用户名: 密码: 验证码:
纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的飞速发展,在航空航天、环境监测、工业生产、医学、军事等领域,经常需要对压力、温度、磁场、湿度、加速度和流速等多个参数进行同时测量。在不同应用领域,针对环境适应性、体积、成本和功能的限定,对传感器的小型化、多功能化、集成化和一体化要求受到了广泛关注。本课题采用CMOS工艺和MEMS技术设计、制作以纳米硅/单晶硅异质结为源极(S)和漏极(D)的MOSFETs压/磁多功能传感器,本文主要进行以下五个方面的研究工作:
     1.纳米硅薄膜制备及特性研究
     采用LPCVD在衬底温度620℃时实现单晶纳米硅和多晶纳米硅薄膜制备,通过拉曼光谱(Raman spectroscopy)、X射线衍射(XRD)、扫描电子显微镜(SEM)和原子力显微镜(AFM)对纳米硅薄膜微结构进行表征研究。表征结果给出,在薄膜厚度为30.7nm时,晶粒大小5~8nm,取向为<111>晶向,随薄膜厚度增加,取向显著且多晶特征明显,沉积薄膜多晶取向为<111>、<220>和<311>晶向,择优取向为<111>晶向。对于同一厚度的纳米硅薄膜,随退火温度升高,X射线衍射峰强度增强。本文采用薄膜厚度为30.7nm的纳米硅薄膜制作以纳米硅/单晶硅异质结为源极和漏极的MOSFETs压/磁多功能传感器。
     2.MOSFETs压/磁多功能传感器基本理论分析
     本文在温殿忠教授提出的JFET压/磁电效应基本理论基础上,给出MOSFETs压/磁多功能传感器在外加压力P=0、外加磁场B=0;外加压力P≠0、外加磁场B=0;外加压力P=0、外加磁场B≠0;外加压力P≠0、外加磁场B≠0等四种情况下的基本理论分析。
     3.纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器压/磁敏感结构设计
     采用n型<100>晶向高阻双面抛光单晶硅片,基于CMOS工艺和MEMS技术在6mm×6mm方形硅膜的不同位置上设计由四个纳米硅/单晶硅异质结p-MOSFET沟道电阻构成的惠斯通电桥结构,实现纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器压敏结构,能够完成对外加压力P的测量。采用惠斯通电桥结构中一个纳米硅/单晶硅异质结p-MOSFET,在沟道两侧距源端为0.7倍沟道长度处制作两个欧姆接触电极作为霍尔输出端,构成纳米硅/单晶硅异质结p-MOSFET Hall磁传感器,能够完成对外加磁场B的测量。为提高磁传感器灵敏度特性,设计采用惠斯通电桥中两个纳米硅/单晶硅异质结p-MOSFET霍尔输出端构成串联输出方式。
     4.纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器基本结构及制作工艺
     本文在兼顾纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器中压力传感器特性和磁传感器特性基础上,设计给出纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器基本结构。采用CMOS工艺和MEMS技术实现纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器芯片的集成一体化制作与封装。
     5.纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器特性实验结果
     主要从以下四个方面给出纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器基本特性的实验结果:
     (1)当外加压力P=0、外加磁场B=0时
     本文采用CMOS工艺实现以纳米硅/单晶硅异质结为源极和漏极的p-MOSFET器件制作,在V_(DS)和V_(GS)恒定时,纳米硅/单晶硅异质结p-MOSFET沟道电流I_(DS)与沟道长宽比(L:W)成反比。
     (2)当外加压力P≠0、外加磁场B=0时
     在方形硅膜厚度和传感器工作电压V_(DD)恒定时,纳米硅/单晶硅异质结MOSFETs压力传感器满量程(160kPa)输出与沟道长宽比成正比。当方形硅膜厚度为75μm、工作电压V_(DD)=-1.5V时,长宽比为6:1的6SD MOSFETs压力传感器满量程输出21.04mV,灵敏度为0.132mV/kPa,线性度0.589%F.S,重复性0.571%F.S,迟滞0.412%F.S,精度0.82%F.S,灵敏度温度系数为-1550ppm/℃。
     (3)当外加压力P=0、外加磁场B≠0时
     本文提出采用栅极外加偏置电压V_(GS)调整纳米硅/单晶硅异质结p-MOSFETHall器件导电沟道等效电阻,使不等位电势V_(HO)接近零位输出,在相同工作条件下,与不等位电势补偿电路调零方法相比较,采用栅极外加偏置电压V_(GS)对不等位电势调零可提高磁灵敏度。在不等位电势调零方式和工作电压V_(DS)恒定时,纳米硅/单晶硅异质结p-MOSFET Hall磁传感器灵敏度与沟道宽长比(W:L)成正比。采用补偿电路对不等位电势调零后,在V_(DS)=-7.0V时,长宽比为2:1的纳米硅/单晶硅异质结p-MOSFET Hall磁传感器绝对磁灵敏度为21.26mV/T,线性度为0.156%F.S,重复性为1.719%F.S,迟滞为0.247%F.S,精度为1.834%F.S;长宽比为4:1的纳米硅/单晶硅异质结p-MOSFET Hall磁传感器,磁灵敏度为13.88mV/T,当采用栅极偏置电压V_(GS)对不等位电势调零时,磁灵敏度为16.48mV/T;当两个长宽比4:1的纳米硅/单晶硅异质结p-MOSFET Hall器件输出端构成串联输出方式,霍尔输出端串联输出磁传感器磁灵敏度为22.74mV/T,比单个纳米硅/单晶硅异质结p-MOSFET Hall磁传感器灵敏度提高约64%。
     (4)当外加压力P≠0、外加磁场B≠0时
     实验结果表明,纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器输入—输出特性实验曲线随外加压力和磁场而发生变化。
     本文设计、制作的纳米硅/单晶硅异质结MOSFETs压/磁多功能传感器能够完成压力和磁场的检测,具有良好的压敏特性和磁敏特性,实现压/磁检测的集成化和一体化。
With the development of technology,we usually need to measure parameters of pressure,temperature,magnetic field,humidity,acceleration,velocity of liquid,etc.at the same time,and these parameters are used in the fields of spaceflight,industry production,medicine,military affairs and so on.In many different application fields, due to the limits to adapting to environment,volume,cost and function,we need to pay much attention to miniaturization,multifunction,integration and all-in-one widely.The paper adopted CMOS technology and MEMS technology to design and fabricate MOSFETS pressure-magnetic multi-sensor taken nc-Si/c-Si heterojunetion as source and drain,and mainly researched the following five aspects:
     1.Fabrication and characteristics research on ne-Si thin films
     We fabricated single crystalline and polyerystalline nc-Si thin films by LPCVD at 620℃,and then adopted Raman,XRD,SEM and AFM,etc.to do token research about micro-structure of the nc-Si thin films.The token result showed:when thickness of the thin films was 30.7nm,sizes of crystalline grains were 5~8nm,and orientation was <111>,orientation and polycrystalline characteristics were obvious with increasing thickness of the thin films,polycrystalline orientations of the deposited thin films were <111>,<220>and <311>,good orientation was <111>.Intensity of X-ray diffraction crests increased with annealing temperature for nc-Si thin films with the same thickness. The paper adopted nc-Si thin films with film thickness 30.7nm to fabricate MOSFETs pressure-magnetic multi-sensor,which took nc-Si/c-Si heterojunction as source and drain.
     2.Basic theory analysis of the MOSFETs pressure-magnetic multi-sensor
     The paper presented basic theory analysis about the MOSFETs pressure-magnetic multi-sensor,which was based on the basic theory of JFET pressure-magnetic multi-sensor presented by Dianzhong Wen professor,the basic theory analysis of the MOSFETS pressure-magnetic multi-sensor concluded four conditions:When additional pressure P=0,additional magnetic field strength B=0;When the additional pressure P≠0, the additional magnetic field strength B=0;When the additional pressure P=0,the additional magnetic field strength B≠0;When the additional pressure P≠0,the additional magnetic field strength B≠0,etc.
     3.Design of pressure-magnetic sensitivity structure on the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor
     After polishing double sides of n-type <100> p-Si wafer with high resistivity,we designed Wheatstone bridge constituted by four nc-Si/c-Si heterojunction p-MOSFET channel resistors on different positions of squared silicon membrane(6mm×6mm) by CMOS technology and MEMS technique,in order to achieve pressure-sensitivity structure of the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor, and be able to complete the measurement to the additional pressure P.Two ohm-contact Electrodes,which were taken as Hall output on double sides of the channel situated 0.7L from the source,were fabricated by adopting nc-Si/c-Si heterojunction p-MOSFET of the Wheatstone bridge,so that nc-Si/c-Si heterojunction p-MOSFET Hall magnetic sensor could be constituted and the measurement for the additional magnetic field strength B could be achieved.In order to improve sensitivity characteristics of the magnetic sensor,we adopted two nc-Si/c-Si heterojunctions p-MOSFET Hall fan-out in series in Wheatstone bridge.
     4.Basic structure and fabrication technology of the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor
     The paper considered characteristics of pressure and magnetic sensors of the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor at the same time, based on that to design and present basic structure of the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor.Adopting CMOS technology and MEMS technique achieved fabrication of integration all-in-one and packaging for chip of the pressure-magnetic multi-sensor.
     5.Characteristics experimental result of the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor
     The paper mainly showed basic characteristics experimental result about the nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor from the following four respects:
     (1) When the additional pressure P=0,the additional magnetic field strength B=0:
     The paper adopted CMOS technology to achieve fabrication of the p-MOSFET device taken nc-Si/c-Si heterojunction as source and drain,when VDS and V_(GS) were constant,channel current I_(DS) of the nc-Si/c-Si heterojunction p-MOSFET was inversely proportional to length-width(L:W) ratio.
     (2) When the additional pressure P≠0,the additional magnetic field strength B=0:
     When thickness of squared silicon film and operating voltage V_(DD) were constant for the sensor,full range(160kPa) outputs of the nc-Si/c-Si heterojunction MOSFETs pressure sensor were directly proportional to length-width ratio of the channel.When thickness of squared silicon membrane was 75μm and operating voltage V_(DD) was -1.5V, full range output of 6SD MOSFETs pressure sensor with L:W ratio 6:1 was 21.04mV, and sensitivity was 0.132mV/kPa,linearity was 0.589%F.S,hysteresis was 0.412%F.S, precision was 0.82%F.S,temperature coefficient of sensitivity was-1550ppm/℃.
     (3) When the additional pressure P=0,the additional magnetic field strength B≠0:
     The paper adopted additional biased voltage V_(GS) of gate to adjust conducting channel equivalent resistors of the nc-Si/c-Si heterojunction p-MOSFET Hall device,so that different potentials V_(OH) were close to zero outputs,in the same operating circumstance,adopting additional biased voltage V_(GS) to adjust zero to different potentials could improve sensitivity compared with adjusting zero of compensation circuit to different potentials.When different potentials was adjusted zero and operating voltage V_(DS) was constant,sensitivity of the nc-Si/c-Si heterojunction p-MOSFET Hall magnetic sensor was directly proportional to channel W:L ratio,after adopting compensation circuit to adjust zero to different potentials,when V_(DS)=-7.0V,absolute sensitivity of the nc-Si/c-Si heterojunction p-MOSFET Hall magnetic sensor with L:W ratio 2:1 was 21.26mV/T,linearity was 0.156%F.S,repeatability was 1.719%F.S, hysteresis was 0.247%F.S,precision was 1.834%F.S;magnetic sensitivity for the nc-Si/c-Si heterojunction p-MOSFET Hall magnetic sensor with L:W ratio 4:1 was 13.88mV/T,when different potentials were adjusted zero by additional biased voltage V_(GS) of the gate,magnetic sensitivity was 16.48mV/T;When two fan-out of nc-Si/c-Si heterojunction p-MOSFET Hall device with L:W ratio 4:1 were in series,magnetic sensitivity of Hall fan-out of the magnetic sensor was 22.74mV/T,which was improved by about 64%compared with sensitivity of single nc-Si/c-Si heterojunction p-MOSFET Hall magnetic sensor.
     (4) When the additional pressure P≠0,the additional magnetic field strength B≠0:
     Experimental result showed that input-output experimental characteristics curves of the nc-Si/c-Si heterojunction p-MOSFET Hall pressure-magnetic multi-sensor would change with additional pressure and magnetic field.
     The nc-Si/c-Si heterojunction MOSFETs pressure-magnetic multi-sensor designed and fabricated in the paper,can achieve the measurements for pressure and magnetic field,and owns super characteristics of pressure sensitivity and magnetic sensitivity,and also achieve the integration and all-in-one for measurement of pressure-magnetic.
引文
[1]Wen Dianzhong.Sensitivity analysis of junction field effect-pressure Halltron[J].REVIEW OF SCIENTIFIC INSTRUMENS,1995,(66):251-255.
    [2]温殿忠.P~+πN~+器件压磁电效应的研究[J].传感技术学报,1996,(6):10-14.
    [3]张文栋,石云波.新型复合硅微传感器的设计[J].纳米技术与精密工程,2004,(3):24-28.
    [4]徐敬波,赵玉龙,蒋庄德等.基于SOI的集成硅微传感器芯片的制作[J].半导体学报,2007,(28):302-307.
    [5]Peter Norlin,Ove 0hman,BjOrn Ekstrom,et al.A chemical micro analysis system for the measurement of pressure,flow rate,temperature,conductivity,UV-absorption and fluorescence[J].Sensors and Actuators B,1998,(49):34-39.
    [6]Ch.S.Roumenin,A.Ivanov,P.Nikolova.A linear multisensor for temperature and magnetic field based on diode structure[J].Sensor and Actuators,1999,(72):27-31.
    [7]Takayuki Fujita,Kazusuke Maenaka.Integrated multi-environmental sensing-system for the intelligent data carrier[J].Sensors and Actuators A,2002,(97-98):527-534.
    [8]Dafina Tanase,Johannes F.L.Goosen,Pieter J.Trimp,et al.Multi- parameter sensor system with intravascular navigation for catheter/guide wire application[J].Sensors and Actuators A,2002,(97-98):116-124.
    [9]Yong Xu,Chen-Wei Chiu,Fukang Jiang,et al.A MEMS multi-sensor chip for gas for sensing[J].Sensors and Actuators A,2005,(121):253-261.
    [10]M.Lohndorf,S.Dokupil,M.-T.Bootsmann,et al.Characterization of magnetostrictive TMR pressure sensors by MOKE[J].Journal of Magnetism and Magnetic Materials,2007,(316):e223-e225.
    [11]Anders Hyldgard,Karen Birkellund,Jakob Janting,et al.Direct media exposure of MEMS multi-sensor systems using a potted-tube packaging concept[J].Sensors and Actuators A,2008,(142):398-404.
    [12]Yozo Kanda,Akio Yasukawa.Optimum design considerations for silicon piezoresistive pressure sensors[J].Sensors and Actuators A,1997,(62):539-542.
    [13]V.Stankevic,C.Simkevicius.Application of aluminum films as temperature sensors for the compensation of output thermal shift of silicon piezoresistive pressure sensors[J].Sensors and Actuators A,1998,(71):161-166.
    [14]Yi Cai Sun,Zhenbin Gao,Li Qiang Tian,et al.Modelling of the reverse current and its effects on the thermal drift of the offset voltage for piezoresistive pressure sensors[J].Sensors and Actuators A,2004,(116):125-132.
    [15]A.Boukabache,P.Pons,G.Blasquez,et al.Characterisation and modeling of the mismatch of TCRs and their effects on the drift of offset voltage of piezoresistive pressure sensors[J].Sensors and Actuators A,2000,(84):292-293.
    [16]H.E.Elgamel.Closed-form expressions for the relationships between stress,diaphragm deflection,and resistance change with pressure in silicon piezoresistive pressure sensors[J].Sensors and Actuators A,1995,(50):17-22.
    [17]I.P.Zhadko,G.G.Babichev,S.I.Kozlovskiy,et al.Silicon pressure transducer with differential sensitive element based on transverse electromotive force effect[J].Sensors and Actuators A,2001,(90):89-95.
    [18]Fang He,Qing-An Huang,Ming Qin.A silicon directly bonded capacitive absolute pressure sensor[J].Sensors and Actuators A,2007,(135):507-514.
    [19]David C.Catling.High-sensitivity silicon capacitive sensors for measuring medium-vacuum gas pressures[J].Sensors and Actuators,1998,(64):157-164.
    [20]颜黄苹,冯勇建,许金海等.MOS场效应管压力微传感器[J].传感器技术,2001,(5):19-21.
    [21]岳瑞峰,刘理天,李志坚.集成MOS力敏运放压力传感器[J].半导体学报,2001,(4):500-502.
    [22]岳瑞峰,刘理天,李志坚.MOS力敏运算放大器[J].电予学报,2001,(8): 1032-1034.
    [23]张艳红,刘理天,张兆华等.新型MOS晶体管式压力传感器[J].微纳电子技术,2007,(7),225-234.
    [24]E.Hynes,M.Oneill,D.McAuliffer,et al.Development and Characterisation of a surface micromachined FET pressure sensor on a CMOS process[J].Sensors and Actuators A,1999,(76):283-292.
    [25]Ryszard S.Jachowicz,Zbigniew M.Azgin.FET pressure sensor and iterative method for modeling of the device[J].Sensors and Actuators A,2002,(97-98):369-378.
    [26]J.-M.Sallese,W.Grabinski,V.Meyer,et al.Electrical modeling of a pressure sensor MOSFET[J].Sensors and Actuators A,2001,(94):53-58.
    [27]M.Fernandez-Bolanos,N.Abele,V.Pott,et al.Polyimide sacrificial layer for SOI SG-MOSFET pressure sensor[J].Microelectronic Engineering,2006,(83):1185-1188.
    [28]Vitor Garcia,Fabiano Fruett.A mechanical-stress sensitive differential amplifier.[J].Sensors and Actuators A,2006(132):8-13.
    [29]阮英超.结型场效应晶体管的霍尔效应的理论分析[J].半导体学报,1980,(5):107-120.
    [30]Maciej Oszwadowski,Tomasz Berus.High temperature Hall sensors[J].Sensors and Actuators A,2007,(136):234-237.
    [31]F.Burger,P.-A.Besse,R.S.Popovic.Influence of silicon anisotropy on the sensitivity of Hall devices and on the accuracy of magnetic angular sensors[J].Sensors and Actuators A,2001,(92):175-181.
    [32]Hong-Ming yang,Yu-Chung Huang,Tan-Fu Lei,et al.High-resolution MOS magnetic sensor with thin oxide in standard submicron CMOS process[J].Sensors and Actuators A,1996,(57):9-13.
    [33]Kazuhiro Nakano,Tom Takahashi,Shoji Kawahito.Sensor array characteristics of MOS Hall-plates and the comparison with split-drain MAGFETs[J].IEICE Electronics Express,2006,(3):328-332.
    [34]M.Doelle,D.Mager,P.Ruther,et al.Geometry optimization for planar piezoresistive stress sensors based on the pseudo-Hall effect[J].Sensors and Actuators A,2006,(127):261-269.
    [35]M.Oszwaldowski,T.Berus.Temperature coefficients of Hall sensors made of InSb/GaAs epitaxial layers[J].Sensors and Actuators A,2007,(133):23-26.
    [36]M.Paranjape,I.Filanovsky.A 3-D vertical Hall magnetic-field sensor in CMOS technology[J].Sensors and Actuators A,1992,(34):9-14.
    [37]Z.Q.Li,X.W.Sun,S.C.Tan,et al.A magnetic field-induced current-modulating opamp based on CMOS differential Tesla-Volt multiplier cell for MAGFET 1/f noise reduction[J].Sensors and Actuators A,2005,(118):292-297.
    [38]D.Lange,C.Hagleitner,C.Herzog,et al.Electromagnetic actuation and MOS-transistor sensing fro CMOS-integrated micromechanical resonators[J].Sensors and Actuators A,2003,(103):150-155.
    [39]E.Schurig,C.Schott,P.-A.Besse,et al.0.2mT Residual offset of CMOS integrated vertical Hall sensors[J].Sensors and Actuators A,2004,(110):98-104.
    [40]温殿忠.激光刻蚀硅磁敏三极管发射区引线槽的研究[J].中国激光,2003,(5):454-456.
    [41]Wen Dianzhong.Double Injection Type Magneto-transistor Formed on a SOI Substrate[J].Chinese Journal Electron Devices,2006,(3):1-5.
    [42]We n Dianzhong.Negative-Resistance Characteristics Studies in Silicon Double Injection p~+πn~+ Magnetic-Device[C].International Society for Optical Engineering,2001,(10):301-305.
    [43]魏同立,何野,沈克强.硅栅CMOS磁敏器件的研制[J].固体电子学研究与进展,1987,(11):285-291.
    [44]汪东旭.三漏CMOS磁敏器件[J].传感技术学报,1990,(12):51-54.
    [45]毛赣如,娆素英,曲宏伟.新型半导体集成磁敏传感器的研究[J].电子测量与仪器学报,1996,(12):19-23.
    [46]姚韵若,朱大中.基于标准CMOS工艺的扇形磁敏晶体管及其模型[J].半导体学报,2005,(4):751-755.
    [47]Yao Yunruo,Zhu Dazhong,Guo Qing.Sector split-drain magnetic field-effect transistor based on CMOS technology[J].Sensors and Actuators A,2005,(121).347-351.
    [48]Guo Qing,Zhu Dazhong,Yao Yunruo.CMOS magnetic sensor integrated circuit with sectorial MAGFET[J].Sensors and Actuators A,2006,(126):154-158.
    [49]Feng Ning,Erik Bruun.An offset-trimmable array of magnetic-field-sensitive MOS transistors[J].Sensor and Actuators A,1997,(58):109-112.
    [50]H.Blanchard,F.De Montmollin,J.Hubin,et al.Highly sensitive Hall sensor in CMOS technology[J].Sensors and Actuators A,2000,(82):144-148.
    [51]Guo-Ming Sung.Error correction for transformed concave and convex MAGFETs with dc supply voltage[J].Sensors and Actuators A,2005,(117):41-49.
    [52]何宇亮,王因生,桂德成等.纳米硅异质结二极管[J].固体电子学研究与进展,2000,(1):34-39.
    [53]刘明,刘宏,何宇亮.纳米硅/单晶硅异质结的Ⅰ-Ⅴ特性[J].物理学报,2003,(11):2875-2878.
    [54]Wei Wensheng,Wang Tianmin,Zhang Chunxi,et al.Study on variable capacitance diode of(p) nc-Si:H/(n)c-Si heterojunction[J],Vacuum,2003(71):465-469.
    [55]Wensheng Wei,Gangyi Xu,Tianmin wang,et al.Carrier conduction in heterojunction of hydrogenated nanocrystalline silicon with crystal silicon[J].Thin Solid Films,2007,(515):3997-4003.
    [56]胡志华,廖显伯,曾湘波等.纳米硅(nc-Si:H)/晶体硅(c-Si)异质结太阳电池的数值模拟分析[J].物理学报,2003,(1):217-224.
    [57]Z.X.Zhao,R.Q.Cui,F.Y.Meng,et al.Nanocrystalline silicon thin films prepared by RF sputtering at low temperature and heterojunction solar cell[J].Materials Letters,2004,(28):3963-3966.
    [58]Ying Xu,Zhihua Hu,Hongwei Diao,et al.Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers[J].Journal of Non-Crystalline Solids,2006,(352):1972-1975.
    [59]张群芳,朱美芳,刘丰珍等.高效率n-nc-Si:H/p-c-Si异质结太阳能电池[J].半导体学报,2007,(1):96-99.
    [60]刘丰珍,崔介东,张群芳等.纳米硅/晶体硅异质结电池的暗Ⅰ-Ⅴ特性和输运机制[J].半导体学报,2008,(3):550-553.
    [61]H.Chen,M.H.Gullanar,W.Z.Shen.Effects of high hydrogen dilution on the optical and electrical properties in B-doped nc-Si:H thin films[J].Journal of Crystal Growth,2004,(260):91-101.
    [62]Kerisuke Sato,Tomio Izumi,Mitsuo Iwase,et al.Nucleation and growth of nanocrysatlline silicon studied by TEM,XPS and ESR[J].Applied Surface Science,2003,(216):376-381.
    [63]J.Puigdollers,C.Voz,A,Orpella,et al.Electronic transport in low temperature nanocrystalline silicon thin-film transistors obtained by hot-wire CVD[J].Journal of Non-Crystalline Solids,2002,(299-302):400-404.
    [64]P.Photopoulos,A.G.Nassiopoulou,D.N.Kouvatsos.Photo-luminescence and electroluminescence form nanocrystalline silicon single and multiplayer structures [J].Materials Science and Engineering,2000,(B69-70):345-349.
    [65]M.H.Gullanar,Y.H.Zhang,H.Chen,et al.Effect of phosphorous doping on the structural properties in nc-Si:H thin films[J].Journal of Crystal Growth,2003(256):254-260.
    [66]Christopher R.Perrey,Siri Thompson,Markus Lentzen,et al.Observation of Si nanocrystals in a/nc-Si:H films by spherical-aberration corrected transmission electron microscopy[J].Journal of Non-Crystalline Solids,2004,(343):78-84.
    [67]Y.Inoue,A.Tanaka,M.Fujii,et al.Single-electron tunneling through Si nanocrystals dispersed in phosphosilicate glass thin films[J].Physica E,2000,(7):444-447.
    [68]Takashi Kihara,Toshihiro Harada,Nobuyoshi Koshida.Wafer-compatible fabrication and characteristics of nanocrystalline silicon thermally induced ultrasound emitters[J].Sensors and Actuators A,2006,(125):422-428.
    [69]Jiangjun Shi,Liangcai Wu,Xinfan Huang,et al.Electron and hole charging effect of nanocrystalline silicon in double-oxide barrier structure[J].Solid State Communications,2002,(123):437-440.
    [70]D.Amans,S.Callard,A.Gagnaire,et al.Optical properties of a microcavity containing silicon nanocrystals[J].Materials and Engieering B,2003,(101):30-308.
    [71]M.Ando,H.Miyamoto,H.Naito,et al.Photoelectric properties of printed thin films of silicon nannocrystals dispersed in polymer binder[J].Journal of Non-Crystalline Solids,2002,(299-302):1084-1089.
    [72]L.Tsybeskov,G.F.Grom,M.Jungo,et al.Nanocrystalline silicon superlattices:building blocks for quantum devices[J].Materials Science and Engineering B,2000,(69-70):303-308.
    [73]Nobuyoushi Koshida,Nobuo Matsumoto.Fabrication and quantum properties of nanostructured silicon[J].Materials Science and Engineering R,2003,(40):169-205.
    [74]瞿浩明,沈鸽,张溪文.纳米硅薄膜的低压化学气相沉积和电学性能研究[J].材料科学与工程,2001,(75):88-91.
    [75]何宇亮,武旭辉,林鸿溢等.纳米硅薄膜的压阻效应[J].科学通报,1995,(7):605-607.
    [76]韩伟强,韩高荣,丁子上.纳米硅薄膜结构特性研究[J].半导体学报,1996,(6):406-409.
    [77]A.Orpella,C.Voz,J.Puigdollers et al.Stability of hydrogenated nanocrystalline silicon thin-film transistors[J].Thin Solid Films,2001,(395):335-338.
    [78]D.K.Dosev,J.Puigdollers,A.Orpella,et al.Analysis of bias stress on thin-film transistors obtained by Hot-Wire Chemical Vapour Deposition[J].Thin Solid Films,2001,(383):307-309.
    [79]S.Banerjee.Statistical emission of electrons from nanocrystalline silicon quantum dot memory nodes in a few-electron MOSFET memory device[J].Solid State Communications,2003(125):567-570.
    [80]I-Chun Cheng,Steven Allen,Sigurd Wanger.Evolution of nanocrystalline silicon thin film transistor channel layers[J].Journal of Non-Crystalline Solids,2004,(338-340):20-724.
    [81]L.H.Teng,W.A.Anderson.Thin film transistors on nanocrystalline silicon directly deposited by a microwave plasma CVD[J].Solid-State Electronics,2004,(48):309-314.
    [82]Czang-Ho Lee,Andrei Sazonov,Arokia Nathan.High hole and electron mobilities in nanocrystalline silicon thin-film transistors[J].Journal of Non-Crystalline Solids,2006,(352):1732-1736.
    [83]D.Corso,I.Crupi,G.Ammendola,et al.Programming options for nanocrystal MOS memories[J].Materials Science and Engineering,2003,(23):687-689.
    [84]ZhiHua Hu,Xianbo Liao,Hongwei Dao,et al.Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells[J].Journal of Non-Crystalline Solids,2006,(352):1900-1903.
    [85]G.Pucker,P.Bellutti,M.Cazzanelli,et al.(Si/SiO_2)_n multilayers and microcavities for LED applications[J].Optical Materials,2001,(17):27-30.
    [86]Liangcai Wu,Xinfang Huang,Jiangjun Shi,et al.Capacitance-voltage study of SiO_2/nanocrystalline silicon/SiO_2 double-barrier structures[J].Thin Solid Films,2003,(425):221-224.
    [87]石建军,吴良才,鲍云等.镶嵌在超薄SiO_2层中的纳米硅的库仑阻塞现象[J].半导体学报,2003,(1):29-33.
    [88]廖波,谢君堂,仲顺安等.纳米硅薄膜材料在场发射压力传感器研制中的应用[J].中国科学(E辑),2003,(3):205-208.
    [89]G.Cicala,P.Capezzuto,G.Bruno.Plasma enhanced chemical vapor deposition of nanocrystalline silicon films from SiF_4-H_2-He at low temperature[J].Thin Solid Films,1999,(337):59-62.
    [90]Te-Chi Wong,Chi-Chung Yu,Jih-Jen Wu.Low temperature growth and structural characterization of nanocrystalline silicon films[J].Journal of Crystal Growth,2002,(243):419-426.
    [91]M.-B.Park,N.-H.Cho.Structural,chemical and optical features of nanocrystalline Si films prepared by PECVD techniques[J].Applied Surface Science.2002,(190):151-156.
    [92]Y.H.Wang,J.Lin,C.H.A.Huan.Structural and optical properties of a-Si:H/nc-Si:H thin films grown form Ar-H_2-SiH_4 mixture by plasma-enhanced chemical vapor deposition[J].Materials Science and Engineering B,2003,(104):80-87.
    [93]J.-H.Shim,Seongil Im,N.-H.Cho.Nanostructural features of nc-Si:H thin films prepared by PECVD[J].Applied Surface Science,2004,(234):268-273.
    [94]Atif Mossad Ali.Mechanisms of the growth of nanocrystalline Si:H films deposited by PECVD[J].Journal of Non-Crystalline Solids,2006,(352):3126-3133.
    [95]于晓梅,何宇亮,李雪梅等.PECVD法生长纳米硅薄膜的压敏特性[J].北京航空航天大学学报,1996,(1):84-87.
    [96]S.B.Concari,R.H.Buitrago.Laser-induced phase transformation in p-doped nanocrytalline silicon thin films[J].Journal of Non-Crystalline.Solids,2004,(338-340):192-196.
    [97]Jong Hoon Kim,Kyung Ah Jeon,Gun Hee Kim,et al.Optical properties of silicon nanocrystalline thin films grown by pulsed laser deposition[J].Optical Materials,2005,(27):991-994.
    [98]I.Zahi,H.Vergnes,B.Caussat,et al.Towards multiscale modeling of Si nanocrystals LPCVD deposition on SiO_2:From ab initio calculations to reactor scale simulations[J].Surface& Coatings Technology,2007,(201):8854-8858.
    [99]C.Goncalves,S.Charvet,A.Zeinert,et al.Nanocrystalline silicon thin films prepared by radiofrequency magnetron sputtering[J].Thin Solid Films,2002,(403-404):91-96.
    [100]Z.X.Zhao,R.Q.Cui,F.Y.Meng,et al.Nanocrystalline silicon thin films deposited by high-frequency sputtering at low temperature[J].Solar Energy Materials & Solar Cells,2005,(86):135-144.
    [101]M.F.Cerqueira,M.Stepikhova,M.Losurdo,et al.Erbium-doped silicon nanocrystals grown by r.f.sputtering method:Competition between oxygen and silicon to get erbium[J].Optical Materials,2006,(28):836-841.
    [102]温殿忠著.力学量敏感器件原理与应用[M].黑龙江科学技术出版社,1994:150-264.
    [103]温殿忠等著.磁敏感元器件与磁传感器[M].黑龙江科学技术出版社,2003:43-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700