用户名: 密码: 验证码:
FeSe_2纳米材料的制备、表征及改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硫属化合物因为其独特的光电性能,尤其是硒化物,得到了很多的关注,一直以来都成为研究的热点。但对于FeSe2,特别是FeSe2电化学方面性质的研究还比较少,FeSe2半导体材料因具有较窄的禁带宽度、高的电子电导率、较高的比容量等优势从而在纳米锂电池材料方面具有很重要的研究意义,但是需要进一步研究以克服FeSe2存在容量衰减快、循环稳定较性差等缺点,本文采用水热法制得FeSe2纳米材料,并采用两种改性技术对FeSe2纳米材料的电化学性能进行改性,主要内容和结果如下:
     采用水热法制得FeSe2纳米材料,通过引入适当浓度的聚乙烯醇溶液制备出结晶度较高,纯相的FeSe2纳米材料,利用XRD、FESEM对其结构进行表征,将制得的FeSe2纳米材料做为正极材料组装成纽扣电池测试其电化学性能,FeSe2纳米材料的首次放电容量为362mAh/g,通过计算得到循环50次后的容量衰减率为2.39%。
     采用水热法制备得到锂化后的FeSe2纳米材料,用XRD、SEM等手段对其结构进行表征其锂化前后结构的变化,并且测试其电化学性能,锂化后的FeSe2纳米材料的电化学性能测试研究表明与未锂化的FeSe2纳米正极材料相比,循环50次后容量衰减率为1.23%,循环稳定性得到了提高,探讨锂化前后的FeSe2纳米材料的结构变化与性能之间的联系。
     以葡萄糖为碳源采用水热法制得了不同摩尔比的FeSe2/C纳米复合材料,并对制得的复合材料在500℃下进行热处理,利用XRD、FESEM、拉曼光谱对热处理前后的不同摩尔比的FeSe2/C复合材料进行结构表征,热处理前FeSe2/C纳米复合材料的电化学性能测试表明:随着葡萄糖摩尔量的增加,首次放电容量略有下降,热处理前不同摩尔比的FeSe2/C纳米复合材料的容量衰减率有了小幅度的减小,与未复合的FeSe2纳米正极材料相比,循环稳定性有了一定的提高。热处理后的不同摩尔比的FeSe2/C纳米复合材料的容量衰减率有了显著的减小,循环稳定性得到了显著的提高。
Due to special photoelectric properties of chalcogenide, especially for selenide, they have gained increasing attention recently, become a hotspot for study. For FeSe2, there is few research focuing on electrochemical researches of FeSe2. FeSe2 semiconductor materials have import significance to research on lithium ion batteries, which have several advantages such as narrow bandgap, high electronic conductivity, high specific capacity and so on. However, the research results show that it need some research to overcome disadvantages such as quickly capacity fading, cycle stability and so on. FeSe2 nanomaterials was synthesized via hydrothermal reaction, moreover, FeSe2 nanomaterials were modified through two methods for improvement of electrochemical properties. The content of the article reads as follows:
     Under a appropriate concentration of polyvinyl alcohol solution, FeSe2 nanomaterials was synthesized via hydrothermal reaction with high crystallinity and pure phase. The structures of the FeSe2 nanomaterials were characterized via XRD, FESEM, and FeSe2 nanomaterials using as cathode materials were assembled fastener cell to measure electrochemical properties. First discharge capacity of FeSe2 nanomaterials is 362 mAh/g, fraction loss per cycle reaches 2.39% of by calculation after 50 cycles.
     Directly lithiated FeSe2 nanomaterials were synthesized by a hydrothermal reaction, the change of structures of the directly lithiated FeSe2 nanomaterials were characterized via XRD, FESEM, and measure electrochemical properties. The results of electrochemical properties tests of directly lithiated FeSe2 nanomaterials show that fraction loss per cycle after 50 cycles is 1.23%, cycle stability have been improved comparing with FeSe2 nanomaterials, then study the connection between properties and the change of the structure of before and after lithiation.
     Using glucose as carbon source, different mole ratio FeSe2/C composite nanomaterials were synthesized via hydrothermal reaction. And the as-prepared composite nanomaterials were heating under 500℃. The structures of the FeSe2/C composite nanomaterials were characterized via XRD, FESEM, Raman spectra. Before heat treatment, The results of electrochemical properties tests of FeSe2/C composite nanomaterials show that first discharge capacity decreasing as the amount of glucose increasing, fraction loss per cycle after 50 cycles minor reduce, comparing with FeSe2 nanomaterials, cycle stability have been improved a certain degree. After heat treatment, fraction loss per cycle after 50 cycles of FeSe2/C composite nanomaterials obviously reduce, cycle stability has been notable improved.
引文
[1]Tang S B, Lai M O, Lu L. Electrochemical performance of microbatteries using crystallized LiCoO2 and nano-crystalline LiMn2O4 film as cathodes and amorphous LiNiV04 as anode. Surface Review and Letters,2008,15(1-2): 169-174.
    [2]Ying J R, Jiang C Y, Wan C R. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. Journal of Power Sources,2004,129(2):264-269.
    [3]Fu X Z, Wang X, Peng H F, et al. Low temperature synthesis of LiNiO2@LiCoO2 as cathode materials for lithium ion batteries. Journal of Solid State Electrochemistry,2010,14(6):1117-1124.
    [4]Sasaki T, Nonaka T, Oka H, et al. Capacity-Fading Mechanisms of LiNiO2-Based Lithium-Ion Batteries. Journal of The Electrochemical Society,2009,156(4): A289-A293.
    [5]Zhang Y C, Wang C Y. Cycle-Life Characterization of Automotive Lithium-Ion Batteries with LiNiO2 Cathode. Journal of The Electrochemical Society,2009, 156(7):A527-A535.
    [6]Wen Y X, Xiao H, Gan Y L, et al. Self-propagating high temperature synthesis of LiCoO2 as cathode material for lithium ion batteries. Journal of Inorganic Materials,2008,23(2):286-290.
    [7]Delobel B, Larcher D, Blach J F, et al. One-step precipitation of nanometric LiMO2 powders (M=Co, Fe) in alcoholic media. Solid State Ionics,2010, 181(13-14):623-630.
    [8]Rahman M M, Wang J Z, Hassan M F, et al. Synthesis of carbon coated nanocrystalline porous alpha-LiFeO2 composite and its application as anode for the lithium ion battery. Journal of Alloys and Compounds,2011,509(17): 5408-5413.
    [9]Morales J, Santos-Pena J. Highly electroactive nanosized alpha-LiFeO2. Electrochemistry Communications,2007,9(8):2116-2120.
    [10]Morales J, Santos-Pena J, Trocoli R, et al. Insights into the electrochemical activity of nanosized alpha-LiFeO2. Electrochimica Acta,2008,53(22): 6366-6371.
    [11]Ding Y L, Xie J A, Cao G S, et al. Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries. Advanced Functional Materials,2011,21(2):348-355.
    [12]Chen Z H, Huang K L, Liu S Q, et al. Preparation and characterization of spinel LiMn2O4 nanorods as lithium-ion battery cathodes. Transactions of Nonferrous Metals Society of China,2010,20(12):2309-2313.
    [13]Choi S H, Kim J, Yoon Y S. A TEM study of cycled nano-crystalline HT-LiCoO2 cathodes for rechargeable lithium batteries. Journal of Power Sources,2004, 135(1-2):286-290.
    [14]Kawamura T, Makidera M, Okada S, et al. Effect of nano-size LiCoO2 cathode powders on Li-ion cells. Journal of Power Sources,2005,146(1-2):27-32.
    [15]Tang W, Liu L L, Tian S, et al. Nano-LiCoO2 as cathode material of large capacity and high rate capability for aqueous rechargeable lithium batteries. Electrochemistry Communications,2010,12(11):1524-1526.
    [16]Zou G F, Zhang D W, Dong C, et al. Carbon nanofibers:Synthesis, characterization, and electrochemical properties. Carbon,2006,44(5):828-832.
    [17]Yang S B, Song H H, Chen X H. Electrochemical performance of expanded mesocarbon microbeads as anode material for lithium-ion batteries. Electrochemistry Communications,2006,8(1):137-142.
    [18]Manjunatha H, Suresh G S, Venkatesha T V. Electrode materials for aqueous rechargeable lithium batteries. Journal of Solid State Electrochemistry,2011, 15(3):431-445.
    [19]Chen S Y, Wang Z X, Fang X P, et al. Characterization of TiS2 as an Anode Material for Lithium Ion Batteries. Acta Physico-Chimica Sinica,2011,27(1): 97-102.
    [20]Huang K, Pan Q, Yang F, et al. Controllable synthesis of hexagonal WO3 nanostructures and their application in lithium batteries. Journal of Physics D-Applied Physics,2008,41(15).
    [21]Gu Z J, Li H Q, Zhai T Y, et al. Large-scale synthesis of single-crystal hexagonal tungsten trioxide nanowires and electrochemical lithium intercalation into the nanocrystals. Journal of Solid State Chemistry,2007,180(1):98-105.
    [22]Welna D T, Qu L T, Taylor B E, et al. Vertically aligned carbon nanotube electrodes for lithium-ion batteries. Journal of Power Sources,2011,196(3): 1455-1460.
    [23]Hu J, Li H, Huang X J. Electrochemical behavior and microstructure variation of hard carbon nano-spherules as anode material for Li-ion batteries. Solid State Ionics,2007,178(3-4):265-271.
    [24]管从胜,杜爱玲,杨玉国.高能化学电源.北京:化学工业出版社,2005:348-349.
    [25]Hu L B, Wu H, Hong S S, et al. Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes. Chemical Communications,2011,47(1):367-369.
    [26]Song Y Q, Qin S S, Zhang Y W, et al. Large-Scale Porous Hematite Nanorod Arrays:Direct Growth on Titanium Foil and Reversible Lithium Storage. Journal of Physical Chemistry C,2010,114(49):21158-21164.
    [27]Chan C K, Peng H L, Twesten R D, et al. Fast, completely reversible Li insertion in vanadium pentoxide nanoribbons. Nano Letters,2007,7(2):490-495.
    [28]Mai L Q, Dong Y J, Xu L, et al. Single Nanowire Electrochemical Devices. Nano Letters,2010,10(10):4273-4278.
    [29]Limthongkul P, Jang Y I, Dudney N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia,2003,51(4):1103-1113.
    [30]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414(6861):359-367.
    [31]Shao-Horn Y, Croguennec L, Delmas C, et al. Atomic resolution of lithium ions in LiCoO2. Nature Materials,2003,2(7):464-467.
    [32]Huang J Y, Zhong L, Wang C M, et al. In Situ Observation of the Electrochemical Lithiation of a Single SnO2 Nanowire Electrode. Science,2010, 330(6010):1515-1520.
    [33]Lee S H, Kim Y H, Deshpande R, et al. Reversible Lithium-Ion Insertion in Molybdenum Oxide Nanoparticles. Advanced Materials,2008,20(19):3627-+.
    [34]Song J H, Park H J, Kim K J, et al. Electrochemical characteristics of lithium vanadate, Li)+xVO2, new anode materials for lithium ion batteries. Journal of Power Sources,2010,195(18):6157-6161.
    [35]Lee Y, Kim M G, Cho J. Layered Lio.88[Li0.18Co0.33Mno.49]O2 Nanowires for Fast and High Capacity Li-Ion Storage Material. Nano Letters,2008,8(3):957-961.
    [36]Scott I D, Jung Y S, Cavanagh A S, et al. Ultrathin Coatings on Nano-LiCoO2 for Li-Ion Vehicular Applications. Nano Letters,2011,11(2):414-418.
    [37]Huang X H, Tu J P, Xia X H, et al. Nickel foam-supported porous NiO/polyaniline film as anode for lithium ion batteries. Electrochemistry Communications,2008,10(9):1288-1290.
    [38]Gowda S R, Reddy A L M, Shaijumon M M, et al. Conformal Coating of Thin Polymer Electrolyte Layer on Nanostructured Electrode Materials for Three-Dimensional Battery Applications. Nano Letters,2011,11(1):101-106.
    [39]Mai L Q, Hu B, Chen W, et al. Lithiated MoO3 nanobelts with greatly improved performance for lithium batteries. Advanced Materials,2007,19(21): 3712-3716.
    [40]Mai L Q, Hu B, Qi Y Y, et al. Improved cycling performance of directly lithiated MoO3 nanobelts. International Journal of Electrochemical Science,2008,3(2): 216-222.
    [41]Mai L Q, Xu L, Hu B, et al. Improved cycling stability of nanostructured electrode materials enabled by prelithiation. Journal of Materials Research,2010, 25(8):1413-1420.
    [42]Murugan A V, Muraliganth T, Manthiram A. Comparison of Microwave Assisted Solvothermal and Hydrothermal Syntheses of LiFePO4/C Nanocomposite Cathodes for Lithium Ion Batteries. The Journal of Physical Chemistry C,2008, 112(37):14665-14671.
    [43]Kim H, Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material. Nano Letters,2008, 8(11):3688-3691.
    [44]Cao Q, Zhang H P, Wang G J, et al. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochemistry Communications,2007,9(5): 1228-1232.
    [45]Kuwahara A, Suzuki S, Miyayama M. High-rate properties of LiFePO4/carbon composites as cathode materials for lithium-ion batteries. Ceramics International, 2008,34(4):863-866.
    [46]Johnson C S, Dees D W, Mansuetto M F, et al. Structural and electrochemical studies of [alpha]-manganese dioxide (α-MnO2). Journal of Power Sources, 1997,68(2):570-577.
    [47]Landi B J, Ganter M J, Cress C D, et al. Carbon nanotubes for lithium ion batteries. Energy & Environmental Science,2009,2(6):638-654.
    [48]Zhang Z, Yang J, Nuli Y, et al. CoPx synthesis and lithiation by ball-milling for anode materials of lithium ion cells. Solid State Ionics,2005,176(7-8):693-697.
    [49]Jung W I, Nagao M, Pitteloud C, et al. Synthesis of LixMn02 by chemical lithiation in an aqueous media. Journal of Power Sources,2010,195(10): 3328-3332.
    [50]Garcia B, Millet M, Pereira-Ramos J P, et al. Electrochemical behaviour of chemically lithiated LixV2O5 phases (0.9<=x<=1.6). Journal of Power Sources, 1999,81-82:670-674.
    [51]Kim H, Cho J. Superior Lithium Electroactive Mesoporous Si@Carbon Core-Shell Nanowires for Lithium Battery Anode Material. Nano Letters,2008, 8(11):3688-3691.
    [52]Lee H Y, Lee S M. Carbon-coated nano-Si dispersed oxides/graphite composites as anode material for lithium ion batteries. Electrochemistry Communications, 2004,6(5):465-469.
    [53]Lai C, Xu Q, Ge H, et al. Improved electrochemical performance of LiFePO4/C for lithium-ion batteries with two kinds of carbon sources. Solid State Ionics, 2008,179(27-32):1736-1739.
    [54]Lu Q, Hu J, Tang K, et al. A simple synthetic method for MSe2 (M=Fe, Co or Ni) nanocrystallites at low temperature. Materials Chemistry and Physics,2001, 69(1-3):278-280.
    [55]Xie Y, Zhu L Y, Jiang X C, et al. Mild hydrothermal-reduction synthesis and Mossbauer study of low-dimensional iron chalcogenide microcrystals and single crystals. Chemistry of Materials,2001,13(11):3927-3932.
    [56]Ouertani B, Ouerfelli J, Saadoun M, et al. Transformation of amorphous iron oxide thin films predeposited by spray pyrolysis into a single FeSe2-phase by selenisation. Solar Energy Materials and Solar Cells,2005,87(1-4):501-511.
    [57]Mahalingam T, Thanikaikarasan S, Chandramohan R, et al. Effects of bath temperature in electrodeposited FeSe2 thin films. Materials Chemistry and Physics,2007,106(2-3):369-374.
    [58]Bullard J W, Smith R L. Structural evolution of the MoO3(010) surface during lithium intercalation. Solid State Ionics,2003,160(3-4):335-349.
    [59]吴宇平,万春荣,姜长印.锂离子二次电池.北京:化学工业出版社,2004:79-81.
    [60]Shao-Horn Y, Croguennec L, Delmas C, et al. Atomic resolution of lithium ions in LiCoO2. Nat Mater,2003,2(7):464-467.
    [61]Limthongkul P, Jang Y-I, Dudney N J, et al. Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage. Acta Materialia,2003,51(4):1103-1113.
    [62]Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature,2001,414:359-367.
    [63]Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as Positive-electrode materials for rechargeable lithium batteries. Journal of The Electrochemical Society,1997,144:1188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700