用户名: 密码: 验证码:
Al_2O_3/SiC纳米复合陶瓷制备工艺及微观结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝基陶瓷材料具有高硬度、耐高温、耐腐蚀和磨损等金属材料难以比拟的优点,其原材料广泛、价格低廉又是其它陶瓷材料所无法相比的。但陶瓷材料本身所固有的本质脆性始终是其广泛应用的瓶颈。
     本文以纳米SiC颗粒及微米Al_2O_3为主要原料,成功制备了Al_2O_3/SiC陶瓷基纳米复合材料。
     研究了纳米粉体的分散技术。探讨适合Al_2O_3/SiC系统的分散方法及具体工艺,得出复合粉体均匀分散的最佳工艺参数并制备出性能优良的粉体。
     利用Al_2O_3在烧结时易各向异性长大的特点,通过控制烧结工艺,调整SiC的加入量实现了对Al_2O_3/SiC微观结构的剪裁,以获得最佳的力学性能。
     分析了Al_2O_3/SiC纳米复合材料烧结热力学与动力学过程,将复合材料的烧结过程划分为三个阶段。烧结过程中“晶内型”结构的形成取决于界面驱动力,基体晶界及第二相纳米颗粒的迁移速率等因素。界面能高及界面两侧相邻晶粒的差别大,有利于晶界的迁移,从而有利于形成“晶内型”结构。
     对Al_2O_3/SiC的制备工艺进行了优化,得到了SiC均分散于Al_2O_3基体中的烧结体。部分纳米SiC位于Al_2O_3晶粒内部,部分位于晶界上,成功制备出了“晶内型”结构的纳米复合材料。
     Al_2O_3/SiC纳米复合材料有良好的力学性能,其抗弯强度和断裂韧性的最大值分别为668.02Mpa和4.9MPa·m1/2,与单相Al_2O_3陶瓷相比具有显著的提高。
     纳米SiC的加入改变了Al_2O_3的晶界结合状态,使晶界强化,晶内“纳米化”,促使Al_2O_3陶瓷由沿晶断裂模式向穿晶断裂模式的转化。晶内SiC的纳米强韧化,裂纹的偏转和基体晶粒的细化是复合材料力学性能提高的重要原因,Al_2O_3/SiC纳米复合材料在抗弯强度及断裂韧性方面都有显著提高。具有多种途径的协同增韧机制是Al_2O_3/SiC纳米复合材料的特点。
Alumina (Al_2O_3) was a widely used ceramic due to its refractoriness, wear resistance and chemical stability. However, the brittleness of Al_2O_3 limited its potential applications. In this paper, nano-SiC particle toughened Al_2O_3 ceramics were studied. The nano-composites possess higher mechanical properties than monolith alumina.
     The dispersing of nano-particle was researched. We studied the suitable dispersing method and processing for the Al_2O_3/SiC system. Obtained best parameters and prepared the powders those have excellent properties.
     The abnormal grain growth of Al_2O_3 often occurs during sintering of commercial purity Al_2O_3. By means of controlling sintering process and contents of SiC to produce tailored microstructure, the optimum properties were obtained.
     The sintering mechanism of Al_2O_3/SiC ceramic nanocomposite was researched. We divided the sintering process into three parts. The priority of densification occurred in aggregated nano-particles. Dispersion of mixed original powders and the SiC content in composites was important.
     The formation of intragranular microstructure depended on driving force of interface and movement velocity of inclusion and matrix grain bounding. Higher grain surface energy and lower curvature radius of dispersoids contribute to more intragranular particles.
     In Al_2O_3/SiC nano-composites, the SiC particles were uniformly dispersed in Al_2O_3 matrix. Part of nano-SiC, is embedded in Al_2O_3 grains, and another nano-SiC particles is existed at Al_2O_3 grain boundaries. Nano-composites with intragranular microstructure was successfully prepared.
     Al_2O_3/SiC nano-composites possessed favorable mechanical properties. The maximum strength and toughness are 668.02Mpa and 4.9MPa·m~(1/2), were significantly improved compared to monolith alumina.
     The grain boundaries of Al_2O_3 were strengthened by SiC. Intragranular nano- SiC changed the fracture mode of Al_2O_3 from intergranular fracture to intragranular fracture. Various strengthen and toughen mechanism acted on Al_2O_3/SiC nano-composites. That was the intragranular SiC makes the Al_2O_3 grains into nano size、refined microstructural strengthen mechanism of SiC and deflection of crack.
引文
[1]贾成厂,李文霞,郭志猛,赵军.陶瓷基复合材料导论.北京:冶金工业出版社,1998,47
    [2]扬慧智.工程材料及成型工艺基础[M].北京:机械工业出版社,2000
    [3] Xu Dongsun and J A Yeomans. Microstructure and Fracture Toughness of Nickel Particle Toughened Alumina Matrix Composites. J Mater Sci, 31, 875-880 (1996)
    [4] R E Loehman, K Ewsuk and A P Tomsia. Synthesis of Al2O3-Al Composites by Reactive Melt Penetration. J Am Ceram Soc, 79, 27-32 (1996)
    [5] Aldrich D E and Edirisinghe M T. Addition of Copper Particles to Alumina Matrix. Journal of Materials Science Letters, 17 [12] 965-967 (1998)
    [6] Guichard J L, Tillement O and Mocellin A. Alumina-Chromium Cermets by Hot-pressing of Nano-composites. J Eur Ceram Soc, 18, 1743-1752 (1998)
    [7] Niihara K. New design concept of structural ceramics [J].J.Ceram.Soc.Japan (Int.Ed.), 1991.99(10): 974-982.
    [8] Wu H Z, Roberts S G, Derby B. Residual stress and subsurface damage in machined alumina and alumina/Silicon carbide nanocomposite ceramics{j}.Acta Mater, 2001,49(2): 507-517
    [9] Wu H Z, Lawrence C W, Roberts S G, et al. The Strength of Al2O3/SiC Nano-composites After Grinding and Annealing[J]. Acta Mater 1998, 46(5): 3839-3847
    [10]陆佩文主编.无机材料科学基础.武汉:武汉工业大学出版社,1996,43
    [11]王宏志.氧化铝基纳米复合陶瓷的研究.中国科学院上海硅酸盐研究所博士学位论文,1998
    [12] Ronald G Munro. Evaluated material properties for a sinteredα-Alumina. J Am Ceram Soc, 80 [8] 1919-28 (1997)
    [13] Anteneh Kebbede, John Parai, and Altaf H Carim. Anistropic grain growth inα-Al2O3 with SiO2 and TiO2 additions. J Am Ceram Soc, 83 [11] 2845-51 (2000)
    [14] Carol A Handwerker, Patricia A Morris, and Robert L Coble. Effects of chemical inhomogeneities on grain growth and microstructure in Al2O3. J Am Ceram Soc, 72 [1]130-36 (1989)
    [15]卡思R W,合森P,克雷默E J.材料科学与技术丛书[M].北京:科学出版社,1999
    [16]王晶,高宏,邱竹贤.氧化锆增韧的氧化铝纳米粉体制备及性能研究[J ].无机材料学报,1997,12(2) :38239
    [17]闫洪,窦明民,李和平.二氧化锆陶瓷的相变增韧机理和应用[J ].陶瓷学报,2000 ,21(1) :47248
    [18]孟国文.陶瓷中氧化锆的研究及应用现状[J ].材料导报,1994,80(4):43245
    [19]牟军,郦剑,郭绍义等.氧化锆增韧陶瓷的相变增韧[J ].材料科学与工程,1994,12(3):6211
    [20]李云凯,钟家湘,朱鹤孙等.碳化硅、氧化锆增韧氧化铝复相陶瓷的研究[J ].北京理工大学学报,1996 ,16 (5) :5612564.
    [21] MASAAKI A, KOJ I M, MOTOZO H. Fabrication of Al2O3/ZrO2 micro/ nano-composite prepared by high-energy ball milling[J ]. Materials Transactions, 2001, 42(6): 111921123
    [22]尚成嘉,孟宪梅,职任涛.ZrO2增韧Al2O3复相陶瓷中氧化锆相分布的分形维数[J ].北京科技大学学报,1998,20 (1) :81284
    [23]曹茂盛.纳米材料导论[M].哈尔滨:哈尔滨工业大学出版社, 2001
    [24]郭景坤,徐跃萍.纳米陶瓷及其进展[J ].硅酸盐学报,1992,20(3):286
    [25] WANGJ, PONTON C B, MARQUIS P M. Thermal stabilityof Al2O3 25 %SiC nano-composites[J ]. Journal of Materials Science, 1995, 30(8): 3212333
    [26]高濂,宫本大树.高温等静压烧结Al2O3/ ZrO2纳米陶瓷[J ].无机材料学报, 1999 ,14(3) :4952498
    [27]黄政仁,谭春洪,江东亮.SiC晶须增强Al2O3/TiC复相陶瓷的研究[J ].硅酸盐学报, 1993,21(4):349
    [28] NIIHARA K. New design concept of structure ceramic nano-composites[J ]. J Ceram Soc Jpn, 1991, 99 (10): 9742982
    [29]李海林,邬柱,王正东,等.铬粒弥散增韧氧化铝复合材料的研究[J ].无机材料学报,1995 ,10(3 ):3132317
    [30]张国军,金宗哲.颗粒增韧陶瓷的增韧机理[J ].硅酸盐学报,1994,22(3):2592268
    [31] J Rodel, H Prioelipp, N Claussen, M Sternitzke, K B Alexander et al.. Ni3Al/Al2O3composites with interprenetrating networks. Sripta Metallurgica et Materialia, 33[5] 843-848
    [32]李理,杨丰科,候耀永.纳米颗粒复合陶瓷材料.材料导报,[4]67-73 (1996)
    [33] Stearns, L. C., Zhao, J. and Harmer, M. P.. Processing and microstructure development in Al2O3–SiC‘Nano-composites’. J.Eur. Ceram. Soc., 1992, 10, 473–477
    [34] Conder, R. J.. Microstructure, Processing and Properties of Nanocomposite Ceramics. PhD thesis, University of Birmingham, 1994
    [35] O’Sullivan, D., Poorteman, M, Descamps, P., Cambier, F., Leriche, A. and Thierry, B.. Optimisation of alumina-silicon carbide dispersions and the fabrication of nanocomposite ceramic materials. In Key Engineering Materials, 99-100, ed. Trans. Tech.Publications, Switzerland, 1995, pp. 247–256
    [36] Walker, C. N., Borsa, C. E., Todd, R. I., Davidge, R. W. andBrook, R. J., Fabrication. Characterisation and properties ofalumina matrix nano-composites. In British Ceramic Proceedings, No. 53: Novel Synthesis and Processing of Ceramics, ed. F. R. Sale, The Institute of Materials, London, 1994, pp. 249–264
    [37] L.A. Timms. C.B. Ponton Processing of Al2O3/SiC nano-composites-part 1: aqueous colloidal processing. Journal of the European Ceramic Society 22 (2002) 1553–1567
    [38] Aslan, M, Do rr, Na, R. and Schmidt, H.. Microstructuraldevelopment and mechanical properties of pressureless sintered Al2O3/SiC composites. In Proceedings of the International Conference Ceramic Processing Science and Technology, Friedrichshafen (Bodensee), FRG, 11–14 September, 1994, pp. 665–669
    [39] Assmann, S., Eisele, U. and Boder, H.. Processing of Al2O3/SiC composites in aqueousmedia. J. Eur.Ceram. Soc, 1997, 17, 309–317
    [40] Baklouti, S., Pagnoux, C., Chartier, T. and Baumard, J. F.. Processing of aqueous a- Al2O3, a-SiO2 and a-SiC suspensions with polyelectrolytes. J. Eur. Ceram. Soc., 1997, 17, 1387–1392
    [41]张巨先,高陇桥.Al2O3/SiCp纳米复合材料化学制备工艺研究.硅酸盐学报,2001,29(6) 550-553
    [42]王昕,谭训彦,尹衍升等.多相悬浮混合法制备Al2O3- SiC(n)纳米复合陶瓷.陶瓷学报,1999,20(1)5-8
    [43]王宏志,高濂,归林华,郭景坤.晶内型Al2O3-SiC纳米复合陶瓷的制备.无机材料学报,1997,12(5)672-674
    [44]仝建峰,陈大明等.纳米陶瓷复合材料制备工艺中nano-SiC与基体Al2O3粉末的均匀分散.硅酸盐通报,2000年第三期24-27
    [45] MESCHKE F, ALVES RICCARDO P, SCHNEIDER GA, et a1. Failure behavior of alumina and alumina silicon carbide nano-composites with natural an dartificial flaws[J]. Journal of Materials Research, 1997, 12(12): 3307-3315
    [46] WAESCHE R, STEINBORN G, ZINGARO A. Gelcasting of alumina and alumina-SiC composites[J]. Silicates industriels, 1995, 60(7-8): 193-197
    [47]颜鲁婷.超微细陶瓷粉体的表面改性及其与有机载体相容性的研究[D].北京:清华大学,2003
    [48] S. Ananthakumar, K. Prabhakaran, U.S. Hareesh, P. Manohar, K.G.K.Warrier. Gel casting process for Al2O3–SiC nano-composites and its creep characteristics. Materials Chemistry and Physics 85 (2004) 151–157
    [49] Borsa, C.E., Jiao, S., Todd, R.I.&Brook, R.J.. Processing and properties of Al2O3-SiC nano-composites.J.Microsc..177 Prt 3(1995)305-312
    [50] Zhao,J., Stearns, L, C., Harmer, M.P., Chan, H.M., Miller, G.A.&Cook, R.F.. Mechanical behaveour of alumina-SiC”namocomposites”.J.Am, Ceram.Soc.76[2](1993)503-510
    [51] C.C.Anya&S.G.Roberts. Pressureless sintering and elastic constants of Al2O3-SiC“namocomposites”. Journal of the European Ceramic Society 17(1997):565-573
    [52]韩亚苓,线全刚,蒋玉齐等.无压烧结Al2O3/SiC纳米复相陶瓷的研究.硅酸盐学报2001,29(1)76-79
    [53]蔡舒,彭珍珍,冯杰,鲁枫.无压烧结制备Al2O3/SiC纳米复合陶瓷.陶瓷科学与艺术,2003(5)23-27
    [54]蔡舒,彭珍珍,冯杰,鲁枫等.常压烧结制备Al2O3/SiC纳米复合陶瓷及其显微结构的研究.兵器材料科学与工程,2004,27(5)10-13
    [55] C. E. Borsa, H. S. Ferreira and R. H. G. A. Kiminami. Liquid Phase Sintering of Al2O3/SiC nano-composites. Journal of the European Ceramic Society 19 (1999) 615-621
    [56] L.Gao et al. Mechanical properties and microstructure of nano-SiC/ Al2O3compositesdensified by Spark Plasma Sintering. Journal of the European Ceramic Society 19 (1999) 609-613
    [57]邹正光、何曾先、余石金.天然高岭土碳热还原制备Al2O3/SiC复相陶瓷粉.硅酸盐通报,2004(4)110-112
    [58] A M Thompson, H M Chan and M Pharmer. J Am Ceram Soc, 1993, 78 (3): 567—571
    [59] I A Chou, H M Chan and M P Harmer. J Am Ceram Soc, 1998, 81 (5): 1203—1208
    [60]翟华嶂,李建保,黄向东,戴金辉,张淑.退火对Al2O3_SiC纳米复合材料裂纹愈合行为的影响.材料工程,2002(10)3-6
    [61] H E kim, A JMoorhead and SH Kim. JAm Ceram Soc, 1997, 8O (7): 1877- 1880
    [62]王昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析.陶瓷学报,2000,21(2): 107-110
    [63]颜鲁婷,司文捷,苗赫濯.Al2O3/SiC纳米复相陶瓷材料的研究进展.材料科学与工艺,2005,13(4):337-340
    [64]张存满,徐政,许业文.弥散SiC颗粒增韧Al2O3基陶瓷的增韧机制分析.硅酸盐通报2001年第5期:47-50
    [65]周玉,雷廷全.陶瓷材料学.哈尔滨:哈尔滨工业大学,1995:336,358
    [66] R W卡恩,P哈森,E J克雷默.材料科学与技术丛书(Vol. 17B).理查德丁布鲁克编,黄勇审校,北京:科学出版社,78
    [67]金宗哲,包亦望,赵宏.纳米颗粒复合增强机理.92秋季中国材料研讨会论文集,广州,1992:9457
    [68] Jurgen Rodel and Andreas M Glaeser. Anistropy of grain growth inalumina. J Am Ceram Soc, 73 [11] 3292-301 (1990)
    [69] Sunggi Baik and Jong Ha Moon. Effects of magnesium oxide on grain-boundary segregation of calcium puring sintering of alumina. J Am Ceram Soc, 74 [4] 819-22 (1991)
    [70] Seong-Jai Cho, Yun-Cheol Lee, Kyung-Jin Yoon et al.. Effect of coarse-powder portion on abnomal grain growth during hot pressing of commercial-purity alumina powder. J Am Ceram Soc, 84 [5] 1143-47 (2001)
    [71] Linan An and Helen M Chan. R-curve behavior of insitu-toughened ceramic composites. J Am Ceram Soc, 79 [12] 3142-48 (1996)
    [72]关振铎,张中太,丛金生.无机材料物理性能.北京:清华大学出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700