用户名: 密码: 验证码:
纳米金属氧化物、壳聚糖及其复合材料的制备与结构、性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米材料的制备方法对其结构、性能有重要影响。通过不同方法制备了纳米金属氧化物和壳聚糖纳米微球,并对其结构进行表征;在此基础上提出制备金属氧化物/壳聚糖纳米复合材料的新思路,并以之为指导制备了金属氧化物/壳聚糖纳米复合材料,研究了该复合材料的结构和性能。
     用常温化学沉淀法和水热反应法制备了MnO_2的纳米结构。
     常温化学沉淀法是通过KMnO_4和MnSO_4的常温化学反应来获得MnO_2纳米结构。所制备的纳米结构微观形貌为不规则的球笼型结构,球笼型结构由相互交织在一起的纳米短片构成,纳米片厚度10~20 nm,宽度50~80nm。XRD分析表明,该产物属于ε-MnO_2晶体结构,但结晶度较低。添加阳离子表面活性剂十六烷基三甲基溴化铵(CTAB)能够改变纳米结构的形貌,形成由纳米片交织的不规则多孔网片状结构。
     以KMnO4和MnSO4为前驱体,用水热反应法在160℃制备了粒径50nm,长1~2μm的棒状MnO_2纳米结构。晶体结构测试表明,该纳米棒从常温制备的ε-MnO_2转变为β-MnO_2,且纯净无杂质,结晶度高。表面活性剂CTAB存在时纳米结构微观形貌转变为层叠的宝塔状。
     以颗粒状的MnO_2粉体为前驱体,以NaOH水溶液为反应介质,用水热反应法制备了MnO_2一维纳米结构。当反应条件160℃/48h时,得到厚度10~20nm,宽度80~100nm,长约数微米的一维纳米带。XRD数据显示,纳米带是γ-MnO_2晶体结构,结晶度较高。当反应介质为LiOH时,得到类似的结果。
     用液体回流法制备了TiO2纳米微粒。在丁醇水溶液中滴加钛酸四丁酯,将得到的反应产物粉碎后500℃煅烧,得到白色纳米TiO2粉体。结构分析表明,所得TiO2纳米结构为粒径50~100nm的球形微粒,是锐钛矿和金红石的混合晶型,其中金红石型约占41%。
     用分子自组装方法制备了脱氧胆酰修饰壳聚糖的纳米微球。首先以壳聚糖和脱氧胆酸为原料,以碳化二亚胺为交联剂制备了脱氧胆酰修饰壳聚糖,1H NMR测试其取代度为0.051,同时研究了它在Ac、HCl溶液中的自聚集能力。在乙酸-乙酸钠溶液中,以二氯甲烷为乳化剂、三聚磷酸钠为交联剂制备了脱氧胆酰修饰壳聚糖纳米微球。TEM观察表明,纳米微球的粒径介于100~600nm之间。
     以TiO2纳米微粒和壳聚糖为原料,强碱性的NaOH浓溶液为溶剂,利用水热反应法制备了TiO2/壳聚糖一维纳米复合材料。SEM、TEM电镜观察显示,复合材料为厚度小于10nm,宽度200~300 nm,长度为几微米的半透明带状纤维。结构分析表明,复合材料的主体为纳米二氧化钛。同时,在壳聚糖存在情况下大部分纳米TiO2由锐钛矿型转变为金红石型。反应机理分析认为,NaOH在反应中决定纳米TiO2晶体的生长方向,并能够使壳聚糖活化,进而参加反应。在抗菌试验中,TiO2/壳聚糖一维纳米复合材料表现出较强抑菌能力,在含量为3%时可以完全抑制金黄色葡萄球菌的生长。
     壳聚糖具有优良的成膜能力。用壳聚糖、聚乙烯醇、羧甲基壳聚糖制备了三层复合膜结构,表面层壳聚糖膜具有良好的抗菌抑菌能力,底层羧甲基壳聚糖膜生物相容性好,能够促进正常皮肤纤维细胞生长并抑制疤痕疙瘩成纤维细胞的生长。在壳聚糖膜层添加纳米TiO2来提高膜性能,测试表明随TiO2含量增加,膜的抗水能力和热稳定性提高,膜层由晶态逐渐转变为非晶态。
The methods for the preparation of nanomaterials have significant influences on their structures and performances. Nanocrystalline metal oxides and chitosan microspheres have been synthesized by different methods, and their structures were characterized. Furthermore, a new route for the synthesis of metal oxide / chitosan nanocomposites has been presented, and their structures and performances have been investigated. The main texts are as follows:
     MnO_2 nanostructures have been fabricated by precipitation method at room temperature and hydrothermal method, respectively. Spherical MnO_2 nanostructures composed of interweaved nanosheets have been prepared by precipitation method at room temperature. The thickness and lateral dimension of the nanosheets are about 10~20 nm and 50~80 nm, respectively. XRD pattern shows that the products areε-MnO_2, which have low crystallinity. Porous net-like anomalous structures made up of nanosheets can be formed with the aid of CTAB.
     Rodlike MnO_2 nanostructures with diameters of 50 nm, and lengths up to 1~2μm have been synthesized at 160℃by hydrotherma method using KMnO4 and MnSO4 as precursors. Theseβ-MnO_2 nanorods are changed fromε-MnO_2 under thermal conditions and have high crystallinity. In addition, tower-like nanostructures are obtained in the presence of CTAB.
     One-dimensional MnO_2 nanostructures have been produced by hydrothermal treating commercial MnO_2 particles as precursors in NaOH media. As the reactions are carried out at 160℃for 48 h, MnO_2 nanobelts with thickness of 10~20 nm, width of 80~100 nm, and lengths up to several micrometers are obtained. XRD result reveals that these nanobelts areγ-MnO_2 and have high crystallinity. When the reactions are performed in LiOH media,γ-MnO_2 nanofibers are formed and the reaction process is similar to that in NaOH media.
     TiO2 nanoparticles have been prepared by butanol refluxing method. In the process, tetrabutyl titanate is added dropwise into butanol-water solution to form precipitates. White TiO2 powders are obtained after the precipitates are calcined at 500℃. The characterization results show that spherical TiO_2 nanoparticles are 50~100 nm in diameter, and mix-crystals of anatase (59%) and rutile(41%).
     DE-chitosan nanospheres are synthesized by self-assembly method. Firstly, DE-chitosan is prepared using chitosan and deoxycholic acid as the reagents, and carbodiimide as crosslinking agents. 1H NMR spectrum shows that the substitution degree of DE-chitosan is 0.051. The self-aggregation ability of DE-chitosan in Ac, and HCl solution are investigated. DE-chitosan nanospheres are obtained in acetic acid - sodium acetate solution using methylene chloride as emulsifier, and sodium triphosphate as crosslinking agents. TEM image reveals that these nanospheres are ununiform, and in the range of 100~600 nm in diameters.
     One-dimensional TiO2/chitosan nanocomposites have been fabricated by hydrothermal method using TiO2 nanoparticles and chitosan as raw materials, and NaOH solution as solvent. SEM and TEM images show that the thicknesses are less than 10 nm, the widths are about 200~300 nm, and the lengths are about several micrometers. XRD patterns shows that the main components of the composites are rutile TiO2, indicating that anatase are changed to rutile in the presence of chitosan. It is supposed that the formation of one-dimensional TiO2/chitosan nanocomposites is due to the activation of chitosan in the NaOH solution, which controls the crystal growth of TiO2. Antimicrobial experiments reveal that TiO2/chitosan nanocomposites have high antimicrobial ability. The growth of staphyloccocus aureus is prohibited as the contents of TiO2/chitosan nanocomposites is 3%.
     Chitosan has displayed good membrane forming capacity. Three-layer membranes were prepared with chitosan, polyvinyl alcohol and carobxymethy chitosan, the top-layer was chitosan,the intermediate was polyvinyl alcohol, and the substrate was carboxymethyl chitosan.The top-layer had high antibacterial activity, the substrate-layer had the activity of promoting growth of human skin fibroblast and inhibiting the growth of keloid fibroblast. The performances of chitosan films are enhanced by adding TiO2 nanoparticles. It is found that the waterproof ability and thermal stability of the films are promoted with the contents of TiO2 nanoparticles increased.
引文
【1】倪星元,沈军,张志华.纳米材料的理化特性与应用.第1版.北京:化学工业出版社,2006.
    【2】刘焕彬,陈小泉.纳米科学与技术导论.第一版.北京:化学工业出版社,2006,5
    【3】C.Suryanarayana,F.H.Frose.The structure and mechanical properties of metallic nanocrystals. Metallurgical Transactions, 1992, 23(4):1071-1081
    【4】H.Gleiter.Nanostructured Materials.Joural of Metals,1997,33 (2) : 165-174
    【5】R.W.Siegel,Nanostructured Materials,1994,4:12
    【6】Lu K,Lu L,Scr Metall Mater,2000,36:78
    【7】刘忆,刘卫华,訾树燕,王彦芳.纳米材料的特殊性能及其应用.沈阳工业大学学报,2000,22(1):21-24
    【8】H.Gleiter,etal.Nanostructured Materials[J],Prog Mater Sci., 1989, 33:22
    【9】王世敏,许祖勋,傅晶.纳米材料制备技术.第一版.北京:化学工业出版社,2002,242-243
    【10】杨鼎宜,孙伟.纳米材料的结构特征与特殊性能.材料导报,2003,17(10):7
    【11】M.A.Reed,W.R.Frensley,R.J.Matyi,et al.Appl. Phys. Lett., 1989,54: 1034
    【12】Bahneman D W.J.Phys.Chem. ,1994,98:1025
    【13】刘焕彬,陈小泉.纳米科学与技术导论.第一版.北京:化学工业出版社,2006,162~164
    【14】Sukharev V, Wold A, Cao Y M, et al. ,J.Solid State Chem.,1995,119:339
    【15】张立德,牟季美.纳米材料和纳米结构.第1版.北京:科学出版社,2001,96-110
    【16】张志琨,崔作林.纳米技术与纳米材料.第1版.北京:国防工业出版社,2002,56
    【17】高濂,郑珊,张青红.纳米氧化钛光催化材料及应用.第1版.北京:化学工业出版社,2002,55
    【18】王世敏,许祖勋,傅晶.纳米材料制备技术.第一版.北京:化学工业出版社,2002,61-106
    【19】Var. de Graaf M A C G,Keizer K, Burggraaf A J. Science of Ceramics.1980,10:83
    【20】Roosen A, Hausner H, Ceramic Powders. Amsterdam; Elservier, 1983, 773
    【21】Health.J.R. Science. 995,270:1315
    【22】Murrary.C.B, Kagan C.R,Bawendi M.G. Science.1995,2701335
    【23】Van Blaaderen A., Ruel R.,Wlitzius P.Nature.1997,385:321
    【24】Whitesides G.M. Chimica. 1990,44:310
    【25】Brust M.Bethell D.Schiffred D. J.et al.Adv Mater 1995,(7):795
    【26】Radzilowski L.H.,Stupp S.L.Macromolecules.1994,27:7747
    【27】沈家骢,张希.科学.1994,10:6
    【28】Li.G.,Megown L.B.Science.1994,264:249
    【29】Brebrick R F.et al. Handbook of Crystal Growth I, Fundamentals Part A: thermodynamics and Kinetics, amsterdam, London, New York, Tokyo: North-holland,1993.99
    【30】Cheng H, Ma J, Zhao Z, et al. Chem. Mater. 1995,7:663-671
    【31】Zheng Y, Shi E, Cui S, et al. J. Am. Ceram. Soc. 2000,83:2634-2636
    【32】曹茂盛,曹传宝,徐甲强.纳米材料学.第1版.哈尔滨:哈尔滨工业大学出版社,2002,41-42
    【33】倪星元,沈军,张志华.纳米材料的理化特性与应用.第1版.北京:化学工业出版社,2006.102-140
    【34】Cao maosheng, Wang Rongguo, Fang Xiaoyong, et al. Powder Technology, 2001, 1115:96-98
    【35】Uyeda R. Progress in Mater. Sci.,1991,35:1
    【36】张立德.超微粉体制备与应用技术.第1版.北京:中国石化出版社,2001,22
    【37】牟季美,张立德,赵铁男等.物理学报,1994,43(6):1000
    【38】Cardona M, et al. Light Scattering in Solids(vol 12). Berlin, Heidelberg, New York: Springer-Verlag,1981
    【39】Lijima S. Nature. 1991,354:56
    【40】Y.Xia, P.Pang, Y.Sun et al., Adv. Mater., 2003,15:353
    【41】J.Lao, J.Wen, Z.F. Ren et al., Nano Lett., 2002,2:1287
    【42】Y.Cui, X. Duan, C.M. Lieber et al.Phys.Chen.B,2000,104:5213
    【43】E.W.Wong,P.E.Sheehan,C.M.Lieber,Science,1997,277:1971
    【44】J.Wang,M.S.Gudiksen,C.M.Lieber,Science,2001,293:1455
    【45】S.N.Cha,J.E.Jang, Y.Choi et al., Appl.Phys.Lett.,2005,86:083105
    【46】Kunz M S, Shull K R, Kellock A J. Journal of Colloid and Interface Science, 1993,156:240
    【47】徐国财,张立德.纳米复合材料.第一版.北京:化学工业出版社,2002,19
    【48】Shi L Y, Li C Z, Chen A P, et.a1. Morphological structureof tmnometer TiO2-Al2O3 eompositepowders synthesized in temperature gas mediumsreaeto. Chemical EngineeringJourna1. 2001, 84:405
    【49】黄华林.锑白在钛白生产中应用探讨.无机盐工业,1997,3:31- 33
    【50】蒋子铎,刘安华.高级氧化过程的研究与进展.现代化工,1991,5(5):14-18
    【51】赵改青,邱克辉,高晓明.纳米TiO2的结构性能及其应用.科技进步与对策,2003,增刊:287~288
    【52】Wu J J, Yu C C. J. Chem .Phys.B . 2004, 108:11
    【53】王世敏,许祖勋,傅晶.纳米材料制备技术.第一版.北京:化学工业出版社,2002,61-75
    【54】Zhang Y X, Li G H, Jin Y X, et al. Chem. Phys. Lett. 2002, 365;300
    【55】SANDRA Gomes de Moraes , RENATO Sanches Freire , NELSON Dur_an.Degradation and toxicity reduction of textile e.uent by combined photocatalytic and ozonation processes.Chemosphere,2000(40):369-373
    【56】柴田清弘.有益环境的光触媒机能性羊毛[J].庄鄂,郭府梅校译.国外纺织技术,2001(12):7
    【57】WANG Chyung-Chyung , CHEN Cheng-Chi . Physical Properties of Crosslinked Cellulose Catalyzed with Nano Titanium Dioxide .Journal of Applied Polymer Science,2005(97):2450~2456
    【58】谭柱中,梅光贵,李维健,等.锰冶金学.长沙:中南大学出版社, 2004
    【59】宋文顺.化学电源工艺学.北京:中国轻工业出版社,1998
    【60】Jinggang Dai,SamF.Y.Li,Kok Siong Siow,Zhiqiang Gao.Synthesis and characterization of the hollandite-type Mn02 as a cathode material in lithiumbateries. J. Electrochimica. Acta, 2000, 45: 2211-2217
    【61】Wang, X. and Li, Y.Selected-control hydrothermal synthesis ofα- andβ-MnO2 Single Crystal Nanowires. J. Am. Chem. Soc., 2002,124: 2880–2881
    【62】Zheng, D., Sun, S., Fan, W., Yu, H., Fan, C., Cao, G., Yin, Z., and Song, X.One-step preparation of single-crystalline b-MnO2 Nanotubes. J. Phys. Chem. B, 2005,109: 16439–16443
    【63】Wang, L., Ebina, Y., Takada, K., and Sasaki, T. Ultrathin hollownanoshells of manganese oxide. Chem. Commun.,2004,1074–1075
    【64】Hya Y, Cai R, NIshizawa H, et al. Preparation of PEG-grafted chitosan nanoparticle for peptide drug carrier . Proc Intl Symp Control Rel Bioact Mater, 1999,26:655-656
    【65】Armstrong, A.R. and Bruce, P.G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature,1996, 381: 499–500
    【66】Brock, S.L., Duan, N., Tian, Z.R., Giraldo, O., Zhou, H., and Suib, S.L.A review of porous manganese oxide materials. Chem. Mater,1998, 10: 2619–2628
    【67】Ding, Y., Shen, X., Sithambaram, S., Gomez, S., Kumar, R., Crisostomo, V.M.B., Suib, S.L., and Aindow, M. Synthesis and catalytic activity of cryptomelane-type manganese dioxide nanomaterials produced by a novel solvent-free method. Chem. Mater., 2005,17: 5382–5389
    【68】Feng, Q., Kanoh, H., and Ooi, K. Manganese oxide porous crystals. J. Mater. Chem., 1999,9: 319–333
    【69】Wu, M.S., Lee, J.T., Wang, Y.Y., and Wan, C.C. Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition. J. Phys. Chem. B, 2004,108: 16331–16333
    【70】Xu, J.J., Zhao, W., Luo, X.L., and Chen, H.Y. A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chem.Commun.,2005,792-794
    【71】DENG Zifeng(邓子峰), WANG Shen(王申), WANG Dejia(汪德家). Adsorption of Pb2+by synthesis cryptomelane . Journal of Tongji University: Natural Science Edition(同济大学学报:自然科学版), 2006, 34(3): 373-378
    【72】Rudall K M.Adv Insect Physical. 1963,1:257
    【73】蒋挺大.壳聚糖.第1版.北京.:化学工业出版社,2001,17
    【74】蒋挺大.甲壳素.第1版.北京.:化学工业出版社,2003,29
    【75】莫秀梅,王鹏,周贵恩,徐仲德.高等学校化学学报.1998,19(6):989
    【76】Majet N V, Kumar R. A review of chitin and chitosan applications[J]. Reactive &Functional Polymers,2000,(46):1-27
    【77】夏金兰,王春,刘新星.抗菌剂及其抗菌机理.中南大学学报(自然科学版),2004,35(1):36
    【78】吴小勇,曾庆孝,阮征,张立彦.壳聚糖的抑菌机理及抑菌特性研究进展.中国食品添加剂,2004,6:
    【79】Tokura, S. K., Ueno S., Miyazaki and N. Nishi. Molecular Weight Dependent Antimicrobial Activity of Chitosan. Macromol. Symp.,1997, 120:1-9
    【80】M.J.小佩尔扎,R.D.里德,E.C.S.詹编著.武汉大学生物学系微生物教研室译.微生物学.北京:科学出版社,1987.359-36
    【81】I.M.Helander,E.-L.Nurmiaho-Lassila,R.Ahvenainen,J.Rhoades,S.Roller.Chitosan Disrupts the Barrier Properties of the Outer Membrane of Gram-negative Bacteria.International Journal of Food Microbiology,2001,71:235-244
    【82】Hong Kyoon No,Na Young Park,Shin Ho Lee,Samuel P.Meyers. Antibacterial Activity of Chitosans and Chitosan Oligomers with Different Molecular Weights.International Journal of Food Microbiology,2002,(74):65-72
    【83】Jeon, Y.J.,Park, P.J.,Kim, S.K..Antimicrobial Effect of Chitoo- ligosaccharides Produced by Bioreactor. Carbohydrate Polymers, 2001,44:71-7
    【84】胡瑛,杜予民,刘慧.壳聚糖抗菌性与分子量和环境介质相关性研究.分析科学学报,2003,19(4):305-308
    【85】Rong Huei Chen,Horng-dar Hwa.Effect of molecularweight of chitosan with the same degree of deacetylation on the thermal mechanical, and permeability properties of the prepared membrane.Carbohydrate Polymers, 1996 (29): 353-358
    【86】Tomihata K,IKada Y.In vitro and degradation of films of chitin and its deacetylated derivatives.Biomate rials,1997,18(7):567-575
    【87】蒋挺大.甲壳素和壳聚糖膜材料的研究进展.膜科学与技术,1998,15(3):20-25
    【88】Rupei T,Yumin D,Lihong F.dialdehyde starch-crosslinked chitosan films and their antimicrobial effects.PolymerScience PartB: Polymer Physics,2003,41(9):993-997.
    【89】蒋挺大.甲壳素.第1版.北京.:化学工业出版社,2003,30
    【90】徐云龙,肖宏,钱秀珍.壳聚糖/蒙脱土纳米复合材料的结构与性能研究.功能高分子学报,2005,18(3):383-386
    【91】魏铭,谭占鏊.壳聚糖/二氧化硅纳米复合膜的制备、结构与性能表征.武汉理工大学学报(信息与管理工程版),2006(28)1:157-160
    【92】董战峰,杜予民,樊李红,闻燕,刘慧,王小慧.壳聚糖/明胶/TiO2三元复合膜的制备与功能特性.功能高分子学报,2004(17)1:61-66
    【93】张阳德,张彦琼,陈记稷,张浩伟等.壳聚糖-碳纳米粒的制备及其体外性质的研究.中国现代医学杂志.2006,16(6):801-806
    【94】闻燕,杜予民,李湛.壳聚糖/纳米TiO2复合膜的制备和性能.武汉大学学报(理学版).2002,48(6):701-704
    【95】徐连敏,陈改清.壳聚糖纳米粒的研究进展.国外医学药学分册, 2002, 29(6): 330-33
    【96】丁德润,沈勇.壳聚糖衍生物及其纳米粒的抗菌性能研究.印染.2005,14:12-14
    【97】李凤生,罗付生.可生物降解药物载体-纳米/亚微米壳聚糖微球的制备及性能.精细化工, 2003, 20(4): 197-200
    【98】董炎明,毕丹霞,赵雅青,毛微,杨柳林,王惠武.十一种壳聚糖衍生物的紫外吸收特性.应用化学,2005,22(10):1050-1054
    【99】李方,刘文广,薛涛,等.烷基化壳聚糖的制备及载药膜的释放行为研究.化学工业与工程,2002,19(4):281-28
    【100】武雪芬,李伟,王磊,胡建梅,李桂兰.水杨酸-g-壳聚糖衍生物的合成及药效研.药学学报,2007,42(5):481-487
    【101】曲融君,马千里,郑秀丽,孙言志.壳聚糖衍生物的制备及其吸附性能.应用化学,1995,12(2):117-118
    【102】壳聚糖基载药纳米微粒制备研究进展,黄小龙,功能高分子学报
    【103】陈钟,戴新征.壳聚糖及其纳米粒子在组织工程中的应用.国际生物医学工程杂志.2006,29(1):48-51
    【104】Magny B, Iliopolous I, Zana R, Audebert R. Langmuir, 1994,10, 318
    【105】原续波.胆固醇疏水改性壳聚糖自聚集纳米微粒的制备及其动物体内分布研究.高分子通报.2005,10:124-125
    【106】董炎明,阮永红,王锦山,吴玉松.β-甲壳素/壳聚糖纳米级微粒的制备初步研究.厦门大学学报(自然科学版),2003,42(1):128
    【107】Li X, Ding E, Li G. A method of preparing spherical nanocrystal - cellulose with mixed crystal forms of celluloseⅠandⅡ. International Symposium on Cellulose and Lignocellulosics Chemistry. Kunming, 2000. 118-12
    【108】李和平,阮建明,黄伯云,王亚东.磁性壳聚糖纳米粒子的制备及表征.中南大学学报(自然科学版).2004,35(2):175-179
    【109】MolvingerK,Quignard F,BrunelD, eta.l Porous chitosansilica hybrid microspheres as a potential catalyst.Chem Mater, 2004, 16: 3367-337
    【110】崔作林,张志琨,李桂村,杜芳林.液体回流法制备纳米二氧化钛.中国,发明专利,202494,2004
    【111】OHya Y, Cai R, NIshizawa H, et al. Preparation of PEG-grafted chitosan nanoparticle for peptide drug carrier . Proc Intl Symp Control Rel Bioact Mater, 1999,26:655-656
    【112】Lee, K. Y., Kwon, I. C., Kim, Y. H., Jo, W. H., & Jeong, S. Y. Preparation of chitosan self-aggregates as a gene delivery system. Journal of Controlled Release, 1998,51:213–220
    【113】Lee, K. Y., Kwon, I. C., Kim, Y. H, et al. Structural investigation of chitosan self-aggregate prepared for gene delivery . Proc Intl Symp Control Rel Bioact Mater, 1998, 25:340-3414
    【114】韩建兵,苏海佳,谭天伟.纳米TiO2/壳聚糖复合膜对大肠杆菌杀菌作用的研究.化工新型材料.2006,34(7):66
    【115】HSIEH Sung-Huang,ZHANG Fang-Ru,LIHui-Si.Anti-U1traviolet and Physical Properties of Woolen Fabrics Cured with Citric Acid and TiO2/Chitosan.Journal of Applied Polymer Science,2006(100):4311-4319
    【116】SANDRA Gomes de Moraes , RENATO Sanches Freire , NELSON Dur_an.Degradation and toxicity reduction of textile e.uent by combined photocatalytic and ozonation processes.Chemosphere,2000(40):369-373.
    【117】肖红艳,陈衍夏,施亦东等.光触媒TiO2在纺织领域的应用研究现状与进展.丝绸,2007,(8):58~60
    【118】Coenen JMFH, et al. European Burn Association 5th congress. Brighton:1993
    【119】HU Q L, FANG Z P, ZHAO Y, XU CW. A newmathod to prepare chitosan membrane as a biomedical material, Chinese Journal of PolymerScience, 2001, 5(19): 467-470
    【120】Hong Tao Pang, Xi Guang Chen, Qiu Xia ji, De Yu Zhong.Preparation and function of composite asymmetric chitosan/CM-chitosan membrane.Materials in Medicine,2008,19(3):1413-141
    【121】陈煜,多英全,谭惠民.N,O-羧甲基壳聚糖的制备及表征.化工科技, 2007, 15(5): 45~47
    【122】Samuels R J. Solid State Characterization of the Structure of Chitosan Films. Polym Phys Ed,1981,19:1080
    【123】蒋挺大.甲壳素.第1版.北京.:化学工业出版社,2003,18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700