用户名: 密码: 验证码:
TiO_2纳米管复合膜的光生阴极保护研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2具有良好的光电特性、光催化性及化学稳定性等,在光催化剂、气敏传感器、太阳能电池、光生阴极保护等高科技领域有着广阔的应用前景,成为一种最具潜力的半导体材料。将光照下的纳米氧化钛膜层产生的光生阴极保护作用应用于金属防腐蚀已经引起科学家的极大兴趣。但TiO_2覆盖膜作为金属防腐蚀涂层存在膜层缺陷和不均一性的技术问题,而且由于TiO_2带隙较宽(E_g=3.0-3.2eV),只吸收λ<387nm的紫外光,而且光激发产生电子—空穴对易于复合,导致光量子效率低,太阳光谱中占绝对大分量的可见光未能有效利用,导致在可见光和暗态下不能起到有效的光生阴极保护作用。
     本论文侧重发展多种先进的TiO_2纳米复合膜材料和表面改性技术,采用溶胶凝胶法和浸渍提拉技术在316不锈钢及铜表面构筑纳米TiO_2薄膜及SnO_2-TiO_2、N-TiO_2复合膜,引入紫外光对薄膜进行改性。同时发展电化学阳极氧化法,在钛基体表面制备一层具有特殊纳米结构的TiO_2纳米管阵列和金属离子掺杂的TiO_2纳米管膜。利用SEM、XRD、XPS、UV-Vis等表征方法系统研究纳米薄膜的形貌、晶型、组成等。采用腐蚀电化学和光电化学相结合技术,测试膜层的光电化学性质,研究TiO_2复合颗粒膜及掺杂半导体纳米管阵列薄膜对金属基体的光生阴极保护作用。以期通过掺杂改性技术和利用具有奇特性质的纳米管阵列作为光阳极有效延长光生电子-空穴对的寿命,强化可见光范围内和暗态下持续有效的光生阴极保护的作用,并探明膜层光生阴极保护的作用机理。主要进展及研究成果如下:
     1.对传统TiO_2溶胶制备方法进行了改进,简化实验操作程序,在室温下制备了颗粒尺寸可控的超微粒子TiO_2、TiO_2-SnO_2、N-TiO_2溶胶,各种光电化学技术研究在金属表面超薄纳米TiO_2复合掺杂颗粒膜在不同腐蚀性溶液体系中的耐腐蚀行为,同时考察溶液浓度、膜厚、掺杂等条件的影响,制备了有最佳耐蚀性的纳米膜,有效提高金属或合金的耐腐蚀性能,并探明纳米膜的抗腐蚀机理。
     2.采用腐蚀电化学和光电化学方法研究纳米TiO_2膜及其复合膜的光电性能及影响因素。发现复合膜能够减缓光生电子空穴对电荷的复合,在紫外光照射下产生较强的光生电流;采用湿法实现了有效的N掺杂,N掺杂形成了新能级,通过N_(2P)与O_(2P)态的混合而导致TiO_2禁带宽度变窄,获得了良好的可见光响应。实现在紫外、可见光和暗态下高效的光生阴极保护,同时也使纳米膜和复合膜具有更强的阻挡层作用,发挥纳米复合膜的双重保护协同作用的功能。
     3.在含有F~-的电解液体系中,采用电化学阳极氧化法成功地在钛基体表面制备了排列整齐、高度有序的TiO_2纳米管及Fe掺杂型纳米管阵列。采用光电化学联用系统研究纳米管阵列的光电响应特性,结果表明:以TiO_2纳米管阵列膜作为光生阳极时,在紫外光区(λ<387m)有显著增强的光生电流响应。
     4.采用在氟化电解液中直接加入含有Fe~(2+)掺杂物的方法,成功实现了纳米TiO_2的Fe掺杂,铁元素以Fe的氧化物或者Fe(Ⅲ)离子的形式接入半导体TiO_2的晶格中,窄化TiO_2带隙,使光谱响应扩展到波长大于400nm的可见光区,首次采用Fe掺杂的TiO_2纳米管阵列膜作为光生阳极研究光生阴极保护作用。测试发现:在紫外光和可见光照射下,TiO_2纳米管及Fe掺杂纳米管阵列膜层对316不锈钢有很好的光生阴极保护作用,暗态下,光生电极电位仍可维持较长的一段时间,能够继续发挥阴极保护作用。
Titania (TiO_2) is one of the most important semiconductor oxides because of its excellent photo-electrochemistry, photo-catalysis and good chemical stability. It can be used in many hi-tech applications including photocatalysis, gas sensors, solar cells, cathodic protection and etc. It is of great interest to develop TiO_2 coatings or composites of nano TiO_2 with other dopants on metals for the photogenerated cathodic protection of metals under ultraviolet (UV) or visible light illumination. However, the application of TiO_2 nano coatings serving as anticorrosion measure has been limited by some technical bottleneck, including non uniform and defects for the coating. Especially, due to the wide band gap of TiO_2 (E_g=3.0-3.2eV), it is only excited by ultraviolet light (λ< 390 nm) so that the efficiency of light utilization to solar irradiation is very low, and the recombination rate of photogenerated e~--h~+ pairs in TiO_2 is high and the quantum efficiency is low. The technical problems result in the unefficient photocathodic protection performance of metals under both visible light illumination and dark conditions.
     The main goal and motivation of this thesis are to develop various uniform and functional nano TiO_2 composite coatings, and to increase the quantum efficiency of TiO_2 to both UV and visible light excitation. An attempt is made to extend the life of the photo-generated electron-hole pairs and to enhance efficient cathodic protection performances in UV-visible illumination and dark conditions. The mechanism of the photo-generated cathodic protection is also discussed in the thesis. The main results and conclusions are summaried as following:
     1. The sol-gel method and dip-coating technique have been developed to fabricate theultra fine particles coating of TiO_2, TiO_2-SnO_2 and N-TiO_2 at the room temperature.
     The size and thickness of TiO_2 are crack-free, ultra purity and controllable, and the preparation method is simple and easy to be reproduced.
     2. It is shown that the as-prepared nano TiO_2, films on metal own better anticorrosion performances, and the nano TiO_2 films can suppress the recombination of photo-generated electron-hole pairs. The efficient photo-cathodic protection of the N doped TiO_2 nanoparticle films is achieved under UV-visible wavelength spectra regions for the first time. It is indicated that the ultra fine nanoparticle coatings have a good quality of dual functions in anticorrosion of metals, that is, the corrosion protection as the barrier layers and photocathodic protection as a photoanode.
     3. Highly density and well aligned uniform titanium oxide nanotubes have been fabricated by electrochemical anodic oxidation of a pure titanium substrate in fluorinated electrolyte solutions. The morphologies, composition, structure and photoelectrochemical performances have been studied by using SEM, XRD, UV-Vis, electrochemical methods etc., and the photochemical properties of doped TiO_2 nanotube arrays and their possible applications of anticorrosion for metals have been investigated systemically. It is noted that the TiO_2 nanotubes show a stronger absorption in the ultraviolet (UV) light range, the open-circuit potentials of 316 SS coupled with the TiO_2 nanotubes layers shift negatively under UV light irradiation (λ<380nm).
     4. The photocathodic protection of the Fe-doped TiO_2-based nanotube layers has been evaluated through the electrochemical measurements under visible light irradiation and dark conditions. The effects of the electrolyte system, anodized time, heat treated temperature on its photoelectrochemical activity and photogenerated cathodic protection performances are emphatically investigated. It is found that the Fe-doped TiO_2 nanotubes show a stronger absorption in the 410-650nm range. The open-circuit potentials of 316 SS coupled with the Fe-doped TiO_2 nanotubes layers shift negatively under visible light irradiation (λ>400nm), and maintain negatively for a period even in dark condition. It is indicated that the Fe-doped TiO_2 nanotube layers are able to function effectively a photogenerated cathodic protection for metals under regular sunlight conditions and remain a durative cathodic protection even in the dark condition.
引文
[1]自春礼著.《纳米科学与技术》[M],科学出版社,2001.
    [2]王世敏,许祖勋,傅晶著.《纳米材料制备技术》[M],化学工业出版社,2002.
    [3]白春礼.纳米科技现在与未来[M].成都:四川教育出版社,2001,16-18.
    [4]白春礼.纳米科学与技术[J].百科前沿,2004,28.
    [5]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [6]A.Henglein,Small-particles research:Physicochemical properties of extremely small colloidal metal and semiconductor particles[J],Chem.Rev.,1989,89,1861.
    [7]S.Hayashi,R.Kon,Y.Ichiyama,K.Yamamoto.Evidence for Surface-Enhanced Raman Scattering on nonmetallic Surfaces:Copper Phtanlocyanine Molecules on GaP Small Particles[J].Phys.Rev.Lett.,1988,60:1085-1088.
    [8]R,Rossetti,R.Hull,J.M.Gibson,and L.E.Brus.Excited Electronic States and Optical Spectra of ZnS and CdS Crystallites in the 15 ? and 50 ? Size Range:Evolution from molecular to Bulk Semiconducting Properties[J].J.Chem.Phys.,1985,82(1),552-559
    [9]李鹏兴.CVD与PVD硬涂层研究的进展[J],上海金属,1994,15(2):55-63.
    [10]B.H.Kim,J.Y.Lee,Y.H.Choa,M.Higuchi,N.Mizutani,Preparation of TiO2 thin film by liquid sprayed mist CVD method[J],Mat.Sci.Eng.B-Sold,2004,107(3):289-294.
    [11]D.H.Kuo,C.N.Shueh,Growth of chemical vapor deposition aluminum titanate films at different CO_2/H_2 and aluminum butoxide inputs[J],J Vac.Sci.Technol.A,2004,22(1):151-157
    [12]Q.Fang,M.Meier,J.J.Yu,et al.,FTIR and XPS investigation of Er-doped SiO_2-TiO_2 films[J],Mat.Sci.Eng.B-Sold,2003,105(1-3):209-213.
    [13]高濂,郑珊,张青红著.纳米氧化钛光催化材料及应用[M],北京:化学工业出版社,2002,54-235.
    [14]A.Fujishima,K.Hashimoto,Electrochemical photolysis of water at a semicondouctor electrode[J],Nature,1972,238:37-38.
    [15]秦东元,王晶晶,邹英华等.TiO_2的联吡啶-钌化合物敏化及电子转移过程[J],物理化学学报,1998,14(6):520-527.
    [16]胡智学,戴松元,王孔嘉等.染料在纳米TiO_2薄膜表面吸附性能的研究[J],化学研究与应用,2002,14(3):277-279.
    [17]L.Bahadur,P.Srivastava,Improved performance of 2-imidazolin-5-one as sensitizer at nanocrystalline ZnO thin film electrode in acetonitrile solution[J],Semicond.Sci.Tech.,2004,19(3):531-536.
    [18]K.Nagaveni,G.Sivalingam,M.S.Hedge,et al.,Solar photocatalytic degradation of dyes:high activity of combustion synthesized nanoTiO_2[J],Appl.Catal.B-Environ.,2004,48(2):83-93.
    [19]I.Ilisz,A.Dombi,K.Mogyorosi,et al.,Photocatalytic water treatment with different TiO_2nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents[J],Collid Surface A,2003,230(1-3):89-97.
    [20]M.C.Barnes,A.R.Gerson,S.Kumar,et al.,The mechanism of TiO_2deposition by direct current magnetron reactive sputtering[J],Thin Solid Films,2004,446(1):29-36.
    [21]S.Malato,J.Blanco,A.Vidal,et al.,Applied studies in solar photocatalytic detoxification:an overview[J],Sol.Energy,2003,75(4):329-336.
    [22]K.Teramura,T.Tanaka,M.Kani,et al.,Selective photo-oxidation of neat cyclohexane in the liquid phase over V_2O_5/Al_2O_3[J],J Mol.Catal.A-Chem.,2004,208(1-2):299-305.
    [23]贺北平,王占生,张锡辉.半导体光催化有机物的研究现状及发展趋势[J],环境科学,1993,15(3):80-83.
    [24]R.Wang,K.Hashimoto,A.Fujishima,et al,Light induced amphiphilic surfaces[J],Nature,1997,388:431-432
    [25]R.Wang,K.Hashimoto,A.Fujishima,et al,Photogeneration of highly amphiphilic TiO_2surfaces[J],Adv.Maters.,1998,10(2):135-138
    [26]D.S.Ren,X.L.Cui,J Shen,et al.Study on the superhydrophilicity of the SiO_2-TiO_2 thin films prepared by sol-gel method at room temperature[J],J Sol-Gel Sci.Tech.,2004,29(3):131-136
    [27]T.L.Sun,G.J.Wang,L.Feng,et al,Reversible switching between superhydrophilicity and superhydrophobicity[J],Angew Chem.Int.Edit.,2004,43(3):357-360
    [28]R.J.Zeng,Q.Pang,Z.H.Lin,et al,Effects of Y3+ dopant on the photoinduced superhydrophilicity of thin nanostructured titania films and its mechanism[J],Chin.J Inorg.Chem.,2003,19(7):678-684
    [29]曾人杰,林仲华,方智敏,光诱导纳米二氧化钛超亲水薄膜SPM图像分析和氧空位浓度理论探讨[J],电化学,2001,7(4):413-425
    [30]M.Masahiro,A.Nakajima,T.Watanabe,et al,Photocatalysis and photoinduced hydrophilicity of various metal oxide thin films[J],Chem.Mater.,2002,14,2812-2816
    [31]柳闽生,詹寿发,谢宝华等.纳米技术及其在环境保护中的应用[J],九江师专学报,2002,5:23-27.
    [32]V.Musat,B.Teixeira,E.Fortunato,et al.,Al-doped ZnO thin films by sol-gel method[J],Surf.Coat.Tech.,2004,180-81:659-662
    [33]M.Pan,H.M.Zhong,S.W.Wang,et al.,Properties of VO_2 thin film prepared with precursor VO(acac)(2)[J],J Cryst.Growth,2004,265(1-2):121-126
    [34]郭建辉,杨建军,李庆霖等,纳米薄膜光催化剂的制备与表面态研究[J],化学研究,2003,14(2):13-18
    [35]林君,庞茂林,韩银花等,溶胶一凝胶工艺制备发光薄膜研究进展[J],无机化学学报,2001,17(2):153-161
    [36]H.E.Chao,Y.U.Yun,H.U.Xingfang,A.Larbot[J],J.Eur.Ceram.Soc.,2003,23:1457.
    [37]S.Mahanty,S.Roy,S.Sen,[J],J.Cryst.Growth.,2004,261:77
    [38]Z.Z.Gu,A.Fujishima,O.Sato,Fabrication of High-Quality Opal Films with Controllable Thickness.[J],Chem.Mater,2002,14,760-765
    [39]H.Y.Fan,K.Yang,D.M.Boye,et al,Self-assembly of ordered,robust,three-dimensional gold nanocrystal/silica arrays[J],Science,2004,304(5670):567-571
    [40]吴振华,离子参数对物理气相沉积薄膜微结构的影响[J],电工电能新技术,1994,4:10-18
    [41]柳襄怀,杨根庆,王曦等,离子束增强沉积形成梯度薄膜薄膜[J],材料研究学报,1994,8(1):61-66
    [42]柳襄怀,离子束增强沉积薄膜合成及其在材料表面优化中的应用[J],上海有色金属,1994,15(4):65-73
    [43]Z.Tokei,F.Iacopi,O.Richard,et al,Barrier studies on porous silk semiconductor dielectric[J],Microelection Eng.,2003,70(2-4):352-357
    [44]Correia-Pires JM,Almeida JB,Teixeira V,Gas-sensitive response of SnO_2 thin-film sensors produced by reactive DC magnetron sputtering[J],Key Eng.Mater.,2002,230-2:388-391
    [45]B.H.Kim,J.Y.Lee,Y.H.Choa,et al,Preparation of TiO_2 thin film by liquid sprayed mist CVD method[J],Mat.Sci.Eng.B-Sold,2004,107(3):289-294
    [46]Q.Fang,M.Meier,J.J.Yu,et al.,FTIR and XPS investigation of Er-doped SiO_2-TiO_2 films[J],Mat.Sci.Eng.B-Sold,2003,105(1-3):209-213
    [47]王银海.许彦旗.蔡维理等,一种新的电化学方法制备CdS纳米线阵列[J],物理化学学报,2002,18(10):943-946
    [48]叶好华,叶志慎,黄靖云等,氧化铝模板法制备Ge纳米线[J],半导体学报,2003,24(2):173-177
    [49]H.Q.Cao,Y.Xu,J.M.Hong,et al,Sol-gel template synthesis of an array of single crystal CdS nanowires on a porous alumina template[J],Adv.Mater.,2001,13(18):1393-1394
    [50]Wu JH,Pu L,Zhou JP,et al.Preparation of Si nanocrystals using anodic porous alumina template formed on silicon substrate[J],Chin.Phys.Lett.,2000,17(6):451-453
    [51]蔡伟平,张立德,银/二氧化硅介孔复合体的半导体光学特性[J],科学通报,1999,44(22):220-222
    [52]徐应明,王榕树,介孔钛硅分子筛表面功能膜的制备及对水体中的铅去除作用[J],高等学校化学学报,1999,20(7):1002-1006
    [53]冯素平,孟国文,张立德等,纳米颗粒与介孔SiO_2复合体系德光吸收边调制[J],科学通报,1998,15:1612-1216
    [54]I.Kartini,P.Meredith,J.C.D.da Costa,et al.Formation of mesostructured titania thin films using isopropoxide precursors[J],Curr.Appl.Phys,2004,4(2-4):160-162
    [55]T.F.Jaramillo,S.H.Baeck,A.Kleiman-Shwarsctein,et al.,Combinatorial electrochemical synthesis and screening ofmesoporous ZnO for photocatalysis[J],Macromol.Rapid Comm.,2004,25(1):297-301
    [56]S.U.Chida,R.Chiba,M.Tomiha,et al.Application of titania nanotubes to a dye-sensitized solar cell[J],Electrochemistry,2002,70(6):418-420
    [57]X.Chen,X.M.Sun,Y.D.Li.Self-assembling vanadium oxide nanotubes by organic molecular templates[J],Inorganic Chemistry,2002,41(17):4524-453026
    [58]C.H.Huang,W.T.Whang,A novel low-temperature growth and characterization of single crystal ZnO nanorods[J],Mater.Chem.Phys.,2003,82:705-710
    [59]Zhengrong.R.Tian,J.A.Volgt,J.Liu,et al,Complex and oriented ZnO nanostructures[J], Nature Material,2003,2:821-826
    [60]Y.V.Kolen'ko,V.D.Maximov,A.V.Garshev,et al,Hydrothermal synthesis of nanocrystalline and mesoporous titania from aqueous complex titanyl oxalate acid solutions[J],Chem.Phys.Lett.,2004,388(4-6):411-415
    [61]Z.Y.Yuan,X.B.Zhang,B.L.Su,Moderate hydrothermal synthesis of potassium titanate nanowires[J],Appl.Phys.A-Mater.,2004,78(7):1063-1066
    [62]Y.B.Mao,S.Banerjee,S.S.Wong,Hydrothermal synthesis of BaTiO_3 and SrTiO_3 nanotubes[J],Abstr.Pap.Am.Chem.S,2003,226:114-Inor.Part 1
    [63]Y.Castro,B.Ferrad,Moreno R,et al.,Coatings produced by electrophoretic deposition from nano-particulate silica sol-gel suspensions[J],Surf.Coat.Tech.[J],2004,182(2-3):199-203
    [64]Lin Y,Sun F Q,Yuan X Y,et al.Sol-gel electrophoretic deposition and optical properties of Fe_2O_3nanowire arrays[J],Appl.Phys.A-Mater.,2004,78(8):1197-1199
    [65]Fukada Y,Nagarajan N,Mekky W,et al.Electrophoretic deposition - mechanisms,myths and materials[J],J Mater.Sci.,2004,39(3):787-801
    [66]游常,江东亮,潭寿洪等,电泳沉积制备碳化钛的研究[J],陶瓷学报,2001,22(3):125-128
    [67]孙志华,刘明辉,应用电沉积方法制备纳米多层膜德研究现状[J],腐蚀与防护,2002,23(3):114-116
    [68]Stefanov P,Atanasova G,Stoychev D,et al.Electrochemical deposition of CeO-2 on ZrO-2 and Al_2O_3 thin films formed on stainless steel[J],Surf.Coat.Tech.,2004,180-81:446-449
    [69]王振霖,王太宏,基于阳极氧化法的纳米结构加工和纳米器件的制备[J],微电子技术,2001,29(5):17-21
    [70]R.P.Socha,P.Nowak,K.Laajalehto,et al.,Particle-electrode surface interaction during nickel electrodeposition from suspensions containing SiC and SiO_2 particles[J],Colloid Surface A,2004,235(1-3):45-55
    [71]J.Voit,One-Dimensional Fermi Liquids[J],Rep.Prog.Phys.,1994,57:977.
    [72]J.T.Devreese,R.P.Evrard,V.E.van Doren,Eds.;Highly Conducting One- Dimensional Solids;Plenum:New York,1979.
    [73]C.M.Lieber,X.L.Wu,Scanning Tunneling Microscopy Studies of Low-Dimensional Materials:Probing the Effects of Chemical Substitutions at the Atomic Level[J],Acc.Chem.Res.,1991,24(4):223.
    [74]H.Dai,C.M.Lieber,Scanning Tunneling Microscopy Studies of Low-Dimensional Materials:Charge Density Wave Pinning and Melting in Two Dimensions[J],Annu.Rev.Phys.Chem.,1993,44:237.
    [75]C.M.Lieber,J.Liu,P.E.Sheehan,Understanding and Manipulating Inorganic Materials Using Scanning Probe Microscopes[J],Angew Chem.,Int.Ed.Engl.,1996,35:686.
    [76]Z.L.Wang,Characterizing the Structure and Properties of Individual Wire-like Nanoentities[J],Adv.Mater.,2000,12:1295.
    [77]J.Hu,T.W.Odom,C.M.Lieber,Chemistry and Physics in One Dimension:Synthesis and Properties of Nanowires and Nanotubes[J],Acc.Chem.Res.,1999,32:435.
    [78]S.Iijima,Helical microtubules ofgraphitic carbon[J],Nature,1991,354:56-58.
    [79]R.Tenne,L.Margulis,M Genut,G Hodes,Polyhedral and cylindrical structures of tungsten disulphide[J],Nature,1992,360:444-446.
    [80] Y. Feldman, E. Wassennan, D. J. Srolovitch, R. Tenne, Science, 1995,267: 222.
    
    [81] M. Nath, C. N.R. Rao, New Metal Disulfide Nanotubes[J], J. Am. Chem. Soc, 2001,123: 4841.
    
    [82] D. H. Galvfi, J-H. Kim, M. B. Maple, M. Avalos-Berja, E. Adem, Formation of NbSe nanotubes by electron irradiation[J], Fullerene Sci. Technol., 2000, 8: 143-151.
    [83] M. Nath, C. N. R. Rao, Nanotubes of group 4 metal disulfides[J], Angew. Chem., Int. Ed, 2002, 41:3451.
    [84] N. G. Chopra, R. G. Luyken, K Cherrey, V. H. Crespi, M L Cohen, S G Louie and A Zettl, Science, 1995,269:966.
    [85] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie, H. Xu, Large Oriented Arrays and Continuous Films of TiO_2-Based Nanotubes[J], J. Am. Chem. Soc, 2003, 125 (41): 12384-12385.
    [86] T. Kasuga, M. Hiramatsu, A .Hoson, T. Sekino, K. Niihara, Formation of titanium oxide nanotube[J], Langmuir, 1998,14 (12): 3160-3163.
    [87] T. Kasuga, M. Hiramatsu, A. Hoson, T .Sekino, K. Niihara, Titania nanotubes prepared by chemical processing[J], Adv. Mater., 1999,11 (15): 1307.
    [88] B. D. Yao, Y. F. Chan, X. Y.Zhang, W. F. Zhang, Z. Y. Yang, N Wang, Formation mechanism of TiO_2nanotubes[J], Appl. Phys. Lett., 2003, 82 (2): 281-283.
    [89] C. N. R. Rao, A. Govindaraj, F. L. Deepak, N. A. Gunari, M Nath, Surfactant-assisted synthesis of semiconductor nanotubes and nanowires[J], Appl. Phys. Lett., 2001,78: 1853-1855.
    [90] B. C. Satishkumar, A. Govindaraj, E M. Vogl, L. Basumallick, C. N. R. Rao, Oxide nanotubes prepared using carbon nanotubes as templates[J], J. Mater. Res., 1997,12: 604-606.
    [91] B. C. Satishkumar, A. Govindaraj, M. Nath, C.N. R. Rao, Synthesis of metal oxide nanorods using carbon nanotubes as templates[J], J. Mater. Chem., 2000,10: 2115-2119.
    [92] R. P Socha, P. Nowak, K. Laajalehto, et al., Particle-electrode surface interaction during nickel electrodeposition from suspensions containing SiC and SiO_2 particles[J], Colloid Surface A, 2004, 235 (1-3): 45-55.
    [93] G. K. Mor, O. K. Varghese, M. Paulose, N Mukherjee, C. A. Grimes, Fabrication of tapered, conical-shaped titania nanotubes[J], J. Mater. Res., 2003,18(11): 2588-2593.
    [94] R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H_2SO_4/HF electrolytes[J], Electrochem. Solid State Lett., 2003,6 (3): B12-14.
    [95] V. Zwilling, M .Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach[J], Electrochim. Acta, 1999,45 (6): 921-929.
    [96] N. Mukherjee, M.Paulose, O. K. Varghese, O.K .Mor, C. A. Grimes, Fabrication of nanoporous tungsten oxide by galvanostatic anodization[J], J. Mater. Res., 2003,18 (10): 2296-2299.
    [97] H. Tsuchiya, J. M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Self-organized porous WO_3formed in NaF electrolytes[J], Electrochem. Commun., 2005, 7 (3): 295-298.
    [98] D. Gong, C. A. Grimes, O. K. Varghese, W C Hu, R S Singh, Z Chen, E C Dickey , Titanium oxide nanotube arrays prepared by anodic oxidation[J], J. Mater. Res., 2001, 16 (12): 3331-3334.
    [99] J. M. Macak, H .Tsuchiya, P. Schmuki, High-aspect-ratio TiO_2 nanotubes by anodization of titanium[J], Angew Chem. Int. Edit., 2005,44 (14): 2100-2102.
    
    [100] W. J. Lee, W. H. Smyrl, Zirconium oxide nanotubes synthesized via direct electrochemical anodization[J], Electrochem. Solid State Lett., 2005, 8 (3): B7-B9.
    [101] H. Tsuchiya, P. Schmuki, Thick self-organized porous zirconium oxide formed in H_2SO_4/NH_4F electrolytes[J], Electrochem. Commun., 2004, 6 (11): 1131-1134.
    [102] I. Sieber, B. Kannan, P. Schmuki, Self-assembled porous tantalum oxide prepared in H_2SO_4/HF electrolytes[J], Electrochem. Solid State Lett., 2005, 8 (3): J10-J12.
    [103] H. Tsuchiya, P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization[J], Electrochem. Commun., 2005,7 (1): 49-52.
    [104] I .Sieber, H. Hildebrand, A. Friedrich, P. Schmuki, Formation of self-organized niobium porous oxide on niobium[J], Electrochem. Commun., 2005, 7 (1): 97-100.
    [105] K. H. Wu, S. Y. Lu, Fabrication of array of nanoporous tin oxide nanorods with electrochemical processes[J], Electrochem. Solid State Lett., 2005, 8 (4): D9-D11.
    
    [106]张宝宏,丛文博,杨萍著.金属电化学腐蚀与防护[M],化学工业出版社,北京,2005
    
    [107] R. Vassen, X.Cao, M. Dietrich, and D. Stoever, Improvement of new thermal barrier coating systems using layered or graded structure. In The 25th Annual International Conference on Advanced Ceramics and Composites: An Advanced Ceramics Odyssey (Cocoa Beach of Florida, Jan. 2001), ed. Mrityunjay Singh and Todd Jessen. American Ceramic Society, 2001, pp. 435 - 442.
    [108] X. Q. Cao, R. Vassenb, D. Stoeverb, Ceramic materials for thermal barrier coatings [J], Journal of the European Ceramic Society, 2004,24:1 - 10
    [109] X. F. Yang, D. E. Tallman, V. J. Gelling, et al, Use of a sol-gel conversion coating for aluminum corrosion Protection [J], Surface and Coatings Technology, 2001,140:44-50
    [110] Y. Dianran, H. Jianjun, W. Jianjun, et al, the corrosion behanviour of a plasma spaying Al_2O_3 ceramic coatings in dilute HC1 solution [J], Surface coatingds Technology, 1997,89:191-195
    [111] H. Lianga, B. Shia, A. Fairchilda, et al, Cale Applications of plasma coatings in artificial joints: an overview [J], Vacuum 2004,73: 317-326
    [112] J. Masalski, J. Gluszek, J.Zabrzeski, et al, Improvement in corrosion resistance of the 316L stainless steel by means of Al_2O_3 coatings deposited by the sol-gel method [J], Thin solid films, 1999,349:186-190
    [113] E. Szalkowska, J. Gluszek, J. Masalski, et al, Structure and protective properties of TiO_2 coatings obtained using the sol-gel technique [J], J Mater. Sci. Lett., 2001,20(6): 495-497
    [114] J. Gluszek, J. Masalski, P. Furman, et al, Structural and electrochemical examinations of PACVD TiO_2 films in ringer solution [J], Biomater., 1997,18:789-194
    
    [115]吴光佑著.阴极保护的原理和应用[M],机械工业出版社,北京,1965
    
    [116] C. J. Howard, T. M. Sabine, F. Dickson. Strustral and Thermal Parameters for Rutile and Anatase[J]. Acta Crystallogr. B, 1991, 47: 462-468.
    [117] H. Park, K. Y. Kim, W. Choi, Photoelectrochemical approach for metal corrosion pretection using a semiconductor photoanode [J], J Phys. Chem. B, 2002, 106:4775-4781
    [118] H. Park, K. Y. Kim, W. Choi, A novel photoelectrochemical method of metal corrosion prevention using a TiO_2 solar panel[J], Chem. Comm., 2001,281-282
    [119] Yang S G, Quan X, Li X Y, et al, Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe_2O_3/TiO_2, ZnO/TiO_2, and Fe_2O_3/ZnO/TiO_2 composite film electrodes [J], Phys. Chem. Chem. Phys., 2004, 6 (3): 659-664
    [120] T. Shinohara, Corr. Eng. 2001,50:247
    [121] T. Tatsuma, S. Satioh, P. Ngaotrakanwiwat, et al, Energy storage of TiO_2-WO_3 photocatalysis systems in the gas phase [J], Langmuir, 2002, 18: 7777-7779
    [122] T. Tatsuma, S. Satioh, Y Ohko, et al, TiO_2-WO_3 photoelectrochemical anticorrosion system with an energy storage ability [J], Chem. Mater., 2001,13:2838-2842
    [123] R. Subasri, T. Shinohara, Investigation on SnO_2-TiO_2 composit photoelectrodes for corrision protection[J], Electrochem. Commun., 2003,5 : 897
    [124] R. Subasri, T. Shinohara, K. Mori., Modified TiO_2 coatings for cathodic protection applications [J], Sci. Technol. Adv. Mater. 2005,6: 501-507
    [125] R. Subasri, and T.Shinohara ., The Application of SnO_2 Coatings for Corrosion Protection of Metals[J], Electrochem. Solid-State Lett, 2004,7 (7): B17
    [126] R. Subasri, T. Shinohara, K. Mori., TiO_2-Based Photoanodes foe Cathodic of Copper[J], J. Electrochem. Soc., 2005,152(3): B105-B110
    [127] R. Subasri, S. Deshpande, S. Seal, T. Shinohara, Evaluation of the Performance of TiO_2-CeO_2 Bilayer Coatings as Photoanodes for Corrosion Protection of Copper[J], Electrochem. Solid-State Lett., 2006,9(1): B1-B4
    [128] B. O'Regan, M. Gra¨tzel, Nature ., 1991,353: 737
    [129] J. M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, Dye-sensitized anodic TiO_2 nanotubes Electrochem. Commun., 2005,7: 1133-1137
    [130] Y. Sakata,, T. Yamamoto,, T. Okazaki, H. Imamura, S. Tsuchiya, Generation of visible light response on the photocatalyst of a copper ion containing TiO_2 [J]Chem. Lett, 1998,12: 1253
    [131] M. Iwasaki, M. Hara, H. Kawada, H.Tada, S. Ito, Cobalt ion-doped TiO_2 photocatalyst response to visible light J. Colloid Interface Sci., 2000,224: 202-204
    [132] X. H. Wang, J.G Li, H. Kamiyama, Y. Moriyoshi, and T. Ishigaki, Wavelength-Sensitive Photocatalytic Degradation of Methyl Orange in Aqueous Suspension over Iron(III)-doped TiO_2 Nanopowders under UV and Visible Light Irradiation[J], J. Phys. Chem. B., 2006, 110: 6804-6809
    [133] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Visible-light photocatalysis in nitrogen-doped titanium oxides[J], Science., 2001,293: 269-271
    [134] Y. Suda, H. Kawasaki, T. Ueda and T .Ohshima, Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture[J], Thin Solid Films ., 2005,475: 337-341
    [135] H. Irie, S. Washizuka, Y. Watanabe, T. Kako and K. Hashimoto, Photoinduced hydrophilic and electrochemical properties of nitrogen-doped TiO_2 films [J], J. Electrochem. Soc, 2005, 152: E351-356
    [136] S. Sato, R. Nakamura and S. Abe., Visible-light sensitization of TiO_2 photocatalysts by wet-method N doping [J], Appl. Catal. A-Gen., 2005,284: 131-137
    [137] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel., Solid-state dye-sensitized mesoporous TiO_2 solar cells with high photon-to-electron conversion efficiencies[J], Nature, 1998, 395 (6702): 583-585
    [138] B. Pal, M. Sharon, G Nogami., Preparation and characterization of TiO_2/Fe_2O_3 binary mixed oxides and its photocatalytic properties[J], Mater. Chem. Phys., 1999, 59 (3): 254-261
    [139] T. V. Nguyen, H.C. Lee, O.B. Yang., The effect of pre-thermal treatment of TiO_2 nano-particles on the performances of dye-sensitized solar cells[J], Sol. Energ. Mat. Sol. C, 2006, 90 (7-8): 967-981
    [140] F. Pichot, J. R. Pitts, B. A. Gregg., Low-temperature sintering of TiO_2 colloids: Application to flexible dye-sensitized solar cells, Langmuir, 2000,16(13): 5626-5630
    [141] N. Sakai, Y. Komoda, T. N. Rao, D. A. Tryk, A. Fujishima., Effect of adsorbed water on the photoelectrorheology of TiO_2 particle suspensions[J], 1998, J. Electroanal. Chem. 445 (1-2): 1-6
    [142] T. Watanabe, S. Fukayama, M. Miyauchi, A. Fujishima, K. Hashimoto., Photocatalytic activity and photo-induced wettability conversion of TiO_2 thin film prepared by sol-gel process on a soda-lime glass[J], J. Sol-Gel. Sci. Techn, 2000,19 (1-3): 71-76
    [1]M.Koelsch,S.Cassaignon,J.F.Guillemoles,et al,Comparison of optical and electrochemical properties of anatase and brookite TiO synthesized by the sol杇el method[J],Thin Solid Films,2002,403 -404:312? 19
    [2]D.Gong,C.A.Grimes,O.K.Varghese,W.Hu,R.S.Singh,Z.Chen,E.C.Dickey,Titanium oxide nanotube arrays prepared by anodic oxidation[J],J.Mater.Res.,(2001).16,3331
    [3]赖跃坤,孙岚,左娟,林昌健.氧化钛纳米管阵列制备及形成机理[J],物理化学学报,2004,20(9):1063
    [4]I.Sieber,B.Kannan,and P.Schmuki,Electrochem.Self-assembled porous tantalum oxide prepared in H_2SO_4/F electrolytes[J],Solid-State Lett.,2005,8:J10-J12
    [5]H.Tsuchiya,J.M.Macak,I.Sieber,L.Taveira,A.Ghicov,K.Sirotna,and P.Schmuki,Self-organized porous WO3 formed in NaF electrolytes[J],Electrochem.Commun.,2005,7:295-298
    [6]H.Tsuchiya and P.Schmuki,Thick self-organized porous zirconium oxide formed in H_2SO_4/NH_4F electrolytes[J],Electrochem.Commun.2004,6:1131-1134
    [7]H.Tsuchiya and P.Schmuki,Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization[J],Electrochem.Commun.,2005,7:49-52
    [8]J.M.Macak,H.Tsuchiya,P.Schmuki,High-aspect-ratio TiO_2 nanotubes by anodization of titanium[J],Angewandte Chemie-International Edition 2005,44(14):2100-2102
    [9]D Birggs著.桂琳琳,黄惠忠,郭国霖译.X射线与紫外光电子能谱[M],北京:北京大学出版社,1984.
    [10]陈体衔.实验电化学[M],科学出版社,北京,1995.
    [11]M Stern,A L Greary,Electrochemical polarization I.Atheoretical analysis of the shape of polarization curves[J],J Electrochem.Sco.,1957,104:56-63
    [12]史美伦,交流阻抗谱原理及应用[M],国防工业出版社,北京,2001
    [13]曹楚南,张鉴清,电化学阻抗谱导论[M],科学出版社,北京,2002
    [14]H.Park,K.Y.Kim,W.Choi,A novel photoelectrochemical method of metal corrosion prevention using a TiO_2 solar panel[J],Chem.Comm.,2001,03:281-282
    [15]H.Park,K.Y.Kim,W.Choi,Photoelectrochemical approach for metal corrosion pretection using a semiconductor photoanode[J],J Phys.Chem.B,2002,106:4775-4781
    [1] Lin C S, Ke C S, Peng H, Corrosion of CrN and CrN/TiN coated heat-resistant steels in molten A356 aluminum alloy [J], Surf. Coat. Techno., 2001, 164: 168-174
    
    [2] Choi Y, Baik N I, Lee J S, et al, Corrosion and wear properties of TiC/Ni-Mo composites produced by direct consolidation during a self-propagating high-temperature reaction[J], Compos. Sci. Technol., 2001,61 (7): 981-986
    [3] Caruso R, Pla F, Parralejo A D, et al, Multilayer coatings preparation of zirconia-based by sol-gel route; microstructural and mechanical characterisation[J], Revista De Metalurgia, 2001,37 (2): 311-315
    [4] Kubota T, Hara N, Sugimoto K, Real time spectroscopic ellipsometry study on growth processes of ZrO_2 thin films in metallorganic chemical vapor deposition [J], J Electrochem. Sco., 2001,148 (9): C632-C639
    [5] Fallet M, Mahdjoub H, Gautier B, et al, Electrochemical behaviour of ceramic sol-gel coatings on mild steel [J], J Non-Cryst. Solids, 2001,293: 527-533
    [6] Drews MJ, Williams M, Barr M The corrosion of sol-gel-coated type 316 SS in chlorinated SC water [J], Ind. Eng. Chem. Res., 2000, 39 (12): 4772-4783
    [7] Yan D R, He J N, Li X Z, et al, An investigation of the corrosion behavior of Al_2O_3-based ceramic composite coatings in dilute HC1 solution [J], Surf. Coat. Tech., 2001, 141 (1): 1-6
    [8] Liu JX, Yang DZ, Cai YJ Preparation of TiO_2-SiO_2 films on biomedical NiTi alloy by a sol-gel method [J], J Inorg. Mater., 2001, 16 (1): 75-80
    [9] Yan D R, He J I, Li X Z, et al, Corrosion resistance of plasma sprayed ceramic composite coatings on Q235 substrate [J], J Mater Sci Technol., 2001,17 (1): 7-8
    [10] Rincon AG, Pulgarin C Bactericidal action of illuminated TiO_2 on pure Escherichia coli and natural bacterial consortia: post-irradiation events in the dark and assessment of the effective disinfection time [J], Appl. Catal. B-Environ.,2004,49 (2): 99-112
    
    [11] . Kim I, Dost S, Texture evolution in TiN, TaN and W2N thin films [J], Mater. Sci. Forum., 2002 408-4:1591-1596
    
    [12] Bertoti I Characterization of nitride coatings by XPS [J], Surf. Coat. Technol., 2002, 151: 194-203
    [13] Ren D S, Cui XL, Shen J, et al. Study on the superhydrophilicity of the SiO_2-TiO_2 thin films prepared by sol-gel method at room temperature [J], J Sol-Gel Sci. Tech., 2004,29 (3): 131-136
    [14]Fukada Y,Nagarajan N,Mekky W,et al.Electrophoretic deposition-mechanisms,myths and materials[J],J Mater.Sci.,2004,39(3):787-801
    [15]Masalski J,Gluszek J,Zabrzeski J,et al,Improvement in corrosion resistance of the 316L stainless steel by means of Al_2O_3 coatings deposited by the sol-gel method[J],Thin solid films,1999,349:186-190
    [16]R.Subasri,T.shinohara,Investigation on SnO_2-TiO_2 composite photoelectrodes for corrosion protection[J],Electro Commun,2003,5:897-902
    [17]R.Asahi,T.Morikawa.Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides.Science,2001,293:269-270
    [18]Solar R J,Corrosion resistance of titanium surgical implant alloys:A Review[A].In:Syreet B C,Acharya A,eds.Corrosion and degradation of implant materials,ASTM STP684[C],Philadelphia
    [19]Gluszek J,Masalski J,Furman P,et al,Structural and electrochemical examinations of PACVD TiO_2 films in ringer solution[J],Biomater.,1997,18:789-194
    [20]Bertoti I Characterization of nitride coatings by XPS[J],Surf.Coat.Technol.,2002,151:194-203
    [21]熊兆贤,无机材料研究方法:合成制备、分析表征与性能检测[M],厦门:厦门大学出版社,2001,P
    [22]R.Nakamura,Y.Nakato,Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO_2 Film Electrodes,J.Phys.Chem.B 2004,108:10617-10620
    [23]L.Wu,X.Z.Fu,Characterization and photocatalytic mechanism of nanosized CdS coupled TiO_2 nanocrystals under visible light irradiation,J.Mole.CatalyA:Chem 2006,244:25-32
    [24]汪轩义,吴荫顺,张琳等,316L不锈钢钝化膜在Cl~-介质中的防蚀机制,腐蚀科学与防护技术[J],2000,12(6):311-315
    [1]吴荫顺,郑家焱,电化学保护和缓蚀剂应用技术[J],北京:化学工业出版社,2006
    [2]Rdgan O,Gratzel M.A low-cost-efficiency solar cell based on dye-sensitized colloidal TiO_2[J].Nature,1991,737-739
    [3]Vinodgopal K,Hotchandani S,Kamat P V.Electrochemically assisted photocatalysis:titania particulate film electrodes for photocatalytic degradation of4-chlorophenol[J].J.Phys.Chem.,1993,97:9040-9044
    [4]Asahi R,Morikawa T,Ohwaki T,Aoki K,Taga Y.Visible-light photocatalysis in nitrogen-doped titanium oxides[J].Science.,2001,293:269-271
    [5]Park H,Kim K Y,Choi W.A novel photoelectrochemical method of metal corrosion using a TiO_2 solar panel[J].Chem.Commun.,2001,14:281-282
    [6]Ohko Y,Saitoh S,Tatsuma S,et al.Photoelectrochemical anticorrosion and self-cleaning effects of a TiO_2 coating for type 304 stainless steel[J].J.Electrochem.Soc.,2001,148(1):B24-B28
    [7]Subasri R,shinohara T.Investigations on SnO_2-TiO_2 composite photoelectrodes for corrosion protection[J].Electro Commun.,2003,5:897-902
    [8]Park H,Kim Y K,Choi W,Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode[J],J Phys.Chem.B,2002,106:4775-4781
    [9]Yuan J,Tsujikawa S,J Electrochem.Soc.,1995,142:3444
    [10]Imokawa T,Fuj isawa R,Suda A,et al,Zairyo-to-Kankyo,1994,43:482-486(in Japanese)
    [11]Konishi T,Tsujikawa S,Zairyo-to-Kankyo,1997,46:709-716(in Japanese)
    [12]Yuan J,Tsujikawa S,Zairyo-to-Kankyo,1995,44:524-542(in Japanese)
    [13]Huang J,Shinohara T,Tsujikawa S,Zairyo-to-Kankyo,1997,46:651-661(in Japanese)
    [14]Huang J,Konishi T,Shinohara T,et al,Zairyo-to-Kankyo,1998,47:193-199(in Japanese)
    [15]Park H,Kyoo Y K,Choi W,A novel photoelectrochemical method of metal corrosion using a TiO_2 solar panel,Chem.Comm.,2001,281-282
    [16]R.Subasri,S.Deshpande,S.Seal,and T.Shinohara,Evaluation of the performance of TiO_2-CeO_2 bilayer coatings as photoanodes for corrosion protection of copper[J],Electrochemical and Solid-State Letters.,2006,9:B1-B4
    [17]T.Tatsuma,S.Saitoh,Y.Ohko,and A.Fujishima,TiO_2-WO_3 photoelectrochemical anticorrosion system with an energy storage ability[J],Chem.Mater.,2001,13:2838-2842
    [18]R.Subasri,T.shinohara,Investigations on SnO_2-TiO_2 composite photoelectrodes for corrosion protection[J],Electro Commun.,5,897(2003).
    [19] Jiang H B, Gao L, Influence of Cu dopants on structure and properties of nanosized TiO_2 particulate film[J], J. Inorg. Mater, 2002, 17: 787-791
    [20] Weng L, Hodgson S N B, Ma J, Preparation of TeO_2-TiO_2 thin films by sol-gel process[J], J. Mater. Sci. Lett., 1999,18: 2037-2039
    [21] R. S. Sonawane, B. B. Kale, M.K. Dongare, Preparation and photo-catalytic activity of Fe-TiO_2 thin films prepared by sol-gel clip coating[J], Mater. Chem. Phys., 2004, 85: 52-57
    [22] M.S. Jeon, W.S. Yoon, H.K. Joo, T.K. Lee, H. Lee, Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst[J], Appl. Surf. Sci., 2000,165:209-216
    [23] M. Stir, T. Traykova, R. Nicula, E. Burkel, C. Baehtz, M. Knapp, C. Lathe, In situ high-pressure and high-temperature diffraction experiments on pure and Ag-doped TiO_2 nanopowders[J], Nucl. Instrum. Meth. Phys. Res. B., 2003,199: 59-63
    [24] R.Nakamura, Y.Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes[J], J. Phys. Chem. B. 2004,108: 10617-10620
    [25] Tatsuma T., S. Satioh, P. Ngaotra kanwiwat, et al, Energy storage of TiO_2-WO_3 photocatalysis systems in the gas phase [J], Langmuir, 2002, 18: 7777-7779
    [26] Raghavan S., Tadashi S., Investigations on SnO_2-TiO_2 composite photoelectrodes for corrosion protection [J], Electrechem. Commun., 2003, 5: 897-907
    [27] Beranek R, Tsuchiya H, Sugishima T, Macak J M, Taveira L, Fujimoto S, Kisch H, and Schmukic P. Enhancement and limits of the photoelectrochemical response from anodic TiO_2 nanotubes[J]. Appl. Phys. Lett., 2005, 87: 243114
    [28] Raghavan S, Tadashi S, Investigation on SnO_2-TiO_2 composite photoelectrodes for corrosion protention[J], Electrochem. Commu., 2003, 5: 897-902
    [29] Vinodgopal K, Bedja I, Prashant V K, Nanostructured semiconductor film for photocatalysis. Photoelectrochemical behavior of SnO_2 / TiO_2 composite system and its role in photocatalytic degradation of a textileazo dye, Chem. Mater. 1996, 8: 2180-2187
    [30] R.Subasri, K.Mori, TiO_2-Based Photoanodes for Cathodic Protection of Copper, J. Electrochem. Sci, 2005,152(3): B105-B110
    [1]M.Ferroni,V.Guid,G.Martinelli,et al.,Characterization of a nanosized TiO_2 gas sensors Nanostruct.Mater.,1996,7:709
    [2]M.I.Baraton,L.Merhari Nanostruct.Mater.,1998,10:699
    [3]L.Kavan,M.Gratzel,J.Rathousky J.Electrochem.Soc.,1996,143:394
    [4]H.Y.Ha,S.W.Nam,T.H.Lim J.Membr.Sci.,1996,111:81
    [5]A.L.Linsebigler,G.Q.Lu,J.T.Yates Chem.Rev.,1995,95:735
    [6]M.R.Hoffmann,S.T.Martin,W.Y.Choi Chem.Rev.,1995,95:69
    [7]M.Adachi,Y.Murata,I.Okada,S.Yoshikawa J.Electrochem.Soc.,2003,150(8):G488
    [8]Y.Zhao,L.Cao,F.Zhang,B.He,H.Li,J.Electrochem.Soc.,2003,150(9):A1246
    [9]O Regan B,Gratzel M.Nature,1991,353:737
    [10]叶好华,叶志慎,黄靖云等,氧化铝模板法制备Ge纳米线[J],半导体学报,2003,24(2):173-177
    [11]I.Kartini,P.Meredith,J.C.D.da Costa,et al.Formation of mesostructured titania thin films using isopropoxide precursors[J],Curr.Appl.Phys,2004,4(2-4):160-162
    [12]C.N.R.Rao,A.Govindaraj,F.L.Deepak,N.A.Gunari,M Nath,Surfactant-assisted synthesis of semiconductor nanotubes and nanowires[J],Appl.Phys.Lett.,2001,78:1853-1855.
    [13]T.Kasuga,M.Hiramatsu,A.Hoson,T.Sekino,K.Niihara,Formation of titanium oxide nanotube[J],Langmuir,1998,14(12):3160-3163.
    [14]Quan X,Yang S,Zhao H,et al.Environ.Sci.Technol.,2005,39:3770-3775
    [15]何文芳.钛阳极氧化[J],电镀与环保,1998,18(6):26-27
    [16]Dawei G,Grimes C A,Varghese O K,et al J.Mater.Res.,Titanium oxide nanotube arrays prepared by anodic oxidation[J],2001,16:3331-3334
    [17]Paulose M,Varghese O K,Mor G K,Grimes CA,Ong KG.Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes[J],Nanotechnology,2006,17(2):398-402
    [18]Varghese O K,Paulose M,Grimes C A,et al.Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays[J],J.Nanosci.Nanotech.,2005,5:1158-1165
    [19]Paulose M,Shankar K,Varghese OK,Mor G K,Grimes C A,Application of highly-ordered TiO_2 nanotube-arrays in heterojunction dye-sensitized solar cells[J],J.Phys.D:Appl.Phys.,2006,39:2498-2503
    [20]Padture N P,Wei X Z.Hydrothermal synthesis of thin films of barium titanate ceramic nano-tubes at 200 degrees C[J],J.Am.CerAm.Soc.,2003,86(12):2215-2217
    [21] Kato S, Shinagawa H, Okada H, Kido G, Mitsuhashi K. Application of ferromagnetic nano-wires in porous alumina arrays for magnetic force generator[J], Science and Technology of Advanced Materials, 2005,6 (3-4): 341-343
    [22] R. Subasri, S. Deshpande, S. Seal, and T. Shinohara, Evaluation of the performance of TiO_2-CeO_2 bilayer coatings as photoanodes for corrosion protection of copper[J], Electrochemical and Solid-State Letters., 2006,9:B1-B4
    [23] T. Tatsuma, S. Saitoh, Y. Ohko, and A. Fujishima, TiO_2-WO_3 photoelectrochemical anticorrosion system with an energy storage ability[J], Chem. Mater., 2001,13:2838-2842
    [24] R.Subasri, T.shinohara, Investigations on SnO_2-TiO_2 composite photoelectrodes for corrosion protection[J], Electro Commun., 5, 897 (2003).
    [25] Kim J C, Choi J, Lee Y B, Hong JH, Lee J I, Yang J W, Lee W I, Hur N H. Enhanced photocatalytic activity in composites of TiO_2 nanotubes and CdS nanoparticles[J], Chem. Commun., 2006,48: 5024-5026
    [26] R. S. Sonawane, B. B. Kale, M.K. Dongare, Preparation and photo-catalytic activity of Fe-TiO_2 thin films prepared by sol-gel clip coating[J], Mater. Chem. Phys., 2004, 85: 52-57
    [27] M.S. Jeon, W.S. Yoon, H.K. Joo, T.K. Lee, H. Lee, Preparation and characterization of a nano-sized Mo/Ti mixed photocatalyst[J], Appl. Surf. Sci., 2000,165: 209-216
    [28] Sekino T, Okamoto T, Kasuga T, Kusunose T, Nakayama T, Niihara K. Synthesis and properties of titania nanotube doped with small amount of cations[J], Science Of Engineering Ceramics III, 2006, 317-318:251 -254
    [29] Li Y H, Cao W B, Wei Y, Ran F Y, Zhang X N, Preparation of nitrogen-doped nano-TiO_2 powders[J], J. Inorg. Mater., 2006,21 (5): 1067-1072
    [30] Hahn R, Ghicov A, Salonen J, Lehto VP, Schmuki P . Carbon doping of self-organized TiO_2 nanotube layers by thermal acetylene treatment[J], Nanotechnology., 2007.18(10): 105604
    [31] Murakami Y, Kasahara B, Nosaka Y . Photoelectrochemical properties of the sulfur-doped TiO_2 film electrodes: Characterization of the doped states by means of the photocurrent measurements[J], Chemistry Letters., 2007,36 (2): 330-331
    [32] Park. J. H.; Kim. S.; and Bard. A. J. Novel carbon-doped TiO_2 nanotube arrays with high aspect ratios for efficient solar water splitting[J], Nano Letters., 2006,6: 24-28
    [33] Yin. S, Yamaki. H, Komatsu. M, Zhang. Q, Wang. J, Tang. Q, Saito. F, Sato. T. Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J], J. Mater. chem., 2003,13:2996-3001
    [34] Mor. G. K, Shankar. K, Paulose. M, Varghese. O. K, and Grimes. C.A. Use of highly-ordered TiO_2 nanotube arrays in dye-sensitized solar cells[J], Nano Letters., 2006,6:215-218
    [35]J.Chastain,Handbook of X-ray Photoelectron Spectroscopy;Perkin-Elmer:Minnesota,1992
    [36]E.McCafferty,J.P.Wightman,Determination of the concentration of surface hydroxyl groups on metal oxide films by a quantitative XPS method[J],Surf.Interface Anal.,1998,26(8):549-564.
    [37]张彭义,余刚,蒋展鹏.环境科学进展[J],1997,5(3):1
    [38]王传义,刘春艳,沈涛.高等学校化学学报[J],1998,19(12):2013
    [39]刘畅,暴宁钟,杨祝红,陆小华.过渡金属离子掺杂改性TiO_2的光催化性能研究进展[J].催化学报.,2001,2:118-121
    [40]Mizushima K,Tanaka M,Iida S.J Phys Soc Jpn,1972,32(6):1519
    [41]Mo Sh D,Lin L B,Lin D L.J Phys Chem Solids,1994,55(11):1309
    [42]Choi W,Termin A,Hoffmann M R.J Phys Chem,1994,98(51):13669
    [43]Zhang Zh B,Wang Ch Ch,Zakaria R et al.J.Phys.Chem.B,1998,102(52):10871
    [44]Yang Maizhi(杨迈之),Li Huiming(李会铭),Cai Shengmin(蔡生民),Wuli Huaxue Xuebao (物理化学学报),1994,10:376
    [45]Bjorksten U,Moser J,Gr総zel M.Chem.Mater.,1994,6:858
    [46]Su Miezeng(苏勉曾).Introduction of Solid Chemistry(固体化学导论).,北京:Peking University Press(北京大学出版社),1987
    [47]Pleskov Yu.V.(波利斯科夫),Photoelectrochemistry of Solar Energy Conversion(光电化学太阳能转换).Tran.Zhang Tiangao(张天高).北京,Science Press(科学出版社),1994.116p
    [48]王艳芹,程虎民,马季铭.二氧化钛和三氧化二铁复合纳米晶电极的光电化学性质[J],物理化学学报,1999,15(3):222-227
    [49]J.F.Moulder,W.F.Stickle,K.D.Bomben,Handbook of X-ray PhotoelectronSpectroscopy,Perkin-Elmer,Eden Praire,1992.
    [50]Jiefang Zhu,Feng Chen,Jinlong Zhang,Haijun Chen and Masakazu Anpo.Fe~(3+)-TiO_2photocatalysts prepared by combining sol-gel method with hydrothermal treatment and their characterization[J].Journal of photochemistry A:Chemistry.,2006,180:196-204
    [51]Shankar.K,Paulose.M,Mor.G.K,Varghese.O.K,Grimes.C.A.A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays[J],J.Phys.D:Appl.Phys.,2005,38:3543-3549
    [52]Yin.S,Yamaki.H,Komatsu.M,Zhang.Q,Wang.J,Tang.Q,Saito.F,Sato.T.Preparation of nitrogen-doped titania with high visible light induced photocatalytic activity by mechanochemical reaction of titania and hexamethylenetetramine[J],J.Mater.chem.,2003,13:2996-3001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700