用户名: 密码: 验证码:
基于双压电驱动宏微结合的纳米定位台研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的不断发展,光电子、微机电、生物工程、纳米材料等微观领域的研究越来越深入,对定位精度的要求不断提高,已进入微纳米时代,同时提出了大行程的要求。大行程微纳米定位台的研究将促进多门学科的进一步发展,具有重大的科学意义和广泛的实用价值。
     本文针对微纳米定位技术中大行程与高精度的矛盾,结合国家863重大项目“微细结构跨尺度高分辨层析成像与检测系统”,研究了基于双压电驱动的宏微结合两维纳米定位台。
     根据宏动台的定位特点和要求,设计了宏动台的定位方案及总体结构。由于该宏动台正处于加工制造中,本文重点研究微定位系统。
     设计了以压电陶瓷为驱动器的微定位工作台,微动台结构设计成双柔性平行四连杆机构,用以消除耦合位移对定位精度的影响。
     分析了压电陶瓷的基本理论,重点研究了对微定位精度有着重要影响的压电陶瓷蠕变和迟滞特性。通过实验测得压电陶瓷的蠕变和迟滞数据,利用MATLAB软件对数据进行了拟合,得到了压电陶瓷的迟滞函数模型,通过求逆方法,获得迟滞的前馈控制算法。实验证明,该算法将压电陶瓷的迟滞减小到了5%以内。
     通过理论公式分析了柔性铰链参数对转动刚度的影响,根据实际确定的尺寸,计算柔性铰链的转动刚度为3.2144N.m/rad。使用ANSYS软件分析了微动台模型的应力、位移等性能。实验证明微动台具有良好的电压-位移特性,得到微动台X方向的定位精度80nm、分辨率18nm;Y方向的定位精度88nm、分辨率22nm。
With the continuous development of science technology, more and more in-depthstudy is adopted in the microscopic field, such as photonics, MEMS, bio-engineering,nano-materials and so on, and higher positioning accuracy is continuously required, whichleads to the era of micro/nano-accuracy with large stroke at the same time. The large strokemicro/nano-positioning stage will promote the further development of the multipledisciplines, having major scientific significance and practical value.
     In order to solve the contradiction between large stroke and high precision inmicro/nano-positioning technology, this paper, combined with the national863Project"high-resolution tomography and detection system on fine structure of cross-scale ",studies2-DOF coarse-fine nano-positioning stage driven by dual-piezoelectric units.
     According to the macro stage’s positioning characteristics and requirements, thepositioning program and the overall structure of the macro stage is designed. Since themacro stage is still in manufacture, this paper focuses on the micro-positioning system.
     A micro-positioning stage driven by piezoelectric ceramic is designed. The stagestructure is designed with a pair of flexible parallel four-bar linkage, to eliminate couplingdisplacement.
     The basic theory of piezoelectric ceramics is analyzed. This paper gives a keyresearch on the piezoelectric ceramic’s creep and hysteresis characteristics, which havegreater impact on the micro-positioning accuracy. Creep and hysteresis data is measured inexperiments, and fitted by using MATLAB software, and then the hysteresis functionmodel is obtained. By the method of inverse, the hysteresis feedforward control algorithmis gained. The experiments show that the algorithm reduces hysteresis of the piezoelectricceramic to less than5%.
     The relationship, between the flexible hinge parameters and the rotational stiffness, isanalyzed by theoretical formula. According to the actual size of the flexible hinge, the rotational stiffness is calculated to3.2144N.m/rad. Stress, displacement and otherperformance of the micro-positioning stage model is analyzed by ANSYS software. Theexperiment proves that the micro-positioning stage has good voltage-displacementperformance, and its’ X-direction’s positioning accuracy is80nm and resolution is18nm.Its’ Y-direction’s positioning accuracy is88nm and resolution is22nm.
引文
[1] N. Bonnail, D. Tonneau, F. Jandard, G.. Capolino, H. Dallaporta. Variable structurecontrol of a piezoelectric actuator for a scanning tunneling microscope[J]. IEEETransactions on Industrial Electronics,2004,51(2):354-363.
    [2]钟俊.宏观尺度的纳米级定位控制技术研究[D].中国科学技术大学博士学位论文,2011.
    [3]巴音贺希格.衍射光栅色散理论与光栅设计、制作和检验方法研究[D].中国科学院长春光学精密机械与物理研究所博士论文,2004.
    [4]林海波,杨国哲,黄小良.大行程超精密工作台的研究[J].机械设计与制造,2010(6):130-131.
    [5] A. Sharon, D. Hardt. Enhancement of Robot accuracy using endpoint feedback andmacro-micro manipulator system[C]. Proceedings of the American ControlConference3, San Diego, California, June,1984:1836-1842.
    [6] A. Woronko, J. Huang, Y. Altintas. Piezoelectric Tool Actuator for PrecisionMachining on Conventional CNC Turning Centers[J]. Precision Engineering.2003,27(4):335-345.
    [7] Mike Holmes, Robert Hocken, David Trumper. The long-range scanning stage: anovel platform for scanned-probe microscopy[J]. Precision Engineering,2000,24(3):191-209.
    [8] Junhong Mao, Hiroyuki Tachikawa, Akira Shimokohbe. Precision Positioning of aDC-motor-driven aerostatic slide system[J]. Precision Engineering,2003,27(1):32-41.
    [9] Samir Mekid. High precision linear slide. Part I: design and construction[J].International Journal of Machine Tools and Manufacture,2000,40(7):1039-105.
    [10] S. Q. Lee, Y. Kim, and D. G. Gweon. Continuous gain scheduling control for amicro-positioning system: simple, robust and no overshoot response[J]. ControlEngineering Practice,2000,8(2):133-138.
    [11] H. J. Pahk, D. S. Lee, J. H. Park. Ultra precision positioning system for servomotor-piezo actuator using the dual servo loop and digital filter implementation[J].International Journal of Machine Tools&Manufacture,2001,41(1):51 63.
    [12] C. Moon, S. Lee, J. K. Chung. A new fast inchworm type actuator with the robust I/Qheterodyne interferometer feedback[J]. Mechatronics,2006,16(2):105 110.
    [13]王立松,苏宝库,董申,张晶.大行程高精度两级定位工作台控制方法研究[J].机械设计与制造,2001(4):71-72.
    [14]节德刚,刘延杰,孙立宁,孙绍云,蔡鹤皋.一种宏微双重驱动精密定位机构的建模与控制[J].光学精密工程,2005,13(2):171-178.
    [15]李欣欣.宏/微两级驱动的大行程高精度二维定位平台基础技术研究[D].浙江大学博士学位论文,2008.
    [16]米凤文,戴旭涵,沈亦兵,杨国光.0.1μm大行程精密定位控制系统的研究[J].仪器仪表学报,2000,21(1):89-91.
    [17]刘红忠,卢秉恒,丁玉成,李寒松,严乐.超高精度定位系统及线性补偿研究[J].西安交通大学学报,2003,37(3):278-281.
    [18]刘红忠,丁玉成,卢秉恒,王莉,邱志慧.纳米压印光刻中的多步定位研究[J].西安交通大学学报,2006,40(3):261-269.
    [19]肖献强,朱家诚,李欣欣.压电型宏/微双驱动精密定位机构的建模与控制[J].农业机械学报,2007,38(11):140-143.
    [20]徐从裕.大行程纳米定位驱动控制方法与系统研究[D].合肥工业大学博士学位论文,2008.
    [21]雄木地.大行程亚微米精度激光直写设备定位技术的研究[D].中国科学院博士学位论文,2000.
    [22]张金龙,刘阳,郭怡倩,刘京南,内田敬久.纳米级超精密定位工作台的研究[J].机械工程学报,2011,47(9):187-192.
    [23] C. L. Chao, J. Neou. Model reference adaptive control of air-lubricated capstan drivefor precision positioning[J]. Precision Engineering,2000,24(4):285 290.
    [24] J. S. Chen, I. C. Dwang. A ballscrew drive mechanism with piezo-electric nut forpreload and motion control[J]. International Journal of Machine Tools andManufacture,2000,40(4):513 526.
    [25] Yung-Tien Liu, Rong-Fong Fung, Chun-Chao Wang. Precision position control usingcombined piezo-VCM actuators[J]. Precision Engineering,2005,29(4):41l-422.
    [26]黄卫清,刘群亭,赵淳生.一种超声波电动机直线平台的研究[J].微特电机,2004,32(3):17-18.
    [27]薛梓,叶孝佑,王鹤岩,杨国梁.大行程超精密二维运动平台定位系统的研制[J].计量学报,2009,30(5A):141-145.
    [28]奚琳,余晓芬,范伟新型Nano-CMM二维定位平台研究[J].合肥工业大学学报(自然科学版),2006,29(12):1605-1608.
    [29]华晓青,欧阳航空,李鸣鸣,葛轶君,孙麟治.精密定位载物工作台的研制[J].机电一体化,2005(3):39-43.
    [30]孙麟治,李鸣鸣,程维明.精密定位技术研究[J].光学精密工程,2005,13:69-75.
    [31]费继承,王庆康,万永中,段智勇.压电线性马达与纳米马达[J].压电与声光,2003,25(4):295-298.
    [32]郭抗.平板形二自由度压电马达的理论与实验研究[D].吉林大学博士学位论文,2011.
    [33]尹承秀.两种长径比的交叉滚子滚动导轨支承的结构特点[J].哈尔滨轴承,2007,28(3):4-5.
    [34]于保军,杨志刚,齐会良,程光明.基于显微视觉的宏/微双驱动微动台系统[J].农业机械学报,2008,39(2):125-129.
    [35]肖献强,张志宇,张文,李欣欣.基于机器视觉的宏/微双驱动与控制系统的研究[J].微特电机,2008,36(6):26-29.
    [36]吴乙.微位移驱动器及其应用[J].电子工业专用设备,1995,24(3):39-43.
    [37]孙涛,谭久彬,董申.压电陶瓷微驱动器用于超精定位的技术研究[J].压电与声光,1999,21(6):493-497.
    [38]奚琳,余晓芬,范伟.新型Nano-CMM二维定位平台研究[J].合肥工业大学学报(自然科学版),2006,29(12):1605-1608.
    [39]熊诗波,黄长艺.机械工程测试技术基础[M],北京:机械工业出版社,2009.
    [40]王趁林,杨勇,胡小店,张国君.压电陶瓷用于纳米定位系统的研究[J].舰空精密制造技术,1997,33(2):8-10.
    [41]张福学,王丽坤.现代压力学[M],北京:科学出版社,2003.
    [42]叶至碧.压电陶瓷驱动器[J].电子元件与材料,1989,8(4):1-6.
    [43]钟博文.基于粘滑驱动的跨尺度精密定位平台及其关键技术研究[D].哈尔滨工业大学博士学位论文,2012.
    [44]荆丹.基于压电陶瓷的超精密柔性微定位机构的研究[D].大连理工大学硕士学位论文,2007.
    [45]张涛,孙立宁,蔡鹤皋.压电陶瓷基本特性研究[J].光学精密工程,1998,6(5):26-32.
    [46]朱珠.压电陶瓷驱动器特性研究及二维微纳定位平台结构设计[D].浙江大学硕士学位论文,2011.
    [47]宋国梁.压电驱动超微定位系统的研究进展[A].第十四届全国电气自动化与电控系统学术年会论文集[C],2009.
    [48]黄挺朋.压电驱动微动定位平台系统设计与开发[D].浙江大学硕士学位论文,2008.
    [49]温丽梅.大行程压电微动台驱动控制系统的研究[D].天津大学硕士学位论文,2005.
    [50]刘定强,黄玉美,谢礼,杨勇.压电型宏微双驱动精密定位系统点位协调控制[J].农业机械学报,2011,42(4):220-223.
    [51] Gui Minchen, Jian Yuanjia, Zhi Wuli. Right-circular Corner-filleted FlexureHinges[C]. Proceedings of the2005IEEE International Conference on AutomationScience and Engineering Edmonton, Canada, August1&2,2005:249-253.
    [52] Nicolae Lobontiu, Jeffrey S. N. Paine, M. Goldfarb, E. Garcia. Corner-FilletedFlexure Hinges[J], Dynamic Structures and Materials,2001,123(3):346-352.
    [53]罗玉峰,江冬艳,石志新.圆弧形复合柔性铰链转动刚度的研究[J].煤矿机械,2009,30(10):51-52.
    [54]吴鹰飞,周兆英.柔性铰链的计算和分析[J].机械设计与研究,2002,18(3):29-30.
    [55]吴鹰飞,周兆英.柔性铰链转动刚度计算公式的推导[J].仪器仪表学报,2004,25(1):125-128.
    [56]吴鹰飞,周兆英.柔性铰链的设计计算[J].工程力学,2002,19(6):136-140.
    [57]魏玉凤,余晓芬.六自由度微动工作台柔性铰链设计[J].纳米技术与精密工程,2004,2(2):152-156.
    [58]高艳蕾,李琳.用于大载荷主动振动控制平台的柔性铰链设计和实验研究[J].机械设计与制造,2009(6):101-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700