用户名: 密码: 验证码:
二价阳离子对阴离子表面活性剂与铝盐混凝的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面活性剂是难溶且具有环境风险的有机物在水中的载体,基于阴离子表面活性剂的环境危害性以及工业用水中含有大量钙盐的事实,表面活性剂废水的混凝处理受到普遍关注。为了更好地去除水体中残留的表面活性剂,文章以自来水中钙的浓度0.0014mol/L为参考,选用十二烷基苯磺酸钠(Sodium Dodecylbenzenesulfonate,简写为SDBS)和十二烷基硫酸钠(Sodium Dodecyl Sulfate,简写为SDS)为研究对象,在298.15K下对浓度大于临界胶束浓度(Critical Micelle Concentration,简写为CMC)和小于CMC的SDBS、SDS溶液与铝盐的混凝特征及钙盐对SDBS、SDS溶液与铝盐混凝特征的影响进行了对比研究,具体混凝特征参数包括Zeta电位、表面张力、平均粒度、电导率、pH等,实验结果表明:
     (1)浓度大于CMC和浓度小于CMC的SDBS、SDS溶液分别与铝盐混凝,达到最佳混凝的Al(Ⅲ)与表面活性剂的摩尔比(简称为凝聚计量摩尔比CAl/C表面活性剂)不同,推测最佳凝聚计量摩尔比与胶束的存在有关。
     (2)在SDBS/Al3+体系中,浓度大于CMC的0.01 mol/L SDBS和浓度小于CMC的0.001 mol/L SDBS与铝盐达到最佳混凝时的pH值均在3.5左右;在SDS/AlCl3体系中,浓度大于CMC的0.01mol/L SDS和浓度小于CMC的0.001mol/L SDS与铝盐达到最佳混凝时的pH值均在4.0以下。
     (3)在0.01mol/L SDS与Al3+混凝体系和O.Olmol/L SDS所在的Ca2+/SDS/Al3+反应体系中,能观察到混凝体完全消失并不再浑浊的现象。而在加钙和不加钙的0.001mol/L SDS与Al3+混凝体系、SDBS/A13+混凝体系和Ca2+/SDBS/Al3+反应体系中都观察不到混凝体完全消失的现象。
     (4)Ca2+的加入对体系达到最佳混凝时的凝聚计量摩尔比、电导率和pH范围没有明显的影响。
     (5)Ca2+的加入使0.01 mol/L SDBS存在的SDBS/Al3+体系的粒度最大峰值显著下降,推断是由于Ca2+与高浓度SDBS反应生成小粒度的Ca(DBS)2引起的。
     (6)Ca2+的加入使0.01mol/L SDS所在的SDS/Al3+反应体系的Zeta电位绝对值和表面张力都有所增大,而使0.001mol/L SDS所在的SDS/Al3+反应体系的Zeta电位绝对值和表面张力值均有所下降。
Surfactant is a carrier of insoluble environmental hazardous substances to water body, it is becoming an ubiquitous question in aquatic environment owing to its popular usage. To enhance removal efficiency of residual surfactents in water system, the coagulation characteristics of anionic surfactants Sodium Dodecylbenzenesulfonate (SDBS) and Sodium dodecyl sulfate (SDS) of concentrations above and below the critical micelle concentration (CMC) using different dosage of AICl3 salt and the effect of an divalent electrolyte Ca2+ on the coagulation of anionic surfactants SDBS and SDS with Al3+ were investigated at 298.15K. The water used in this paper was 0.0014 mol/L CaCl2 solution, and its concentration was determined on the referencess of tap water. The coagulation characteristics of Zeta potential, surface tension, z-average size, electrical conductivity and pH were determined at 298.15K.
     Results showed that,
     (1) The optimum coagulation molar ratios of anionic surfactants SDBS and SDS of concentrations above and below the CMC with Al3+ were obviously different, this may be on account of the presence of micelles.
     (2) At optimization coagulation areas, pH values of SDBS/Al3+ and SDS/A13+ coagulation systems were around 3.5 and below 4.0 respectively whether the surfactant concentrations above or below the CMC.
     (3) The aggregates completely disappeared were observed only in two systems of SDS (0.01 mol/L)/Al3+ and Ca2+/SDS(0.01 mol/L)/Al3+, but not observed in the systems of SDS (0.001 mol/L)/Al3+, SDBS/Al3+ and Ca2+/SDBS/Al3+.
     (4) The effect of Ca2+ on the optimum coagulation molar ratios, conductivity and pH of coagulation of anionic surfactants with Al3+ were ignored.
     (5) Comparing SDBS/A13+ and Ca2+/SDBS/Al3+ systems, the z-average size value of coagulation of SDBS(0.01 mol/L)/Al3+ was larger than that of Ca2+/SDBS(0.01mol/L)/Al3+ system owing to the formation of the precipitate of Ca(DBS)2 possiblely.
     (6) Comparing SDS/Al3+ and Ca2+/SDS/Al3+ systems, Zeta potential absolute value and surface tension value of SDS(0.01mol/L)/Al3+ system were smaller than Ca2+/SDS(0.01mol/L) /Al3+ system, but the Zeta potential absolute value and surface tension value of SDS(0.001mol/L)/Al3+ system were larger than Ca2+/SDS(0.001mol/L)/Al3+ system.
引文
[1]田玲,王九思,李玉金.水处理混凝剂的混凝原理及其研究进展[J].甘肃教育学院学报(自然科学版),2004.
    [2]王晓昌,金鹏康.腐殖酸铝盐混凝体的动态特性[J].环境科学,2002,23(4):71-75.
    [3]王广华,金鹏康,王晓昌.无机悬浮颗粒的混凝特性和混凝体形态学研究[J].水处理技术,2006,32(5):30-32.
    [4]王广华,王晓昌,金鹏康.PAC为混凝剂时高岭土悬浊液的混凝条件及混凝体形态学特征[J].给水排水,2007,33(11):143-145.
    [5]王栋.洗毛废水的原水浓度对混凝效果的影响[J].环境工程,1997,15(4):17220.
    [6]王栋,赵书平,林海英.PAC、PFS对洗毛废水混凝效果及作用机理的比较[J].工业水处理,2005,25(4):22-25.
    [7]毛薇,王栋,闫杰,等.表面活性剂SDBS胶束溶液与铝盐凝聚特征研究[J].环境科学,2009,(1).
    [8]Talens-Alesson F I, Hall S T,, Hank ins N P, Azzopardi B J. Flocculation of SDS micelles with Fe3+ [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2002, 204:85-91.
    [9]Talens-Alesson F I. Behaviour of SDS micelles bound to mixtures of divalent and trivalent cations during ultrafiltration [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2007,299:169-179.
    [10]Beltran-Heredia J, Sanchez-Martin J,Solera-Hernandez C. Removal of sodium dodecyl benzene sulfonate from water by means of a new tannin-based coagulant:Optimisation studies through design of experiments [J]. Chemical Engineering Journal,2009,153:56-61.
    [11]eltran-Heredial J, Sanchez-Martin J. Removal of sodium laurylsulphate by coagulation/flocculation with Moringa oleifera seed extract [J]. Journal of Hazardous Materials,164:713-719.
    [12]Peacock J M, Matijevic E. Precipitation of Alkylbenzene Sulfonates with Metal Ions [J]. Colloid Interface Sci,1980,77:548-554.
    [13]Bozic J, Krznaric I, Kallay N. Precipitation and Micellization of Silver Copper and Lanthanum Dodecyl Sulphates in Aqueous Media [J].Colloid Polymer Sci,1979, 257:201-205.
    [14]Alargova R G, Ivanova V P, Kralchevsky P A, Mehreteab A, Broze G. Growth of rod-like micelles in anionic surfactant solution in the presence of Ca2+ counterions[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,142:201-218.
    [15]Ozkan A, Yekeler M. Coagulation and flocculation characteristics of celestite with different inorganic salts and polymers [J]. Chemical Engineering and Processing,2004, 43:873-879.
    [16]Paton-Morales P, Talens-Alesson F. I. Effect of Ionic Strength and Competitive Adsorption of Na+ on the Flocculation of Lauryl Sulfate Micelles with Al3+ [J]. Langmuir, 2001,17:6059-6064.
    [17]Paton-Morales P, Talens-Alesson F. I. Effect of Competitive Adsorption of Zn2+ on the Flocculation of Lauryl Sulfate Micelles by Al3+ [J]. Langmuir,2002,18:8295-8301.
    [18]Talens-Alesson F I. Behaviour of SDS micelles bound to mixtures of divalent and trivalent cations during ultrafiltration [J]. Physicochemical and Engineering Aspects,2007,299:169-179.
    [19]郭拥军,李健,冯玉平.PVP SDBS“复合物”的物理化学性能研究[J].日用化学工业,1999,5:124.
    [20]黄惠琴.表面活性剂的应用与发展趋势[J].现代化工,2001,(5).
    [21]纪卿,云喜玲.表面活性剂的分类、性能及其应用原理[J].集宁师专学报,2003,25(4).
    [22]崔元臣,表面活性刊的发展概况[J].河南化工,1994,12:2-4.
    [23]郑晓红,阴离子表面活性剂测定方法探讨[J].仪器仪表与分析监测,2000,(4).
    [24]陈莉娥,周兴求.表面活性剂废水的危害及处理技术[J].工业水处理,2003,23(10):12-16.
    [25]韩恒,李向阳.表面活性剂的可持续发展[J].日用化学品科学,2010,(6).
    [26]李伟娜,刘志红,谢皓雪.表面活性剂的结构特点及应用研究进展[J].长春医学,2008,(2).
    [27]王西明,袁海东.表面活性剂的力学性质和吸附作用[J].中国高新技术企业,2007,(9).
    [28]朱步遥,赵振国.界面化学基础[M].北京:化学工业出版社,1996.
    [29]李淑君,王国喜,崔艳霞.表面活性剂的乳化作用及工业应用[J].安阳师范学院学报,2000,(2).
    [30]赵喆,王齐放.表面活性剂临界胶束浓度测定方法的研究进展[J].实用药物与临床,2010,13(2).
    [31]Th'evenot C, Grassl B, Bastiat G, et al. Aggregation number and critical micellar concentration of surfactant determined by time-dependent static light scattering (TDSLS) and conductivity [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2005,252:105-111.
    [32]武丽艳,尚贞峰.电导法测定水溶性表面活性剂临界胶束浓度实验的改进[J].实验技术与管理,2006,23(2):29-30.
    [33]Inoue T, Misono T, Lee S, et al. Comment on "Determination of the critical micelle concentration of dodecylguanidine monoacetate (dodine)" [J]. Journal of Colloid and Interface Science,2007,314:334-336.
    [34]沈钟,王果庭.胶体与表面化学(第二版)[M].北京:化学工业出版社,1997.
    [35]于宏伟,谷维娜,王惠,牟微.表面活性剂在除草剂中的应用研究进展[J].河北化工,2010,33(7).
    [36]程燕.丙草胺在水体中的光化学降解研究[D].安徽农业大学,2004.
    [37]肖卫军.表面活性剂在纺织工业中的应用及发展[J].广东化纤,2002,(2):30-36.
    [38]薛广波.实用消毒学[M].北京:人民军医出版社,1986.
    [39]吕艳萍,李临生,安秋凤.织物抗菌整理剂有机硅季铵盐ASQA的合成及应用[J].印染助剂,2005,22(1):20-23.
    [40]张淑琦,张春香.表面活性剂在纺织领域的应用[J].中国洗涤用品工业,2006,(1):42.
    [41]崔励,王雅娜.表面活性剂废水处理研究现状与展望[J].工业水处理,2008,28(2):9-12.
    [42]谢加林.合成洗涤剂与水体的富营养化现象[J].环境保护,1998,12(4):29-31.
    [43]张学佳,纪巍,康志军.水环境中表面活性剂的危害及其处理方法[J].石化技术与应用,2008,26(6):581-586.
    [44]任刚,崔福义,林涛,等.常规混凝沉淀工艺对阴离子表面活性剂的去除研究[J].城市给排水,2004,30(7):1-6.
    [45]陈福泰,诸永前,王曙光,等.新型聚合铝硅混凝剂处理洗浴废水的试验研究[J].环境污染治理技术与设备,2002,(7).
    [46]王效承,许慧平,王玉芬.水中烷基苯磺酸钠的催化氧化处理研究[J].环境科学,1993,(6).
    [47]涂传青,徐国勋,马鲁铭,等.移动床生物膜法处理表面活性剂废水[J].中国给水排水,2004,20(11):80-82.
    [48]常青.水处理混凝学[M].北京:化学工业出版社,2003.
    [49]范瑾初.环境工程治理技术丛书—混凝技术[M].北京:中国环境科学出版社.
    [50]陈宗淇,戴闽光.胶体表面化学[M].高等教育出版社,1987.
    [51]徐燕莉.表面活性剂的功能[M].北京:化学工业出版社,2000.
    [52]蒋展鹏,涂方祥,杨志华.粘土颗粒的形态对胶体稳定性的影响[J].中国给水排水,1993,9(2):8-12.
    [53]涂方祥,蒋展鹏.无机混凝剂的形态对混凝的影响[J].中国给水排水,1996,12(4):4-6.
    [54]蒋展鹏,尤作亮.混凝形态学的研究进展[J].中国给水排水.1998,24(10):70-75.
    [55]Vermeulen A C, Geus J W, Stol R J, et al. Hydrolysis-precipitation studies of aluminum(Ⅲ) solutions 1. Titration of acidified aluminum nitrate solutions [J]. Journal of Colloid and Interface Science,1975,51(3):449-458.
    [56]Stol R J, Van Helden A K, De Bruyn P L. Hydrolysis-precipitation studies of aluminum(ⅢI) solutions 2. A kinetic study and model [J]. Journal of Colloid and Interface Science, 1976,57(1):115-131.
    [57]De Hek H, Stol R J, De Bruyn P L. Hydrolysis-precipitation studies of aluminum(III) solutions 3. The role of the sulfate ion [J]. Journal of Colloid and Interface Science, 1978,64(1):72-89.
    [58]Bottero J Y, Cases J M, Fiessinger F, et al. Studies of hydrolyzed aluminum chloride solutions.1. Nature of aluminum species and composition of aqueous solutions [J]. Journal of Physical Chemistry,1980,84:2933-2939.
    [59]汤鸿霄.环境科学中的化学问题及环境水质学中的几个化学前沿问题[J].化学进展,2000,12(4):415-422.
    [60]汤鸿霄.环境纳米污染物与微界面水质过程[J].环境科学学报,2003,23(2):146-155.
    [61]胡万里.混凝.混凝剂.混凝设备[M].北京:化学工业出版社,2001.
    [62]陈淑玲,刘鹏飞,朱志强,等.几种醇类水溶液表面张力的实验研究[J].北京交通大学学报,2008,32(1):112-115.
    [63]杨晖,郑刚,王雅静.用动态光散射现代谱估计法测量纳米颗粒[J].光学精密工程,2010,(9).
    [64]贺国旭,孙浩杰,咎红涛,吴红.无机盐对SDS溶液表面张力的影响[J].化工时刊,2008,(10).
    [65]Talens F I, Paten P, Gaya S. Micelar Flocculation of Anionic Surfactants [J]. Langmuir,1998,5046-5050.
    [66]Jinming Duan, John Gregory. Coagulation by hydrolysing metal salts [J]. Advances in Colloid and Interface Science,2003,100-102:475-502.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700