用户名: 密码: 验证码:
CFD数值仿真建模技术研究及其在高速动车组中的验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算流体动力学(CFD)技术是20世纪90年代以来工程应用基础研究的一大突破,也是本世纪的重要发展方向之一。论文首先给出了CFD的定义和内涵,并对国内外CFD技术的研究现状及发展趋势进行了综述。
     高速动车组(HST)是铁路机车行业中的复杂产品之一,论文讨论了在空气动力领域降低HST物理样机投资风险的可行性及紧迫性。在HST设计中,有一系列空气动力内流场及外流场问题需要解决,一个典型的例子是随着列车速度提高,气动阻力剧烈增加,以至于气动性能起更重要的影响。所以,本文主要致力于研究如何建立一些有价值的CFD模型,并且将这些模型应用到HST设计中。本文的研究内容包括:
     考虑到模型质量的重要性,论文首先对二维马赫数4和1.83(M4和M1.83)拟似冲击波流动进行数值仿真及试验验证。由于激波是一个非常薄的间断面,如何能准确捕捉到激波是计算流体动力学的难题之一。同时,采用纹影实验和液晶实验对拟似冲击波的结构和边界层流动进行分析。计算结果与试验结果对比的良好一致性说明了论文采用的CFD模型具有很高的精度。对M1.83拟似冲击波也进行了数值仿真及验证。仿真获得的实验难以得到的拟似冲击波内部参数变化对认识拟似冲击波内部流动结构和流动机理有很大的帮助。此项研究为后续的动车组内外流场数值仿真建模的感悟极有帮助。
     其次,针对高速动车组内外流场的实际工程问题创建了一系列仿真模型,其仿真结果获得了工程验证。
     1.关于内流场
     (1)基于液固耦合,对水箱晃动的多相流问题进行CFD数值模拟,提取了水对水箱各个部位中最具破坏的压力波产生的作用力,并以此提供给有限元模型计算它的最大响应。屈曲分析结果与水箱实际破坏情况基本吻合,说明流固耦合计算模型可靠。
     (2)针对离心风机一类问题,对机车离心通风机进行了CFD数值模拟与流场优化,获得增加风压的方案,为高效率离心通风机的设计提供了一个有用的范例。
     (3)针对空调通风均匀性问题,对列车的风道和车内气流组织进行建模与仿真计算,数值仿真结果与实验结果基本符合,证明所创建的CFD仿真模型可靠。
     (4)针对涡轮增压器压气机叶轮三维流动问题,对转速21720r/min、压比3.1的机车涡轮增压器压气机叶轮内的三维流场进行CFD建模与数值仿真,捕捉到了叶轮中长短叶片的吸力面上存在超声速流动现象。
     2.关于外流场
     (1)针对高速列车气动外流场进行了CFD建模与数值仿真,获得了列车阻力随速度的变化规律、列车表面压力系数分布和高速列车尾流场的变化规律,加深了对外流场流动规律的认识。
     (2)针对气动噪声问题,采用大涡模拟算法,获得高速列车周围观察点上的声压、声压级的变化规律,并对同一时间下功率谱密度随频率的变化规律进行了研究,提供了利用CFD进行空气动力噪声分析的技术路线。
     论文创新点:
     (1)首次针对M4拟似冲击波的非对称现象进行了数值仿真。计算结果与试验结果的一致性证明了CFD模型的可靠性,仿真计算揭示的拟似冲击波内部流动参数变化规律对深刻认识其复杂的流动机理具有重要意义。
     (2)首次对M4的拟似冲击波流动现象进行了液晶显示实验。试验获得了边界层分离、再附着等重要流动特征。基于试验结果分析,首次提出了应使液晶在受测表面上轻微流动的新观点,填补了国内采用液晶显示技术研究拟似冲击波边界层流动的空白。
     (3)首次对我国高速动车组CFD内外空气动力流场进行了一系列建模研究。其中包括:列车空调通风系统,机车离心通风机,列车水箱晃动、高速列车远场空气动力噪声等,仿真结果的工程验证表明了模型的可靠性。
Computational Fluid Dynamics (CFD) technology was one of the most important developments in the engineering application in 1990s. Now, it still is one of important subjects applied in engineering. In this paper, the definition of CFD is firstly described briefly including its current achievements and future trend at home and abroad.
     High Speed Train (HST) is one of most complex products in railway industry. The urgency and feasible decreasing the investment risk in the HST physical prototype are discussed as well. In the HST design, there are many fluid dynamic issues that should be solved urgently not only related with the inner fluid fields but also with exterior fluid fields. A typical example is when HST speed increases, its aerodynamic force increases so much that its aerodynamic performance will definitely play an more important role then before. So, in this paper, the main research works are how to create some useful CFD models and how to apply these models into HST.
     Due to the important of creating models, this paper first created two models related with Mach 4 and 1.83 Pseudo Shock Wave (PSW) in a two-dimensional square duct respectively. Since shock wave is a very thin discontinuous surface, capturing this kind of shock waves had been one difficult issue in CFD field. At the same time, in a pressure-vacuum supersonic wind tunnel, a high-speed color schlieren photography visualization technique is used to show the inner structure of M4 PSW, and the shear-sensitive liquid crystal technique is applied in the investigating its boundary layer. Fortunately, the results from CFD numerical simulation are very close to the experimental results. Further, the flow quantities, which are very difficult to be obtained experimentally, could be analyzed by numerical simulation. The better consistency between those results shows that the numerical simulation definitely is useful as well if we are able to put these experiments of creating models above into creating CFD models of HST.
     Secondly, in order to solve some engineering issues including the inner and outer fluid fields related with HST, some kinds of models have been created and proved.
     1. About Inner flow field
     (1) With regard to the fluid-solid coupling issue happened in the water tank of HST, a CFD model related with the water sway has been created, which has successfully provided maximum force into a FEA model to calculate its maximum response. The result from buckling analysis is close to the practical failure manner which indicated the CFD model is reliable.
     (2) With regard to the centrifugal ventilator issue, based on the CFD numerical analysis in 3D and corresponding optimum design, based multi-domain optimum software, a better design has been obtained. This is a useful demo for high-efficiency centrifugal ventilator design.
     (3) With regard to the air-condition vent issue, the air duct and inner air flow of HST is simulated numerically, and the numerical results close to the real one indicated this kind of CFD model is reliable.
     (4) With regard to the turbine supercharge compressor impeller issue, a CFD model, with 21721 r/min and pressure ratio 3.1, has been created, the shock wave phenomena are captured happen on the suction face of the long and short blades.
    
     2. About exterior flow field
     (1) With regard to the 3d exterior flow issue, a CFD simulation model has been created. Based on this model, the resistance influential laws, the surface pressure coefficient and the trail flow field are investigated.
     (2) With regard to the fast running noise issue, the LES (Large Eddy Simulation) is applied to analyze its aero-noise. The aero-noise information around the HST has been obtained including acoustic pressure, acoustic pressure level varied in time, and the power spectrum.
     In summarization, in this paper the innovations are as follows:
     (1) M4 pseudo shock wave is first numerically modeled, and its asymmetric structure is numerically obtained. The simulation result is very close with its experimental result. That means while the created CFD model is creditable, then the CFD simulation could obtain more information than test in the research field of pseudo shock wave.
     (2) The shear-sensitive liquid crystal technique is first applied in investigating the boundary layer fluid properties of M 4 pseudo shock wave. According to the experiment results, it is clear if liquid crystal should slowly flow during the experiment so that more information related with the stress magnitude and direction can be obtained.
     (3) One set of HST CFD models is created including inner and exterior flow, which include the air-condition vent system, the multi-domain optimum, water sway in coupling, aero-noise etc. The numerical results have been proved that the CFD models are reliable in engineering application.
引文
[1] 傅德熏,马延文.计算流体动力学.北京:高等教育出版社,2002.
    [2] 孙大涌,屈贤明,张松滨.先进制造技术.北京市:机械工业出版社,1999.
    [3] 吴子牛.计算流体动力学基本原理.北京市:科学出版社,2001.
    [4] 叶旭初等.CFD技术及工程应用技术.南京
    [5] 苗文博.CFD软件在动边界问题和大型衍架结构中的应用.北京大学硕士论文.2003
    [6] 段江南,蔡兆磷.离心通风机内部流场模拟中的几何建模.风机技术.2001(6):38~42.
    [7] 王承尧,王正华,杨晓辉.计算流体动力学及其并行算法.长沙市:国防科技大学出版社,2000.
    [8] 朱自强,吴子牛,李津,闫超,陈泽民.应用计算流体动力学.北京:北京航空航天大学出版社,1998.
    [9] 袁邵.并行计算流体动力学的研究与应用.
    [10] Eric.M, Rainald.L, Samir.A. TGV Tunnel Entry Simulations Using A Finite Element Code with Automatic Remeshing. AIAA-93-0890.
    [11] Robert A. MacNeill, Samuel Holmes, Harvey S.Lee. Measurement of the Aerodynamic Pressures Produced by Passing Trains. Proceedings of the 2002 ASME/IEEE Joint Rail Conference.
    [12] 梁习峰.实车表面空气压力分布试验技术研究.铁道学报.2002,24(3):95~98.
    [13] 高品贤,余南阳,雷波.隧道空气压力波浅水槽拖动模型试验的实时检测.铁道学报.2000,22(3):43~46.
    [14] 田红旗,梁习峰.准高速列车交会空气压力波试验研究.铁道学报.1998,20(4):37~42.
    [15] 陈南翼,张健.高速列车空气阻力实验研究.铁道学报.1998,20(5):40~46.
    [16] 骆建军,高波,王英学.高速列车突入隧道与缓冲结构时的数值模拟.空气动力学报.2003,21(3):376~381.
    [17] 梅元贵,余南阳,赵海恒,刘应清.高速列车隧道会车压力波的数值分析方法.铁道学报.2002,24(2):23~25.
    [18] 田红旗,贺德馨.列车交会压力波三维数值的计算方法.铁道学报.2001,23(3):18~22.
    [19] 武青海.列车空气动力学数值仿真研究.中国铁道科学.2002,23(4):132~138.
    [20] 腾兆武,王刚.车辆制冷与空调.北京:中国铁道出版社,1996
    [21] 王刚.新型高速列车气流组织与热舒适性研究.哈尔滨工业大学博士论文.2003,6
    [22] 闫雪冬.轮轨/磁浮动车组虚拟样机若干关键技术研究与应用.大连交通大学博士论文.2005
    [23] 陶文铨.数值传热学.西安:西安交通大学出版社,1988年7月
    [24] 徐趁肖.高速列车头型共映射建模理论研究.北方交通大学博士论文.2002,7
    [25] 王福军.计算流体动力学分析.北京:清华大学出版社,2004
    [26] 董葳 等.高速粘性绕流的有限体积TVD格式.空气动力学报.1999,17(3):299~304.
    [27] 陈庆光 等.两种差分格式和两种湍流模型在轴对称冲击射流数值计算中的比较.空气动力学报.2003,21(1):82~89.
    [28] 李人宪.有限体积法基础.北京:国防工业出版社,2005,7
    [29] 那艳铃.地铁车站通风与火灾的CFD仿真模拟与实验研究.天津大学博士论文.2003.
    [30] ZHIYIN YANG, PETER R.VOKE. Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature[J]. J. Fluid Mech. 2001, 439: 305~333.
    [31] LIAN SHEN, DICK K. P.YUE. Large-eddy simulation of free-surface turbulence. J. Fluid Mech. 2001, 440: 75~116.
    [32] 王希诚.结构优化设计的并行计算方法.长春:吉林工业大学,2001.
    [33] 张博,周兴社,康继昌,谷建华.面向流场计算的PVM并行程序设计研究.航空学报.1997,18(3):341~344..
    [34] 王铎林.参数化驱动的离心风机优化设计研究.大连交通大学硕士论文.2005.
    [35] 张涵信,沈孟育.计算流体动力学—差分方法的原理和应用.北京:国防工业出版社,2003年1月.
    [36] 朱军政,范西俊.复杂外形飞行器多块结构贴体网格生成.航空学报.1997,18(1):62~65.
    [37] 熊光楞 等.协同仿真与虚拟样机技术.北京:清华大学出版社,2005
    [38] 钱翼稷.空气动力学.北京:北京航空航天大学出版社,2004年9月.
    [39] 李桦,范晓樯,丁猛.超声速扩压器中激波串结构的数值模拟.国防科技大学学报.24(1):18~21,2002
    [40] Itaru H. Computational Study of the shock-wave/boundary-layer interaction in a duct. Fluid Dynamics Research. 1989, 3: 217~234.
    [41] Sugiyama H., Fukuda K., Mizobata K et al. Study on Supersonic Internal Flows with Shock Waves (Development of the Experimental Apparatus for Supersonic Internal Flows and Characteristics of the Pseudo-shock Waves in Mach 2 and 4 Internal Flows). Trans. JSME (in Japanese), 2002, 676(68): 3295~3301.
    [42] Sugiyama H., Arai, T. and Kagawa, K.: Multiple Shock Wave/Turbulent Boundary Layer Interactions and Turbulent Phenomena in a Supersonic Rectangular Duct, Proc. of 4th KSME-JSME Fluids Eng. Conf., 1998, 25~28.
    [43] Fukuda K, Sugiyama H., Mizobata K et al. Experimental Investigation on Flow Structure of Mach 4 Pseudo-Shock Wave in a Square Duct, Journal of Visualization (in Japanese), 2003, 23(5): 39~45.
    [44] Carroll B F, Lopez-Fernandezt P A and Dutton J C. Computations and Experiments for a Multiple Normal Shock/Boundary-Layer Interaction, J. of Propulsion and Power, 1993, 9(3): 405~411.
    [45] Yamane R, Oshima S, Nakamura Y et al. Numerical Simulation of Pseudoshock in Straight Channels, JSME International Journal, Series B, 1995, 38 (4): 549~554.
    [46] Carroll B F, Dutton J C. Characteristics of Multiple Shock Wave/Turbulent Boundary-Layer Interactions in Rectangular Ducts, J. of Propulsion and Power, 1990, 6(2): 186~193.
    [47] Lin P, Rao G V R and O'Connor G M. Numerical Investigation on Shock Wave/Boundary-Layer Interactions in a Constant Area Diffuser at Mach 3, AIAA Paper, 1991, 91-1766.
    [48] Sun L Q., Sugiyama H, Mizobata K el at. Numerical and Experimental Investigations on the Mach 2 Pseudo-Shock Wave in a Square Duct, Journal of Visualization, 2003, 6(4): 363~370.
    [49] 田正雨,李桦,范晓樯.六类高超声速激波.激波干扰的数值模拟研究.空气动力学报.2004,22(3):361~364.
    [50] 刘仪 等.扩压器进气道内流及激波/边界层干扰的数值研究.空气动力学学报.1997,15(2):256~260.
    [51] 邓建平 等.高超声速进气道内激波-边界层干扰研究.空气动力学学报,1995,13(1):28~33.
    [52] 张涤明 等.计算流体动力学.广州:中山大学出版社.1991年5月.
    [53] FLUENT INCORPORATED. FLUENT 5 Tutorial Guide, 1998
    [54] 陈庆光 等.两种差分格式和两种湍流模型在轴对称冲击射流数值计算中的比较.空气动力学报.2003,21(1):82~89.
    [55] 范洁川 等.近代流动显示技术.国防工业出版社,北京,2002.
    [56] 颜大椿.实验流体力学.高等教育出版社,北京,1992.
    [57] Sun L.Q. A Numerical and Experimental Study on Mach 2 and 4 Pseudo-Shock Waves in a Squiare Duct. Doctor paper of Muroran Institute of Technology, 2004.
    [58] Smith Stephen C. The use of liquid crystals for surface flow visualization. 1990, AIAA 90—1382.
    [59] Daniel C.R, Joseph J.M. Measurement of Surface Shear Stress Vectors Using Liquid Crystal Coatings. AIAA J, 1994, 32(8): 1576~1582
    [60] Nobuyuki Fujisawa, Satoshi Shibuya, Atsushi Nashimoto and Tsuyoshi Takano. Aerodynamic noise and flow visualization around two- dimensional airfoil, Journal of Visualization (in Japanese), 2001, 21(9): 123~129.
    [61] Reda D C. Observations of Dynamic Stall Phenomena Using Liquid Crystal Coatings. AIAA J, 1991, 29(2): 308~311.
    [62] Parmar D.S, SINGH Jag J, Eftekhari Abe. A shear sensitive monimer-polymer liquid crystal system for wind tunnel applications. Rev.Sci.Instrum., 1992, 63(1): 225~229.
    [63] Matsumura S, Schneider S.P, Berry S.A. Flow Visualization Measurement Techniques for High-Speed Transition Research in the Boeing/AFOSR Mach-6 Tunnel. AIAA 2003-4583, p: 1~10.
    [64] Reda D C, Wilder M C, Farina D J, Zilliac G. New Methodology for the Measurement of Surface Shear Stress Vector Distributions. AIAA J, 1997, 35(4): 608~614.
    [65] Reda D C, Wilder M C, Crowder J P. Simultaneous, Full-Surface Visualizations of Transition and Separation Using Liquid Crystal Coatings. AIAA J, 1997, 35(4): 615~616.
    [66] N, Toy, P J Disimile and E Savory. Local shear stress measurements within a rectangulary yawed cavity using liquid crystals, Optical Diagnostics in Engineering. 1999, 3(1): 91~101.
    [67] Hall, R.T, Obara, C. J. Carraway, D. L. Johnson, C. B. Weight, R. E. Covell, P. F. and Azzazy. M. Comparisons of boundary-layer transition measurement techniques at supersonic mach numbers, AIAA J, 1991, 29(6): 865~871.
    [68] Reda, Daniel C. Muratore Jr, Joseph. and Heineck, James T. Time and flow-direction responses of shear-stress-sensitive liquid crystal coatings. AIAA J, 1994, 32(4): 693~700.
    [69] 李发军.液晶测温技术及其在脉冲射流冲击换热中的应用研究.北京工业大学硕士论文.2004.
    [70] 王东屏,兆文忠,杉山弘,東條 啓.基于液晶显示方法研究M4拟似冲击波超声速流动.空气动力学报.2005,23(4):521~525
    [71] PRODUCT CERTIFICATE: TEMPERATURE INSENSITIVE LIQUID CRYSTAL MIXTURE CN/R7.
    [72] Wang D P, Zhao W Z, Sugiyama H, TOJO A. Study on Internal Supersonic Flows with Pseudo-shock Wave Using Liquid Crystal Flow Visualization Method. CHINESE JOURNAL OF AERONAUTICS. 2005, 18(2): 102~107.
    [73] Sugiyama H, TAKEDA H, ZHANG J P, OKUDA K, YAMAGISHI H. Locations and Oscillation Phenomena of Pserdio-Shock Waves in a Straight Rectangular Duct. JSME International Journal. 1988, 31(1): 9~15.
    [74] 王东屏,兆文忠,杉山弘,東條 啓.马赫数4二维直管内拟似冲击波(pseudo-shock wave)实验和数值研究.航空学报.2005,26(4):392~396.
    [75] 陆新征,叶列平,马千里,江见鲸.CFRP索流固耦合风振研究.第十二届全国结构风工程学术论文集.西安,2005,p:69~75
    [76] 闫雪冬等.客车水箱起皱机理及CAE性能仿真集成.中国机械工程.2003(14):1~5.
    [77] 周志宜.有限元素耦合力场实例探讨.中原大学硕士论文.2004
    [78] 张莉,陈汗平,徐忠.离心压缩机叶轮内部流场的准三元迭代法数值分析.风机技术.:3~7.
    [79] 樊会元,席光,王尚锦.离心压缩机二元和三元叶轮内流分析.风机技术.1999(1):5~12.
    [80] 陈修怀,李嵩,黄东涛,朱之墀.利用三维数值模拟改进离心通风机设计.风机技术,2003(2):6~8.
    [81] 郑孝东.提高煤矿主通风机效率的途径及措施.风机技术.2001(5):53~55.
    [82] 闻苏平,张楚华,李景银.旋转叶轮和叶片扩压器耦合的非定常流动计算.西安交通大学学报.2004,38(7):754~757
    [83] 沈阳鼓风机研究所、东北工学院流体机械教研室编著.离心式通风机.机械工业出版社,1984,6
    [84] OPTIMUS5.0 Documentation, Nosis Inc 2004.
    [85] 张吉光,杨晚生,史自强.铁路客车空调系统送风均匀性的研究.流体机械.2002,30(1):50~53.
    [86] 胡松涛.高速列车空调通风系统实验研究与仿真优化.青岛建筑工程学院硕士论文.2005
    [87] 谭洪卫.计算流体动力学在建筑环境工程上的应用.暖通空调.1999,29(4):31~35.
    [88] 龚光彩.CFD技术在暖通空调制冷工程中的应用.暖通空调.1999,29(6):25~27
    [89] 陈焕新,黄素逸,张登春.空调列车室内气流分布的数值模拟.流体机械.2002,30(4):59~61.
    [90] 孙剑,汤广发,李念平,刘云川.复杂外形建筑室内气流数值模拟研究.暖通空调.2002,32(2):8~10.
    [91] 王东屏,兆文忠,孙彦彬,刘爱玲.空调通风系统CFD仿真及在摆式客车二等座车中的应用.大连铁道学院学报.2001,(4):1~5.
    [92] 赵彬 等.用零方程湍流模型模拟通风空调室内的空气流动.清华大学学报.2001,41(10):109~113.
    [93] FLUENT INCORPORATED. Airpak User's Guide, 2000.
    [94] 王航.CA6110ZLA5柴油机JK80VNT涡轮增压器开发研究.北京理工大学硕士论文.2003,8
    [95] 宋立明,李军,丰镇平.跨音速透平扭叶片的气动优化设计研究.西安交通大学学报.2005,39(11):1277~1281.
    [96] 罗晟,蔡兆麟.变叶片数和长短叶片结构对离心叶轮内三维粘性流场的影响.风机技术.2000,6:3~6
    [97] 刘应清,罗志刚.近地非流线型体紊流绕流的二维数值分析.西南交通大学学报,1991,4:74~80
    [98] 庄达民,林国华.高速列车舱内气流分布的数值模拟.铁道学报.2000,22(2):26~30
    [99] 梁习锋,许平等.高速列车气动性能与外形技术设计说明书.中南大学 2001.
    [100] 邵汝椿,黄振吕.机械噪声及其控制.广州:华南理工大学出版社,1997.
    [101] Sjoerd W. Rienstra etc. Aeroacoustics Research in Europe: the Ceas-asc Report on 1997 Highlights. An Annual Summary of Aeroacoustics Research in the 8 CEAS-Countries.
    [102] 范士杰.车用风扇气动噪声的CFD计算.2005年Fluent中国用户大会论文集:52~55
    [103] 王立群,宋文萍.旋翼奖尖形状对噪声影响量级的研究.航空学报.2000,21(1):48~51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700