用户名: 密码: 验证码:
吸附催化功能复合膜及水的净化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为保护环境和人体健康,去除和净化水中的微污染物,多采用反渗透、纳滤、高级催化氧化和吸附的方法,但存在的问题是吸附造成的膜污染、氧化副产物毒副作用和分离去除不彻底的问题。本研究采用溶胶凝胶法制备出含TiO_2、碳纳米管或活性炭纤维、具有吸附分离和催化净化特点的复合膜,用于去除水中的低浓度有机污染物。使用这种先吸附和分离、后进行氧化反应来净化吸附的污染物的复合膜,既可避免副产物对膜分离净化出水的污染,又可解决膜上吸附的有机污染物的净化问题。通过电子扫描电镜(SEM)、X射线衍射(XRD)、紫外-可见吸收光谱(UV-Vis)、傅立叶变换红外光谱(FT-IR)等手段对所制的复合膜及膜上纳米TiO_2进行表征分析。
     采用溶胶凝胶和浸渍涂敷方法,基膜上负载由钛酸四丁酯水解制备的含铈离子纳米Ti02和不同比例碳纳米管(MWNTs)的催化吸附复合膜(110℃下干燥),进行了静态吸附含双酚A的微污染模拟水样至吸附平衡实验。所制备的MWNTs/TiO_2/聚酯复合膜对50mL 10mg/L的双酚A具有较高的吸附去除效果。当MWNT/TiO_2中MWNTs=46.00(wt.%)时,对BPA的吸附效果最好,可达71.5%。吸附达平衡的复合膜,直接进行UV光催化或者UV-Fenton反应,可有效氧化降解吸附的污染物。UV-Fenton 1h后MWNTs/TiO_2/聚酯复合膜的吸附去除率,与第一次吸附时的吸附去除率相比,恢复率达到57%,接近单独UV 2h后恢复率(33%)的两倍。
     采用溶胶凝胶和浸渍涂敷方法,基膜上负载由钛酸四丁酯水解制备含铈离子纳米TiO_2和不同比例活性炭纤维(ACF)的催化吸附复合膜(110℃下干燥),分别考察了静态吸附含双酚A的微污染模拟水样实验和动态吸附.过滤含双酚A和高岭土的悬浊模拟水样实验。所制备的ACF/TiO_2/聚酯复合膜对50mL 10mg/L的双酚A具有较高的吸附去除效果。当ACF/TiO_2中ACF=11.33(wt.%)时,对双酚A的吸附去除率可达93%;当ACF=29.87(wt.%)时复合膜对双酚A溶液吸附0.5h后去除率接近100%;动态吸附-过滤实验结果表明,该复合膜在对双酚A有60%的吸附去除率的同时,对模拟水样中固体悬浊物质具有较高截留特性,浊度去除率达98.7%。UV-Fenton 2h后ACF/TiO_2/聚酯复合膜吸附功能恢复较好,与第一次吸附时的吸附去除率相比,恢复率达到72%。动力学分析表明活性碳纤维对双酚A的吸附符合准一级动力学方程。在钛酸四丁酯(TBOT)溶胶中引入硅酸四乙酯(TEOS)可提高复合膜在UV-Fenton处理后的稳定性。而且SiO_2/TiO_2/ACF/聚酯复合膜的吸附恢复率最高达到了90%。
In order to protect the environment and human health, RO, NF or AOPs were used to remove micropollution to improve water quality. However, membrane fouling, oxidation by-products and their toxic side effect influence their application to some degree. The purpose of this paper is to develop a new cost-effective method to remove and mineralize trace organic pollutants containing multi-walled carbon nanotubes (MWNTs) and activated carbon fiber(ACF) and nano-sized TiO_2 particles, a combination of adsorbent and photo-catalyst functional membrane by using a sol-gel and dip coating method on Polyester (PET) membrane. Adsorption and then oxidation the micropollution on the seprated membrane. As the pollutants were mineralized, the oganic pollution of membrane effluent can be put an end.The prepared composite membranes and nano-TiO_2 particles were characterized by SEM, XRD,UV-Vis, FT-IR, et al.
     MWNTs were added to the sol gel solution derived from hydrolysis of Ti(OC_4H_9)_4 and doped with Ce~(3+), which was used to dip-coating polyester filter membrane, thus formed composite membrane was used to adsorb micropollutant from water statically. After adsorption reaching an equilibrium,the membrane were removed, to membrane saturated with pollutant bisphenol A, either photocatalysis or UV/Fenton reaction was applied to oxidize and degrade the adsorbed pollutant, to avoid by-product pollution of the purified water. The best adsorptive removal of BPA by MWNTs/TiO_2 composite membrane(MWNTs =46.00(wt.%)) was 71.5%, also measured was the repeated use of the membrane in pollutant adsorption removal and adsorption capacity regeneration using advanced oxidation(photo-catalysis). Compared with the initial adsorption removal rate, the adsorption restoration rate nearly doubled using 1h UV/Fenton oxidation than 2h UV alone 33% to 57%.
     Also, a series of composite functional membrane containing ACF powder (<240 mesh) and Ce~(3+)-TiO_2, a combination of adsorbent and photo-catalyst on PET filter cloth, was prepared by using a sol-gel and dip coating method(drying at the temprature of 105℃). Both the static adsorption experiment and dynamic adsorption experiment were carried out. The results showed the following: The BPA adsorption removal rate by composite membrane with 11.33 and 29.87wt.% ACF in ACF/TiO_2 was 93% and 100%; The dynamic adsorption experiment showed that as high as 60% BPA removal was achieved in dynamic filtration /adsorption test, which removed 98.7% Koalinite solid suspends at the same time. Also measured was the repeated use in BPA removal and adsorption capacity regeneration using advanced oxidation(photo-catalysis). Compared with the initial adsorption removal rate, the adsorption restoration rate were 72% after 2h UV and Fenton reagents' oxidation for the second time adsorption. The adsorption process followed a first order kinetics. Introducing TEOS in the preparation of sol gel solution and subsequent coating to form composite membrane, improved membrane adsorption stability after regeneration treatment by UV-Fenton. 90% highest adsorption retoration was reached for SiO_2/TiO_2/ACF membrane.
引文
[1]汪民,吴永峰.地下水微量有机污染[J].地学前沿,1996,3(2):169-175.
    
    [2] Barbee G C. Fate of chlorinated aliphatic hydrocarbons in the vadose zone and ground water[J]. Ground Water Monitoring and Remediation, 1994,14(1):129-140.
    
    [3]Mulder M(荷兰).膜技术基本原理[M].李琳译.北京:清华大学出版社,1999.
    
    [4]刘茉娥.膜分离技术应用手册[M].北京:科学出版社,2001.
    
    [5] Kanatzidis M G, Wu C G, Marcy H 0 et al. Conductive-polymer bronzes. intercalated polyanil-ine in V_2O_5 xerogels[J]. Journal of the American ChemicalSociety, 1989,111(11):4139-4141.
    
    [6] Liu Y J, Groot D,Schindler J L et al. Stabilization of anilinium in vanadium(V) oxidexerogels[J]. Journal of the American Chemical Society,Chemical Communications, 1993,115(2):593-596.
    
    [7] Nakajima H, Matsubayashi G. Intercalation and polymerization of 4-anilinoaniline and 4-anilinoanilinium iodide in the V0P04 and V_2O_5 interlayer spaces [J]. Journal of MaterialsChemistry, 1995,5(1):105-108.
    
    [8]季鸿昆,吴骥陶,钟琦等.有机化学[M].上海:上海科学技术出版社,1982.
    
    [9] US EPA. Endocrine disruptor screening and testing advisor committee(EDSTAC)final report[R]. Washington, D C: U.S.Environment Protection Agency, 1998.
    
    [10]齐文启,孙宗光.痕量有机污染物的监测[M].北京:化学工业出版社,2001.
    
    [11]贾凌志,李君文.环境中双酚A的污染及降解去除的研究进展[J].环境与健康杂志,2004,21(2): 120-122.
    
    [12]菁春,陈兵,麦碧娴等.洪季珠江三角洲水系统烷基酚污染状况研究[J].环境科学,2004,25(3): 48-52.
    
    [13]李正炎,DonghaoLi.西瓦胡中壬基酚和双酚A的污染特征[J].青岛海洋大学学报,2003,33(6): 847-853.
    
    [14]闫百兴,汤杰,何岩.松嫩平原西部农田径流中有机氯农药的分布特征[J].环境科学,2003, 24(2):82-86.
    
    [15]康跃惠,刘培斌,王子健等.北京官厅水库-永定河水水系中持久性有机氯农药污染[J].湖泊科 学,2003,15(2):125-132.
    
    [16]任晋,蒋可,周怀东.官厅水库水中阿特拉津残留的分析及污染来源[J].环境科学,2002,23(1): 126-128.
    
    [17]邵兵,胡建英,杨敏.重庆流域嘉陵江和长江水环境中壬基酚污染状况调查[J].环境科学学 报,2002,22(1):12-16.
    
    [18]李青松,高乃云,马晓雁等.TiO_2光催化降解水中内分泌干扰物17β-雌二醇[J].环境科学,2007, 28(1):120-125.
    
    [19] Watanabe N, Horikoshi S, Kawabe H et al. Photodegradation mechanism for bisphenol Aat the TiO_2/H_2O interfaces[J].Chemosphere, 2003,52(5):851-859.
    
    [20] Ohko Y, Ando I, Niwa C et al. Degradation of bisphenol A in water by TiO_2 photocatalyst[J].Environmental Science and Technology, 2001,35(11):2365-2368.
    
    [21]王光辉,吴峰,邓男圣.β-环糊精促进双酚A光催化降解[J].水处理技术,2006,32(9):23-26.
    
    [22] Lu P, Wu F, Deng N S. Enhancement of TiO_2 photocatalytic redox ability by P -cyclodextrin in suspened solutions[J].Applied Catalysis B:Environmental,2004,53(2):87-93.
    
    [23] Zhao C S, Wei Q R, Yang K K et al. Preparation of polysulfone beads for selective removal of endocrine disruptors[J].Separation and Purification Technology, 2004,40(3): 297-302.
    
    [24] Areerachakul N, Vigneswaran S, Ngo H H et al. Granular activated carbon (GAC) adsorptionphotocatalysis hybrid system in the removal of herbicide from water[J] . Separation and Purification Technology, 2007,55(2):206-211.
    
    [25] fang f, Silva C G and Faria J. Photocatalytic degradation of Chromotrope 2R using nanocrystalline TiO_2/activated-carbon composite catalysts[J], Applied Catalysis B: Environmental , 2007,70(1-4):470-478.
    
    [26]孙红文,翟洪艳.活性炭对水中典型环境内分泌干扰物的吸附[J].水处理技术,2005,31(6): 47-50.
    
    [27]程沧沧,付洁嫒,岳茜等.TiO_2薄膜光催化降解双酚A的研究[J].环境污染治理技术与设 备,2005,6(7):37-39.
    
    [28]程沧沧,邓南圣,吴峰等.光电催化降解双酚A的研究[J].华中师范大学学报(自然科学版),2005, 39(3):365-369.
    
    [29] Hideyukie K, Shinsuke K, Satoshi K et al. Degradation of bisphenol a in water by the photo-Fenton reaction[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2004,162(2-3):297-305.
    
    [30] Xie Y B, Li X Z. Degradation of bisphenol A in aqueous solution by H_2O_2- assisted photo electrocatalytic oxidation[J]. Journal of Hazardous Materials, 2006,138(3):526-533.
    
    [31]王琳,董秉直,高乃云.超滤去除水中内分泌干扰物(BPA)的效果和影响因素[J].环境科学,2007, 28(2):329-334.
    
    [32]孙晓丽,王磊,程爱华等.腐殖酸共存条件下双酚A的纳滤分离效果研究[J].水处理技术,2008, 34(6):16-18.
    
    [33]李伟英.混凝与超滤联用技术处理长江原水试验研究[C].2001年膜技术应用国际会议论文集 (中国膜工业协会).上海-杭州:2001.
    
    [34]谭章荣.混凝-粉末炭-超滤技术处理长江原水[J].中国给水排水,2002,18(8):51-52.
    
    [35] Laine JM, Clark M M,Malleviale J.Ultrafiltration of Lake Water:Effect of pretreatment on the partitioning of organics, THMFP and flux[J]. Journal of American Water Works Association, 1990,82(12):82-87.
    
    [36]刘研萍,王琳,王宝贞等.压缩活性炭与超滤深度处理饮用水[J].中国给水排水,2004,20(11): 39-42.
    
    [37]童少平,魏红,刘维屏.臭氧氧化法再生活性炭的研究[J].工业水处理,2005,25(2):31-33.
    
    [38] Ilisz I, Dombi A, Mogyordsi K et al. Photocatalytic water treatment with different TiO_2 nanoparticles and hydrophilic/hydrophobic layer silicate adsorbents[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2003,230(1-3):89-97.
    
    [39]安太成,袁建梅,陈嘉鑫等.不同产地矿物对有机-钛柱撑蒙脱石复合材料光催化活性的影响[J]. 地球化学2006,35(4):413-418.
    
    [40] Fujishima A, Honda K. Eleetrochemical photolysis of water at semiconductor electrode [J]. Nature, 1972,238(5358):37-38.
    
    [41] Gratzel M. Resources through photochemistry and catalysis[M]. New York: Academic Press, 1983.
    
    [42] Gelover S.Mondragon P, Jimenez A. Titanium dioxide sol-gel deposited over glass and its application as a photocatalyst for water decontamination[J]. Jounal of Photochemistry and Photobiology A:Chemistry, 2004,165(1-3):241-246.
    
    [43] Herrmann J M, Guillard C, Disdier J et al. New industrial titania photocatalysts for the solar detoxification of water cotaining various pollutants[J].Applied Catalysis B: Environmental, 2002,35(4):281-294.
    
    [44] Mohseni M, David A. Gas phase vinyl chloride(VC) oxidation using TiO_2-based photocatalysis [J]. Applied Catalysis B: Environmental, 2003,46(2):219-228.
    
    [45] Choi W, Ko J Y, Park H et al. The role of metal ion dopants in quantum-sized TiO_2: correlation between photoreactivity and charge carrier recombination dynamics[J]. Applied Catalysis B: Environmental, 2001,31(3):209-220.
    
    [46] Moon J, Yunn C Y, Chung K W et al. Photocatalytic activation of TiO_2 under visible light using Acid Red 44[J].Catalysis Taday,2003,87(1-4):77-86.
    
    [47] Okazaki M, Shiga T, Sakata S et al. Isotope enrichment by electron spin resonance transition of the intermedediate radical pair[J]. Journal of Physcal Chemistry, 1988,92(6): 1400-1402.
    
    [48]华瑞年,雷炳富,谢德民等.微乳液法制备CaF_2纳米颗粒[J].高等学校化学学报,2003,24(10): 1756-1757.
    
    [49]牛新书,许亚杰,张学治等.微乳液法制备纳米二氧化钛及其光催化活性[J].功能材料,2003,34 (5):548-549,552.
    
    [50]陈代荣,孟永德,樊悦朋.由工业硫酸钛制备TiO_2纳米微粉[J].无机化学学报,1995,11(3):228- 231.
    
    [51] Nagase T.Ebina T, Iwasaki T et al.Hydrothemral synthesis of brookite[J]. Chemistry Letters, 1999,28(9):911-912.
    
    [52] Zheng Y Q, Shi E W, Cui S X et al. Hydorhtemral Preparation and characteriation ofborokite-type TiO_2 nanocrystallites[J]. Journal of Materials Science Letters,2000,19(16):1445-1448.
    
    [53] Pottier A, Chanesc C, Tronc E et al.Synthesis of brookite TiO_2 nanopartieles bythemorlysis of TiCl_4 in strongly acidic aqueous media[J]. Journal of MaterialsChemistry, 2001,11(4):1116-1121.
    
    [54] Herrmann J M, Disdier J, Pichat P. Oxgyen species ionosorbed on powder photocatalystoxides from room temperature photoconductivity as a fuction of oxygen pressure[J].Journal of the Chemical Society, Faraday Transactions 1,1981,77:2815-2826.
    
    [55]胡林华,戴松元,王孔嘉.溶胶-凝胶法制备的纳米TiO_2结构相变及晶体生长动力学[J].物理学 报,2003,52(9):2135-2139.
    
    [56]周陈松,王平.溶胶-凝胶法制备纳米TiO_2后处理的研究[J].涂料工业,2003,33(7):1-3.
    
    [57] Jitianu A, Cacciaguerra I T, Benoit R et al. Synthesis and characterization of carbonnanotubes-TiO_2 nanocopsites[J] Carbon, 2004,42 (5-6): 1147-1151.
    
    [58] Nagayama H,Honda H,Kawahara H.A new process for silica coating[J]. Journal of theElectrochemical Society, 1988,135(8):2013-2016.
    
    [59]柳丽芬,杨会娜,杨凤林.一种制备二氧化钛、二氧化锡及其掺杂复合纤维材料的方法[P].中国 专利:CN101033082,2007-09-12.
    
    [60]李田,严熙春.光催化氧化法去除水中有机氯化物的研究[J].上海环境科学,1992,11(2): 11-14.
    
    [61] Willie J G M Peijnenburg, Karin G M de Beer, Martin W A de Haan et al. Development of a strucuture-reactivity relationship for the photohydrolysis of substituted aromatic halides [J]. Environmental Science and Technology, 1992,26(11):2116-2121.
    
    [62] Prudent A L, Ollis D F. Degration of chloroform by photoassisted heterogeous catalysis in dilute aqueous suspensions of titanium dioxide[J].Environmental Science and Technology, 1983,17(10):628-631.
    
    [63]刘彦平.ACF负载纳米TiO_2的制备及性能研究[D].西安:西安科技大学,2006.
    
    [64] Domenech X, Peral J. Cyanide photo-oxidation using a TiO_2-coated zeolite [J]. Chemistry and Industry, 1989,18:606.
    
    [65]黄惠莉,黄妙良,蔡阿娜等.TiO_2光催化剂薄膜器具上抗菌效果的研究[J].应用化学,2002, 19(1):48-52.
    
    [66]何晓云.有机/无机复合膜的制备及其应用[D].福州:福建师范大学,2006.
    
    [67] Pretty M C. Lanmuir-Blodgett films[M]. Cambridge: Cambridge University Press, 1996.
    
    [68]郝维昌,潘锋.TiO_2/PSS自组装薄膜的光催化性能[J].稀有金属材料与工程,2004,33(1):63-65
    
    [69] Usuki A, Koiwai A, Kojima Y et al. Interaction of nylon 6-clay surface and mechanical properties of nylon 6-clay hybrid[J]. Journal of Applied Polymer Science, 1995,55(1): 119-123.
    
    [70]王胜杰,李强,漆宗能等.硅橡胶/蒙脱土复合材料的制备结构与性能[J].高分子学报,1998,(2): 149-152.
    
    [71] Kojima Y,Matsuoka T, Takahashi Y. Crystallization of nylon-6-clay hybrid by injection molding under elevated pressuer[J]. Journal of Materials Science Letters, 1993,12(22): 1714-1715.
    
    [72]刘立敏,朱晓光,漆宗能.尼龙6/蒙脱土纳米杂化材料的等温结晶动力学研究[J].高分子学报, 1999.(3):274-279.
    
    [73] Xu R,Evangelos M.Snyder A J et al.New biomedical polyurethane layered silicatenano-composites[J]. Macromolecules, 2001,34(2) :337-339.
    
    [74] Tien Y I, Wei K H. High-tensiles-property layered silicate / polyurethane nanocompositesby using reactive silicates as pseudo chain extenders [J]. Macromolecules, 2001,34(26):9045-9052.
    
    [75] Tien Y I, Wei K H. Hydrogen bonding and mechanical property in segmented Montmorillonite/polyurethane nano-composites of different hard segmentrations[J]. Polymer, 2001,42(7):3213-3221.
    
    [76]熊传溪,闻荻江,皮正杰.超微粒增韧增强聚苯乙烯的研究[J].高分子材料科学与工程,1994, (4):69-73.
    
    [77]张哗,周贵恩,李磊等.纳米TiO_2-甲基丙烯酸甲酯聚合物均匀分散系的制备和结构[J].材料研 究学报,1998,12(3):29 1-294.
    
    [78]欧玉春,杨锋,庄严等.在位分散聚合聚甲基丙烯酸甲醅/二氧化硅纳米复合材料研究[J].高分 子学报,1997,1(2):199-204.
    
    [79] Bourgeat L E, Lnag J. Encapsulation of inorganic particle by dispersion polymerization in polar media [J]. Journal of Colloid and Interface Science, 1998,197(2): 293-308.
    
    [80]鲁德平,熊传溪,闻荻江等.以超微细Al_2O_3作种子乙酸乙醋的乳液聚合的研究[J].高分子材料 科学与工程,1995,11(6):49-52.
    
    [81] Barthet C, Hiekey A J, Calms D B etal. Snythesis of novel polymer silica colloidal nanocomposites via free-radical polymerization of vinyl monomers[J]. Advanced Materials, 1999, Advanced Materials, 1999,1(5):408-410.
    
    [82] Gill M, Mykytiuk J,Armes S P et al. Novel colloidal polynailine-silica composites[J]. Journal of the Chemical Society, Chemical Communications, 1992:108-109.
    
    [83] Maeda S, Armes S P. Preparation of novel polypyrrole silica colloidal nanocomposiets[J]. Colloid Interface Science,1993,159:257-259.
    
    [84] Maeda S,Gill M, Armes S P et al. Surface characterization of conducting polymer silica nanocomposites by X-ray photoelectron spectroscopy[J]. Langmuir, 1995,11 (6): 1899-1904
    
    [85] Maeda S, Ames S P. Preparation and characterization of polypyrroletin(IV) oxide nano-composite colloides[J]. Chemistry of Materials, 1995,7(1): 171-178.
    
    [86]翟莹雪.膜法水处理技术及研究进展[J].环境保护科学.2002,28(112):18-21.
    
    [87]徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003.
    
    [88]刘茉娥.膜分离技术[M].北京:化学工业出版社,2001.
    
    [89] Long R Q,Yang R T. Carbon nanotubes as superior sorbent for dioxin removal [J]. Journalof the American Chemical Society, 2001,123:2058-2059.
    
    [90] Cai Y Q, Jiang G B, Liu J F et al. Multiwalled carbon nanotubes as a solid-phase extractionadsorbent for the determination of bisphenol a, 4-n-nonylphenol, and 4-tert-octylphenol[J].Analytical Chemistry,2003,75(10):2517-2521.
    
    [91] Cai Y Q, Jiang G B, Liu J F, et al. Multi-walled carbon nanotubes packed cartridge forthe solid-phase extraction of several phthalate esters from water samples and theirdetermination by high performance liquid chromatography[J].Analytica ChimicaActa, 2003,494(1-2):149-156.
    
    [92] Liu G H, Wang J L, Zhu Y F, et al. Application of multiwalled carbon nanotubes as asolid-phase extraction sorbent for chlorobenzenes[J]. Analytical Letters, 2004,37(14):3085-3104.
    
    [93] Wang W D, Serp P, Kalck P et al. Visible light photodegradation of phenol on MWNT-TiO_2composite catalysts prepared by a modified sol-gel method[J]. Journal of MolecularCatalysis A:Chemical, 2005,235(1-2):194-199.
    
    [94] Peng X J, Li Y H, Luan Z K et al. Adsorption of 1,2-dichlorobenzene from water to carbonnanotubes[J].Chemical Physics Letters,2003,376(1-2):154-158.
    
    [95] Lee S, Sigmund W M. Formation of anatase TiO_2 nanoparticles on carbon nanotubes [J].Chemical Communications, 2003,9(6):780-781.
    
    [96] Antolini E, Cardellini F. Formation of carbon supported Pt-Ru alloysran XRD analysis[J].Journal of Alloys and Compounds, 2001,315(1-2):118-122.
    
    [97] Radmilovic V, Gasteiger H A, Ross P N. Structure and chemical composition of a supportedPt-Ru electrocatalyst for methanol oxidation [J]. Journal of Catalysis, 1995,154(1) :98-106.
    
    [98]乔瑞平,漆新华,孙承林等.Fenton试剂氧化降解微囊藻毒素-LR[J].环境化学,2007,26 (5):614-617.
    
    [99] Ohko Y, Ando I, Niwa C et al. Degradation of bisphenol A in water by TiO_2 photocatalyst[J].Environmental Science Technology, 2001,35(11):2365-2368.
    
    [100] Wang W B,Silva C G, Faria J L. Photocatalytic degradation of Chromotrope 2R usingnanocrystalline TiO_2/activated-carbon compocatalysts[J]. Applied Catalysis B:Envir-onmental, 2007,70(1-4):470-478.
    
    [101] Liu S X, Chen X Y. Effect of pore structure of activated carbon on the photocatalyticactivity of Ti(VAC composite phtocatalyst[J]. Acta Physico-Chimica Sinica,2008,24(3): 533-538.
    
    [102] Lagergren S. Zur theorie der sogenannten adsorption geloster stoffe, Kungliga SvenskaVetenskapsakademiens[J]. Handlingar, 1898,24(4):1-39.
    
    [103] Ho Y S, McKay G. Pseudo-second order model for sorption processes[J], Process Biochemistry , 1999,34(5): 451-465.
    
    [104] Weber W J. Kinetics of adsorption on carbon from solution[J]. Journal of Sanitary Engineering Division, 1963,89(SA2):31-39.
    
    [105] Ho Y S, McKay G. Sorption of dye from aqueous solution by peat[J]. Chemical Engineering Journal, 1998, 70(2):115-124.
    
    [106] Ho Y S.Removal of copper ions from aqueous solution by tree fern[J]. Water Research , 2003,37(10): 2323-2330.
    
    [107] Aksu Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris[J]. Process Biochemistry, 2002,38(1): 89-99.
    
    [108] Namasivayam C, Ranganathan K. Waste Fe(Ⅲ)/Cr(Ⅲ) hydroxide as adsorbent for the removal of Cr(Ⅵ) from aqueous solution and chromium plating industry wastewater[J]. Environmental Pollution. 1993,82(3):255-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700