 2003: 35-57.
    [151] G. Taubin. Estimating the tensor of curvature of a surface from a polyhedral approximation. Proceedings of the Fifth International Conference on Computer Vision, Boston, 1995: 902-907.
    [152] C. S. Dong, G. Z. Wang. Curvatures estimation on triangular mesh. Journal of Zhejiang University Science, 2005, 6A(8): 128-136.
    [153] O. Carmichael, D. Huber, M. Hebert. Large data sets and confusing scenes in 3-D surface matching and recognition. Second International Conference on 3-D Digital Imaging and Modeling, Ottawa, Ont., Canada, 1999: 258-367.
    [154] B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America. A, 1987, 4(4): 629-642.
    [155] K. S. Arun, T. S. Huang, S. D. Blostein. Least-squares fitting of two 3-D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(5): 698-700.
    [156] M. A. Fischler, R. C. Bolles. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 1981, 24(6): 381-395.
    [157] D. Aiger, M. J. Niloy, D. Cohen-Or. 4-points congruent sets for robust pairwise surface registration. ACM Transactions on Graphics, 2008, 27(3): 1-10.
    [158] F. Mokhtarian, N. Khalili, P. Yuen. Multi-scale free-form 3-D object using 3-D models. Image and Vision Computing, 2001, 19(5): 271-281.
    [159] C. Harris, M. Stephens. A combined corner and edge detector. Proceeding of the Fourth Alvey, Vision Conference, Manchester, UK, 1988: 147-151.
    [160] D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110.
    [161] B. Zitov?, J. Flusser. Image registration methods: a survey. Image and Vision Computing, 2003, 21(11): 977-1000.
    [162] K. Mikolajczyk, C. Schmid. A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
    [163] G. Roth. Registering two overlapping range images. Proceeding of The Second International Conference on 3-D Digital Imaging and Modeling, Ottawa, Ontario, Canada, 1999: 191-200.
    [164] J. V. Wyngaerd, L. J. Van Gool. Combining texture and shape for automatic crude patch registration. IEEE International Conference on 3D Digital Imaging and Modeling (3DIM), Banff, Canada, 2003: 179-186.
    [165] L. Ellekilde, J. Valls Miro, G. Dissanayake. Fusing range and intensity images for generating dense models of three-dimensional environment. Proceeding of the 2006 IEEE International Conference on Man-Machine Systems, 2006.
    [166] G. H. Bendels, P. Degener, R. Wahl, et al. Image-based registration of 3D-range data using feature surface elements. Proceeding of the 5th International Symposium on Virtual Reality,Archaeology and Cultural Heritage, 2004: 115-124.
    [167] T. R. Lo, J. P. Siebert. Local feature extraction and matching on range images: 2.5d sift. Computer Vision and Image Understanding, 2009, 113(12): 1235-1250.
    [168] F. Hou, Y. Qi, X. Shen, et al. Automatic registration of multiple range images based on cycle space. The Visual Computer, 2009, 25 (5-7): 657-665.
    [169] N. Gelfand, N. J. Mitra, L. J. Guibas, et al. Robust global registration. Proceedings of the Third Eurographics Symposium on Geometry Processing, Vienna, Austria, Eurographics Association, 2005: 197-206.
    [170] J. Novatnack, K. Nishino, A. Shokoufandeh. Extracting 3D shape features in discrete scale-space. Proceedings of the Third International Symposium on 3D Data Processing, Visualization, and Transmission, Chapel Hill, IEEE Computer Society, 2006: 946-953.
    [171] J. Novatnack, K. Nishino. Scale-dependent 3D geometric features. IEEE 11th International Conference on Computer Vision, Rio de Janeiro, 2007: 1-8.
    [172] M. Schlattmann. Intrinsic features on surfaces. The Tenth Central European Seminar on Computer Graphics, Vienna, 2006: 169-176.
    [173] C. Tomasi, T. Kanade. Detection and tracking of point features. Pittsburgh: Carnegie Mellon University, 1991.
    [174] R. L. Hardy. Multiquadric equations of topography and other irregular surfaces. Journal of Geophysical Research, 1971, 76(8): 1905-1915.
    [175] R. C. Gonzalez,R.E.Woods,阮秋琦等(译).数字图像处理.北京,电子工业出版社,2003.
    [176] B. K. P. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America A, 1987, 4(4): 629-642.
    [177]戴华.矩阵论.北京:科学出版社, 2001.
    [178] G. Dalley, P. Flynn. Pair-wise range image registration: a study in outlier classification. Computer Vision and Image Understanding, 2002, 87(1): 104-115.
    [179] L. Silva, O. Bellon, K. L. Boyer. Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 762-776.
    [180] Ohio State University. Osu range image database. http://sampl.ece.ohio-state.edu/data/ 3DDB/RID/ minolta/.
    [181] J. J. Koenderink, A. J. van Doorn. Surface shape and curvature scales. Image and Vision Computing, 1992, 10(8): 557-564.
    [182] C. Dorai, A. K. Jain. Cosmos-a representation scheme for 3D free-form objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130.
    [183] A. Rosenfeld, M. Thurston. Edge and curve detection for visual scene analysis. IEEE Transactions on Computers, 1971, 20(5): 562-569.
    [184] A. R. Hanson, E. M. Riseman. Processing cones: a parallel computational structure for scene analysis. Amherst, Massachusetts: University of Massachusetts, 1973.
    [185] J. L. Crowley. A representation for visual information [D].Pittsburgh, Pennsylvania: Carnegie-Melton University, 1981.
    [186] M. D. Kelly. Edge detection in pictures by computer using planning. Handbook of research on face processing. Edinburg: Edinburgh University Press, 1971:397-409.
    [187] T. Lindeberg. Feature detection with automatic scale selection. International Journal of Computer Vision, 1998, 30(2): 79-116.
    [188] K. Mikolajczyk, T. Tuytelaars, C. Schmid, et al. A comparison of affine region detectors. International Journal of Computer Vision, 2005, 65(1-2): 43-72.
    [189] H. Zhang, L. Y. Zhang, H. T. Wang, et al. Surface measurement based on instantaneous random illumination. Chinese Journal of Aeronautics, 2009, 22(3): 316-324.
    [190] S. Rusinkiewicz, M. Levoy. Efficient variant of the ICP algorithm. Third International Conference on 3D Digital Imaging and Modeling, Quebec City, Que Canada, 2001: 145-152.
    [191] K. Nishino, K. Ikeuchi. Robust simultaneous registration of multiple range images comprising a large number of points. Electronics and Communications in Janpan, 2004, 87(8): 61-74.
    [192]伍毅.三维扫描信息获取的深度图图像配准算法设计及开发[D].杭州:浙江大学,2005.
    [193] P. J. Besl, N. D. Mckay. A method for registration of 3-D shapes. Proceeding of the Society of Photo-optical Instrumentations Engineers, Bellingham, Soc Optical Engineering, 1992: 586-606.
    [194] M. Potmesil. Generating models of solid objects by matching 3D surface segments. Proceedings of 8th International Joint Conference on Artificial Intelligence, Karlsruhe, Germany, 1983: 1089-1093.
    [195] G. Blais, M. D. Levine. Registrating multiview range data to create 3D computer objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 820-824.
    [196] Z. Zhang. Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision, 1994, 13(2): 119-152.
    [197] T. Masuda, N. Yokoya. A robust method for registration and segmentation of multiple rangeimages. Computer Vision and Image Understanding, 1995, 61(3): 295-307.
    [198] J. Feldmar, G. Malandain, J. Declerck, et al. Extension of the ICP algorithm to non-rigid intensity-based registration of 3D volumes. Computer Vision and Image Understanding, 1996, 66(2): 193-206.
    [199] B. Krebs, P. Sieverding, B. Korn. A fuzzy icp algorithm for 3D free form object recognition. Proceedings of the 1996 International Conference on Pattern Recognition, Washington, DC, USA, IEEE Computer Society, 1996: 539-543.
    [200] Y. Chen, G. Mdioni. Object modelling by registration of multiple range images. Image and Vision Computing, 1992, 10(3): 145-155.
    [201] K. Pulli. Multiview registration for large data sets. Proceedings of Second International Conference on 3D Digital Imaging and Modeling, Los Alamitos, 1999: 160-168.
    [202] G. Godin, D. Laurendeau, R. Bergevin. A method for the registration of attributed range images. Proceeding of Third International Conference on 3-D Digital Imaging and Modeling, Los Alamitos, CA, USA, IEEE Computer Society, 2001: 179-186.
    [203] F. Lu, E. E. Milios. Robot pose estimation in unknown environments by matching 2d range scans. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, 1994: 935-938.
    [204] R. Bergevin, M. Soucy, H. Gagnon, et al. Towards a general multi-view registration technique. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(5): 540-547.
    [205] C. Dorai, G. Wang, C. Mercer, et al. From images to models: automatic 3D object model construction from multiple views. 13th International Conference on Pattern Recognition, Vienna , Austria, 1996: 770-774.
    [206] R. Bergevin, D. Laurendeau, D. Poussart. Registrating range views of multipart objects. Computer Vision and Image Understanding, 1995, 61(1): 1-16.
    [207] D. Brujic, M. Ristic. Analysis of free form surface registration. Proceedings of International Conference on Image Processing, Lausanne , Switzerland, 1996: 393-396.
    [208] T. Masuda, K. Sakaue, N. Yokoya. Registration and integration of multiple range images for 3-D model construction. Proceedings of the 1996 International Conference on Pattern Recognition (ICPR '96), Vienna, IEEE Computer Society, 1996: 879-883.
    [209] C. H. Menq, H. T. Yau, G. Y. Lai. Automated precision measurement of surface profile in cad-directed inspection. IEEE Transactions on Robotics and Automation, 1992, 8(2): 268-278.
    [210] Z. Xie, S. Xu, X. Li. A high-accuracy method for fine registration of overlapping point clouds.Image Vision Computing, 2010, 28 (4): 563-570.
    [211] M. Ristic, D. Brujic. Efficient registration of nurbs geometry. Image and Vision Computing, 1997, 15(12): 925-935.
    [212] K. C. Fan, T. H. Tsai. Optimal shape error analysis of the matching image for a free-form surface. Robtics and Computer-Intergated Manufacturing, 2001, 17(3): 215-222.
    [213] C. Dorai, J. Weng, A. K. Jain. Optimal registration of multiple range views. Proceedings of the 12th IAPR International Conference on Pattern Recognition, Los Alamitos, IEEE, Computer Soc Press, 1994: 569-571.
    [214] G. Champleboux, S. Lavallée, R. Szeliski, et al. From accurate range imaging sensor calibration to accurate model-based 3-D object localization. IEEE Transactions on Pattern Analysis and Machine Intelligence IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, IL , USA, 1992: 83-88.
    [215] G. C. Sharp, S. W. Lee, D. K. Wehe. Icp registration using invariant feature. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(1): 90-102.
    [216]刘晓利,彭翔,李阿蒙等.结合纹理信息的深度像匹配.计算机辅助设计与图形学学报,2007,19(3):340-345.
    [217] E. Trucco, A. Fusiello, V. Roberto. Robust motion and correspindences of noisy 3-D point sets with missing data. Pattern Recognition Letters, 1999, 20(9): 889-898.
    [218] P. J. Rousseeuw, A. M. Leroy. Robust regression and outlier detection. New York, John Wiley & Sons, Inc, 1987.
    [219] T. Zin?er, J. Schmidt, H. Niemann. A refined icp algorithm for robust 3-D correspindences estimation. IEEE International Conference on Image Processing, Barcelona, Spain, 2003: 695-698.
    [220] U. Castellania, A. Fusiellob, V. Murinoc. Registration of multiple acoustic range views for underwater scene reconstruction. Computer Vision and Image Understanding, 2002, 87(1-3): 78-89.
    [221] F. R. Hampel, E. M. Ronchetti, P. J. Rousseeuw, et al. Robust statistics: the approach based on influence functions. Wiley-Interscience, 1986.
    [222] J. Luck, C. Little, W. Hoff. Registration of range data using a hybrid simulated annealing and iterative closest point algorithm. Proceeding of The IEEE International Conference on Robotics and Automation, San Francisco, California, 2000: 3739-3744.
    [223] G. Godin, M. Rioux, R. Baribeau. Three-dimensional registration using range and intensityinformation. Proceedings of SPIE Videometric III, Boston, MA, USA, SPIE, 1994: 279-290.
    [224] T. Masuda. Generation of geometric model by registration and integration of multiple range images. Third International Conference on 3-D Digital Imaging and Modeling, Los Alamitos, 2001: 254-261.
    [225] S. Weik. Registration of 3-D partial surface models using luminance and depth information. Proceedings of International Conference on Recent Advances in 3-D Digital Imaging and Modeling, 1997: 93-100.
    [226] A. Sappa, A. Restrepo-specht, M. Uevy. Range image registration by using an edge-based representation. Proceedings of the 9th International Symposium on Intelligent Rohotic, Toulouse, France, LAAS-CNRS, 2001: 167-176.
    [227] D. W. Eggert, A. W. Fitzgibbon, R. B. Fisher. Simultaneous registration of multiple range views for use in reverse engineering. Proceedings of the 1996 International Conference on Pattern Recognition (ICPR '96), IEEE Computer Society, 1996: 243-247.
    [228] M. Greenspan, M. Yurick. Approximate k-d tree search for efficient icp. Fourth International Conference on 3-D Digital Imaging and Modeling, Ontario, Canada, 2003: 442-448.
    [229] M. Greenspan, G. Godin. A nearest neighbor method for efficient icp. Third International Conference on 3-D Digital Imaging and Modeling, Los Alamitos, CA, USA, 2001: 161-168.
    [230] P. J. Neugebauer. Geometrical cloning of 3D objects via simultaneous registration of multiple range images. Proceedings of the 1997 International Conference on Shape Modeling and Applications, IEEE Computer Society, 1997: 130.
    [231] R. Benjemaa, F. Schmitt. Fast global registration of 3D sampled surfaces using a multi-z-buffer technique. Image and Vision Computing, 1999, 17(2): 113-123.
    [232] B. K. P. Horn, H. M. Hilden, S. Negahdaripour. Closed-solution of absolute orientation using orthonormal matrices. Journal of the Optical Society of America, 1988, 5(7): 1127-1135.
    [233] M. W. Walker, L. Shao, R. A. Volz. Estimating 3-D location parameters using dual number quaternions. CVGIP: Image Understanding, 1991, 54(3): 358-367.
    [234] D. W. Eggert, A. Lorusso, R. B. Fisher. Estimating 3-D rigid body transformations : a comparison of four major algorithm. Machine Vision and Applications, 1997, 9(5-6): 272-290.
    [235] C. Yang, G. Medioni. Object modeling by registration of multiple range images. Image and Vision Computing, 1992, 10(3): 145-155.
    [236] D. G. Lowe. Perceptual organization and visual recognition. Norwell, Kluwer Academic Publisher, 1985.
    [237] T. M. Tucker, T. R. Kurfess. Newton methods for parametric surface registration. Part i. Theory. Computer-Aided Design, 2003, 35(1): 107-114.
    [238] T. M. Tucker, T. R. Kurfess. Newton methods for parametric surface registration. Part ii. Experimental validation. Computer-Aided Design, 2003, 35(1): 115-120.
    [239] A. Gruen, D. Akca. Least squares 3D surface and curve matching. Journal of Photogrammetry and Remote Sensing, 2005, 59(3): 151-174.
    [240] D. Fischer, P. Kohlhepp, F. Bulling. An evolutionary algorithm for the registration of 3-D surface representations. Pattern Recognition, 1999, 32(1): 53-69.
    [241] B. L. Curless. New methods for surface reconstruction from range images [D].Stanford: Stanford University, 1997.
    [242] T. Masuda. Registration and integration of multiple range images by matching signed distance fields for object shape modeling. Computer Vision and Image Understanding, 2002, 87(1-3): 51-65.
    [243] P. Krsek, T. Pajdla, V. Hlavá. Differential invariants as the base of triangulated surface registration. Computer vision and image understanding, 2002, 87(1-3): 27-38.
    [244] Y. Kita. Force-based registration method using attribute values. Proceedings of the 13th International Conference on Pattern Recognition, Washington, DC, USA, IEEE Computer Society, 1996: 34-39.
    [245] J. D. Owens, D. Luebke, N. Govindaraju, et al. A survey of general-purpose computation on graphics hardware. Computer Graphics Forum, 2007, 26(1): 80-113.
    [246]吴恩华.图形处理器用于通用计算的技术、现状及其挑战.软件学报,2004,15(10):1493-1504.
    [247] J. Gregor, R. T. Whitaker. Indoor scene reconstruction from sets of noisy range images. Graphical Models, 2001, 63(5): 304-332.
    [248] S. Y. Park, M. Subbarao. Pose estimation and integration for complete 3D model reconstruction. The 6th IEEE Workshop on Applications of Computer Vision, Los Alamitos, 2002: 143-147.
    [249] K. Pulli, T. Duchamp, H. Hoppe, et al. Robust meshes from multiple range maps. International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Los Alamitos, 1997: 205-211.
    [250]马颂德,张正友.计算机视觉-计算理论与算法基础.北京,科学出版社,2003.
    [251]张广军.机器视觉.北京,科学出版社,2005.
    [252]郑建冬,张丽艳,周玲等.基于单数码相机自由拍摄的空间点定位.航空学报,2007,28(6):1521-1526.
    [253] C. Rocchini, P. Cignoni, C. Montani, et al. Multiple textures stitching and blending on 3D objects. The 10th Eurographics Workshop on Rendering, Granada, Springer-Verlag, 1999: 119-130.
    [254] H. Zha, P. Wang. Realistic face modeling by registration of a 3-D mesh model and multi-view color images. The 8th International Confernce on CAD/Graphics, Macao, Welfare Printing Limited, 2003: 217-222.
    [255] P. J. Neugebauer, K. Klein. Texturing 3D models of real world objects from multiple unregistered photographic views. Computer Graphics Forum, 1999, 18(3): 245-256.
    [256]刘钢,彭群生,鲍虎军.基于多幅实拍照片为真实景物模型添加纹理.软件学报,2005,16(11):2014-2020.
    [257] H. P. A. Lensch, W. Heidrich, H. Seidel. Automated texture registration and stitching for real world models. Proceedings of the 8th Pacific Conference on Computer Graphics and Applications, IEEE Computer Society, 2000: 317-326.
    [258]张宗华,彭翔,胡小唐.深度图像的纹理合成方法.天津大学学报,2001,34(6):733-737.
    [259] A. E. Johnson, S. B. Kang. Registration and integration of textured 3-D data. Proceedings of the International Conference on Recent Advances in 3-D Digital Imaging and Modeling, IEEE Computer Society, 1997: 234-241.
    [260]韦虎,刘胜兰,张丽艳等.双目立体测量系统中的标记点配准算法研究.中国机械工程,2009,20(14):1736-1740.
    [261] P. Cignoni, C. Montani, R. Scopigno. A comparison of mesh simplification algorithms. Computers & Graphics, 1998, 22(1): 37-54.
    [262]卢威,曾定浩,潘金贵.支持外观属性保持的三维网格模型简化.软件学报,2009,20(3):713-723.
    [263] M. Garland. Qslim v2.0. http://mgarland.org/software/ qslim20.html,1999.
    [264] P. Cignoni, C. Rocchini, R. Scopigno. Metro: measuring error on simplified surfaces. Computer Graphics Forum, 1998, 17(2): 167-174.
    [265] C. DeCoro, N. Tatarchuk. Real-time mesh simplification using the gpu. Symposium on Interactive 3D Graphics (I3D), Seattle, New York: ACM, 2007: 161-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700