用户名: 密码: 验证码:
铜集流体纳米SnO_2锂离子电池负极的制备、结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化锡具有嵌锂电位低、容量密度高、安全性能好、资源丰富、价格便宜以及对环境无污染等突出优点,被认为是锂离子电池碳负极材料最有希望的替代物之一。但是,它同时也存在所成电池的循环可逆性能差、大倍率充放电性能不佳以及能量密度较低等缺点,无法满足锂离子动力电池的性能要求,从而阻碍了它作为锂离子电池负极材料的实用化进程。针对这些问题,本论文分别通过在平面铜箔上电沉积制备SnO2纳米薄膜电极、电沉积制备负载铜纳米棒铜箔集流体,再在铜纳米棒之间电沉积SnO2制备得到了铜纳米棒集流体纳米SnO2电极,并对所得纳米SnO2电极的结构和性能进行了较系统深入的研究,取得了如下的主要结果和结论:
     1)以阳极氧化铝(AAO)为模板,在铜箔上通过阴极电沉积法制备了铜纳米棒集流体。对铜箔的前处理、沉积条件(电压、铜箔单位面积重量增量、电解液体系)等因素对铜纳米棒团聚、长短一致性的影响进行了考察。研究结果表明,对铜箔进行机械抛光,能有效降低铜箔表面的粗糙度,改善铜纳米棒的长短一致性。本文还研究比较了三种电沉积电解液体系:A)高铜低酸硫酸体系;B)低铜高酸硫酸体系;C)碱性络合体系。通过监控铜箔单位面积重量增量来防止铜纳米棒发生坍塌及团聚。不同电解液体系对铜纳米棒的长短一致性影响较大。当铜箔单位面积重量增量相同时,亦即电沉积得到的铜纳米棒的平均长度相同时,碱性络合体系C中得到的铜纳米棒的长短一致性要明显优于高铜低酸体系A和低铜高酸体系B,而B体系所得到的铜纳米棒的长短一致性最差。碱性络合体系C是制备纳米棒铜集流体的最佳体系。
     2)在平面铜箔SnO2纳米薄膜电极的研究中,采用恒电压阴极电沉积法,直接在平面铜箔集流体上电沉积制备纳米二氧化锡薄膜电极,并对所得电极上活性材料的成分、表观形貌及电性能等进行了研究。结果表明,要使电沉积产物为纯的SnO2,就应保证反应体系中的NO3-与Sn4+的浓度之比不得低于4:1,并使用新鲜配制的电解液。另外,65℃是电沉积制备纯SnO2的临界温度。电沉积电压宜控制在0.4V及以下,以避免电极上的SnO2薄膜由细腻致密而变得粗糙,甚至从电极上自行脱落。对平面铜箔SnO2纳米薄膜电极进行热处理,其电性能没有明显的变化。
     3)为了制备铜纳米棒集流体纳米SnO2电极,采用恒电压阴极电沉积方法在负载了铜纳米棒的铜集流体上电沉积纳米二氧化锡粒子。研究结果表明,电沉积温度、电沉积电压分别为85℃,0.4V时制备得到的铜纳米棒集流体SnO2电极的电化学性能最佳,电极的表观形貌与其它电沉积条件下所得电极的表观形貌有较大的差别。另外,应控制SnO2在铜纳米棒集流体上单位面积的载量有合适的范围,以避免铜纳米棒之间的空隙被沉积过多的SnO2所填满,甚至在电极的表面发生大量团聚和堆积,使得电极丧失铜纳米棒这一纳米结构所带来的优点,造成电池的电化学性能下降。
     4)对铜纳米棒集流体纳米SnO2电极、平面铜箔集流体电沉积SnO2纳米薄膜电极、以及平面铜箔集流体商购SnO2纳米粉末电极等三种不同结构形式的纳米电极的电性能进行了对比研究的结果表明,铜纳米棒集流体纳米SnO2电极与其它两种电极相比,其放电比容量要大得多,大倍率下的比容量优势更加明显。铜纳米棒集流体纳米SnO2电极经多次大倍率充放电循环后的表观形貌变化不大,没有出现裂痕或原有裂痕扩大的现象,显示出良好的结构稳定性以及优良的循环可逆性能。
Due to the outstanding advantages such as low Li+intercalation voltage, high capacityintensity, excellent safety, rich resource and low cost, SnO2is considered to be an attractivesubstitute of carbon negative materials for Li-ion batteries. However, the main obstacles forthe industrialization of SnO2as negative material are its drawbacks: relatively low cyclingreversibility, poor rate capability and low power density, which makes it can’t fulfill therequirement of Li-ion batteries for electric vehicles. To overcome those drawbacks of SnO2, Itried two ways:1) electrodeposited SnO2on planar Cu foils to fabricate SnO2nano-filmnegative electrodes,2) electrodeposited Cu nanorods on planar Cu foils to obtain, thenelectrodeposited SnO2nano particles around Cu nanorods to fabricate nano-structured SnO2negative electrodes based on Cu nanorods current collectors. A systematic and detailed studyon the fabricated nano SnO2negative electrodes has been carried out. Main research resultsare listed as below:
     1) Arrays of Cu nanorod were fabricated by cathodic electrodeposition inside thenanopores of anodized alumina oxide (AAO) templates. Three electrolyte systemswere tested and compared. Two of them were acid copper sulfate based solutions,including conventional solution A and high-throw solution B. The third one wasalkaline solution. The influence of electrodeposition conditions, such aspredeposition polishing, deposition voltage, and deposition duration, on theaggregation and Cu nanorod arrays were investigated in detail. It was found thatcareful mechanical polishing effectively reduced the surface roughness of Cucathodes and avoided the formation of continuous Cu layer. Properties of electrolytesand form of copper ions in the electrolytes greatly affected the uniformity ofdeposited Cu nanorods. Nanorods electrodeposited in electrolyte B with the highestH2SO4concentration demonstrated the worst uniformity, while the most uniformnanorods were fabricated in alkaline electrolyte C. Using the weight gain per unitarea of cathode as a direct measure of average length of deposited Cu nanorods andby controlling the weight gain to be in the range of1.2~1.4mg/cm2, free-standingCu nanorod arrays have been successfully obtained by electrodeposition inelectrolyte A and C.
     2) Pure SnO2films were successfully fabricated on Cu substrates by one-step cathodicelectrodeposition without the pretreatment of electrolytes. Electrodepositionparameters, such as the concentration of HNO3, aging of the electrolyte, thedeposition voltage, and temperature, were demonstrated to be critical to eliminate theco-deposition of Sn. It was found that the ratio of the concentration of HNO3to SnCl4, aging of the electrolytes, the electrodeposition temperature, and the depositionvoltage were important parameters impacting both the morphology and the phase ofthe deposits. By carefully controlling these processing conditions, dense SnO2filmswith good adherence to the Cu substrate were successfully obtained. The electrodesloaded with SnO2films were annealed, then fabricated into coin cells. The cellstesting results showed that their electrochemical properties were not improvedcompared to the electrode without annealing.
     3) To fabricate nano-structured SnO2electrodes based on Cu nanorods currentcollectors, we prepared Cu current collectors loaded with Cu nanorod arrays, thenload SnO2active materials on the Cu nanorod arrays by catholic potentiostaticdeposition technique. It was found that electrodes prepared under85℃electrodeposition temperature and0.4V electrodeposition voltage had the bestelectrochemical properties, and their morphology were rather different from that ofelectrodes prepared under other electrodeposition conditions. Besides, the weightgain of SnO2on per unit area of Cu nanorods current collectors should be carefullycontrolled to avoid that the space between Cu nanorods are fully occupied by SnO2particles, thus lose the advantages brought by nano structure and worsen theelectrochemical properties of fabricated cells.
     4) Electrochemical properties of three types of nano electrodes were tested andcompared: SnO2electrodes based on Cu nanorods current collectors, SnO2electrodesbased on planar Cu current collectors and nano-powder SnO2electrodes based onplanar Cu current collectors. The results showed that the discharging specificcapacity of SnO2electrodes based on Cu nanorods current collectors was muchhigher than that of other two types of electrodes, especially under high dischargingrate. The morphology of SnO2electrodes based on Cu nanorods current collectorshad minor changes after many cycles, and no crackles were found. This kind ofnano-structured electrodes showed excellent structure stability and cyclingperformance.
引文
[1]. Duncan H. Gregory. Lithium nitrides as sustainable energy materials [J]. TheChemical Record,2008,8:229-239.
    [2].李歆.超级电容器综述[J].中国电子商情,2009,11:52-54.
    [3].刘丰峰,卢玫.质子交换膜燃料电池进展[J].通信电源技术,2009,26(2):25-28.
    [4].郭炳昆,李新海,杨松青.化学电源[M].长沙:中南工业大学出版社,2000.
    [5].马松艳,赵东江.二次电池的原理与制造技术[M].哈尔滨:黑龙江教育出版社,2006.
    [6]. http://www.reportlinker.com/p0109232/Advanced-Rechargeable-Battery-Market-Emerging-Technologies-and-Trends-Worldwide.html
    [7]. J. M. Tarascon, M. Armand. Issues and challenges facing rechargeable lithiumbatteries [J]. Nature,2001,414:359-367.
    [8].黄彦瑜.锂离子电池发展简史[J].物理,2007,8:643-651.
    [9]. Arun Patil, Vaishali Patil, Dong Wook Shin, et al. Issue and challenges facingrechargeable thin film lithium batteries [J]. Materials Research Bulletin,2008,43:1913–1942.
    [10] Jung-Ho Wee. A feasibility study on direct methanol fuel cells for laptopcomputers based on a cost comparison with lithium-ion batteries [J]. J. PowerSources,2007,173:424–436.
    [11]王翀,陈嘉嘉,郑明森等.化学电源研究展望-美国电化学会第213次会议评述[J].电池,2008,38(5),297.
    [12] David Linden, Thomas B. Reddy. Handbook of batteries(3rdedition)[M]. NewYork: The McGraw-Hill Companies, Inc.,2002.
    [13]王贺武.实现交通领域节能减排,电动汽车大有作为[A].中国电子报,2008年7月15日.
    [14]李克强.汽车技术的发展动向及我国的对策[J].汽车工程,2009,31(11):1005-1015.
    [15]陈清泰,吴敬琏,高世楫等.电动汽车:我国汽车产业升级与跨越的突破口[J].发展研究,2009,4:4-8.
    [16]周鹤良.前景广阔的新能源汽车产业[J].电气技术,2009,5:1-4.
    [17]王刘芳.奇瑞S18纯电动汽车下线[A].北京日报,2009年2月21日.
    [18] http://news.xinhuanet.com/auto/2008-12/15/content_10493938.htm
    [19] Idaho National Engineering Laboratory.Partnership of new generation vehiclebattery test manual,Revision3[R].US:Department of Energy,DOE,2001.
    [20]毕道治.大容量高功率锂离子电池研究进展[J].电池工业,2008,13(2):11-119.
    [21]钟海燕,胡伟,张骞等.锂离子电池安全性研究现状[J].上海有色金属,2009,9:125-128.
    [22] http://www.kyocera-wireless.com/news/20041028_2.
    [23] Tullo, Alex. Dell recalls lithium batteries [J]. Chemical and Engineering News,2006,8:11.
    [24] http://batteryreplacement.nokia.com/batteryreplacement/en/.
    [25] http://zh.wikipedia.org/.
    [26]陈宗海,秦燕.动力锂电池的研发现状-第一届动力锂电池国际会议评述[J].电池,2008,38(5):294-296.
    [27]查全性.试论高比能量电池进展[J].物理,1998,27(10):592-598.
    [28] Bruno Scrosati. Recent advances in lithium ion battery materials [J].Electrochimica Acta,2000,45:2461–2466.
    [29]颜剑;苏玉长;苏继桃等.锂离子电池负极材料的研究进展[J].电池工业,2006,4:277-281.
    [30] Peter G. Bruce, Bruno Scrosati, Jean-Mari Tarascon. Nanomaterials forrechargeable lithium batteries [J]. Angew. Chem. Int. Ed.,2008,47:2930-2946.
    [31] Junrong Li, Zilong Tang, Zhongtai Zhang. H-titanate nanotube: a novel lithiumintercalation host with large capacity and high rate capability [J]. ElectrochemistryCommunications,2005,7:62–67.
    [32] Peter G. Bruce. Solid-state chemistry of lithium power sources [J]. Chem.Commun.,1997,19:1817-1824.
    [33] F. Jiao, P. G. Bruce. Mesoporous crystalline-MnO2-a reversible positiveelectrode for rechargeable lithium batteries [J]. Advanced Materials,2007,19:657-660.
    [34] Antonino Salvatore Aricò, Peter Bruce, Bruno Scrosati, et al. Nanostructuredmaterials for advanced energy conversion and storage devices [J]. AdvancedMaterials,2005,4:366-377.
    [35] P. Balaya, A.J. Bhattacharyya, J. Jamnik, et al. Nano-ionics in the context oflithium batteries [J]. J. Power Sources,2006,159:171–178.
    [36] Nonglak Meethong, Hsiao-Ying Shadow Huang, W. Craig Carter, et al.Size-dependent lithium miscibility gap in nanoscale Li1xFePO4[J].Electrochemical and Solid-State Letters,2007,10: A134-A138.
    [37]林晓园,陈立宝,唐开枚等.锂离子电池纳米正极材料的现状及问题[J].电池,2009,39(4):229-232.
    [38]梁风,戴永年,易惠华等.纳米级锂离子电池正极材料LiFePO4[J].化学进展,2008,20(10):1606-1611.
    [39] H. Huang, S.-C. Yin, L. F. Nazar. Approaching theoretical capacity of LiFePO4at room temperature at high rates [J]. Electrochemical and Solid-State Letters,2001,4: A170-A172.
    [40] C. Delacourt, P. Poizot, S. Levasseur, et al. Size effects on carbon-free LiFePO4powders the key to superior energy density [J]. Electrochemical and Solid-StateLetters,2006,9: A352-A355.
    [41] A. Ravet, Y. Chouinard, J. F. Magana, et al. Electroactivity of natural of sythentictriphylite [J]. J. Power Sources,2001,97:503-507.
    [42]唐开枚,陈立宝,林晓园等.锂离子电池正极材料纳米LiFePO4[J].纳米材料与结构,2009,46(2):84-90.
    [43] Alastair D. Robertson, A. Robert Armstrong, Peter G. Bruce. LayeredLixMn1-yCoyO2intercalation electrodes influence of ion exchange on capacity andstructure upon cycling [J]. Chem. Mater.,2001,13:2380-2386.
    [44] Peter G. Bruce, A. Robert Armstrong, Robert L. Gitzendanner. New intercalationcompounds for lithium batteries: layered LiMn2O4[J]. J. Mater. Chem.,1991,9:193-198.
    [45] Y. Shao-Horn, S. A. Hackney, A. R. Armstrong et al. Structural characterizationof layered LiMn2O4electrodes by electron diffraction and lattice imaging [J]. J.Electrochemical Society,1999,146:2404-2412.
    [46] Haifeng Wang, Young Jang, Yet-Ming Chiang. Origin of cycling stability inmonoclinic-and orthorhombic-phase lithium manganese oxide cathodes [J].Electrochemical and Solid-State Letters,1999,2:490-493.
    [47] Sun-Ho Kang, John B. Goodenough, Llewellyn K. Rabenberg. Effect of ballmilling on3-V capacity of lithium manganese oxospinel cathodes [J]. Chem.Mater.,2001,13:1758-1764.
    [48] Sara Nordlinder, Leif Nyholm, Torbjrn Gustafsson et al. Lithium insertion intovanadium oxide nanotubes: electrochemical and structural aspects [J]. Chem.Mater.,2006,18:495-503.
    [49] Feng Jiao, Kuthanapillil Mani Shaju, Peter G. Bruce. Synthesis of nanowire andmesoporous low-temperature LiCoO2by a post-templating reaction [J].Angewandte Chemie International Edition,2005,44:6550-6553.
    [50] Yingke Zhou, Hulin Li. Sol–gel template synthesis and structural properties of ahighly ordered LiNi0.5Mn0.5O2nanowire array [J]. J. Mater. Chem.,2002,12:681–686.
    [51]李丽坤,魏小兰,章浩.介孔材料离子导电性的研究[J].化学进展,2009,21(4):765-770.
    [52] Yu-Guo Guo, Jin-Song Hu, Li-Jun Wan. Nanostructured materials forelectrochemical energy conversion and storage devices [J]. Advanced Materials,2008,20(15):2878–2887.
    [53]王爱荣,吴广明,房兴等.五氧化二钒气凝胶阴极材料的研究进展[J].材料导报,2006,20(11):14-22.
    [54]张明霞,吴广明,孙娟等.过氧化法常压干燥制备的V2O5气凝胶的性能探究[J].材料导报,2009,23(8):102-105.
    [55]向汝明.硕士学位论文[D].合肥:合肥工业大学,2007.
    [56] Guangli Che, Kshama B. Jirage, Ellen R. Fisher et al. Chemical-vapordeposition-based template synthesis of microtubular TiS2battery electrodes [J]. J.Electrochem. Soc.,1997,144:4396-4302.
    [57] P. L. Taberna, S. Mitra, P. Poizot et al. High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications [J]. NatureMaterials,2006,5:567-573.
    [58] Jusef Hassoun, Stefania Panero, Patrice Simon et al. High-Rate, long-Life Ni–Snnanostructured electrodes for lithium-ion batteries [J]. Advanced Materials,2007,19:1632-1635.
    [59] Claire Villevieille, Florent Robert, Peter Louis Taberna et al. The good reactivityof lithium with nanostructured copper phosphide [J]. J. Materials Chemistry,2008,18,5956–5960.
    [60] A. Meitav, E. Peled. Solid electrolyte interphase (SEI) electrode [J]. J.Electroehem. Soc.,1981,128:825-831.
    [61] Rosamara Fong, Ulrich yon Sacken, J. R. Dahn. Studies of lithium intercalationinto carbons using nonaqueous electrochemical cells [J]. J. Electroehem. Soc.,1990,137:2009-2013.
    [62] R. Kanno, Y. Kawamoto. Carbon fiber as a negative electrode in lithiumsecondary cells [J]. J. Electroehem. Soc.,1992,139:3397-3404.
    [63]陈昌国,陈佳,谭燕秋等.锂离子电池炭极材料结构的研究进展[J].无机材料学报,2003,18(6):1153-1157.
    [64] P. Reale, S. Panero, B. Scrosatia et al. A safe, low-cost, and sustainablelithium-ion polymer battery [J]. J. Electrochemical Society,2004,151:A2138-A2142.
    [65] Scott R. Morris, Brian G. Dixo n, Thomas Gennett et al. High-energy,rechargeable Li-ion battery based on carbon nanotube technology [J]. J. powerSources,2004,138:277-280.
    [66] Zhen Zhou, Jijun Zhao, Xueping Gao et al. Do composite single-wallednanotubes have enhanced capability for lithium storage?[J]. Chem. Mater.,2005,17:992-1000.
    [67] Robert A. Armstrong, Graham Armstrong, J esús Canales et al. TiO2-BNanowires [J]. Angewandte Chemie International Edition,2004,43,2286-2288.
    [68] A. R. Armstrong, G. Armstrong, J. Canales et al. Lithium-Ion Intercalation intoTiO2-B Nanowires [J]. Advanced Materials,2005,17:862-865.
    [69] Graham Armstrong, A. Robert Armstrong, Jesús Canales et al. Nanotubes with theTiO2-B structure [J]. Chem. Commun.,2005:2454–2456.
    [70] Min-Sik Park, Guo-Xiu Wang, Yong-Mook Kang et al. Preparation andelectrochemical properties of SnO2nanowires for application in lithium-ionbatteries [J]. Angewandte Chemie International Edition,2007,119:764-767.
    [71] Candace K. Chan, Hailin Peng, Ray D. Twesten et al. Fast, completely reversibleLi insertion in vanadium pentoxide nanoribbons [J]. Nano Lett.,2007,7:490–495.
    [72] Ki Tae Nam, Dong-Wan Kim, Pil J. Yoo et al. Virus-enabled synthesis andassembly of nanowires for lithium ion battery electrodes [J]. Science,2007,312:885.
    [73]饶睦敏,黄启明,李伟善.锂离子电池纳米负极材料的研究进展[J].电池工业,2008,13(2):132-136.
    [74]王洪波,周艳红,陶占良等.锂离子电池硅基负极材料研究进展[J].电源技术,2009,33(11):1029-1032.
    [75]赵灵智,胡社军.溅射功率对Sn薄膜负极材料循环性能的影响[J].电源技术,2009,33(7):541-542.
    [76]谭春林,吕东升,李伟善等.电沉积锡镍合金作为锂离子电池负极的研究[J].稀有金属材料与工程,2008,37(3):473-475.
    [77] J. Hassoun, S. Panero, B. Scrosati. Electrodeposited Ni–Sn intermetallicelectrodes for advanced lithium ion batteries [J]. J. Power Sources,2006,160:1336–1341.
    [78]陈立宝.博士学位论文[D].上海:中国科学院研究生院(上海微系统与信息技术研究所),2007.
    [79] W. van Schalkwijk, B. Scrosati. Advances in lithium-ion batteries [M]. NewYork: Kluwer Academic/Plenum,2002.
    [80]马荣骏.锂离子电池负极材料的研究及应用进展[J].有色金属,2008,60:38-45.
    [81] M.Endo, C. Kim, K. Nishimura, et al. Recent development of carbon materialsfor Li ion batteries[J]. Carbon,2000,38:183-197.
    [82]谭春林,卢雷,李伟善.锂离子电池合金负极的研究进展[J].电池工业,2007,12(2):135-139.
    [83]关云山,张爱华,李晓昆.锂离子二次电池合金负极材料的研究进展[J].化学世界,2007,11:689-693.
    [84]李冬梅,孙振辉,万齐欣等.锂离子电池的关键材料及其发展[J].江西科学,2008,26(4):584-587.
    [85] T. Nagaura, K. Tozawa. Lithium ion rechargeable battery [J]. Prog. BatteriesSolar cells,1990,9:209.
    [86]赵灵智.锂离子电池概述及负极材料研究进展[J].广东化工,2009,36:106-108.
    [87]覃韬,林起浪,郑敏枝.锂离子电池炭负极材料结构及嵌锂机理研究进展[J].材料导报,2009,23(3):34-37.
    [88] Alberto Varzi, Corina T ubert, Margret Wohlfahrt-Mehrens, et al. Study of carbonnanotubes for lithium-ion batteries application [J]. Advances in Science andTechnology,2010,72:299-304.
    [89]屈伟平.锂离子蓄电池的广阔前景及发展障碍[J].新能源汽车,2009,26(2):40-43.
    [90]袁万颂,田彦文,刘国强.锂离子电池锡基负极材料的研究进展[J].稀有金属与硬质合金,2009,37(4):53-57.
    [91]黄峰,张勇福,魏猛.Cu-Sn合金共还原法制备及电化学性能研究[J].武汉科技大学学报,2009,32(3):259-263.
    [92] M. Wachtler, O. Besenhard. Tin and tin-based intermetallics as new anodematerials for lithium-ion cells [J]. J. Power Sources,2001,94:189-193.
    [93] T. Noriyuki, O. Ryuji, F. Masahisa, et al. Study on the anode behavior of Sn andSn-C alloy thin-film electrode [J]. J. Power Sources,2002,107:48-55.
    [94] Noriyuki Tamura, Ryuji Ohshita, Masahisa Fujimoto, et al. Advanced structuresin electrodeposited tin base negative electrodes for lithium secondary batteries [J].J. Electrochem. Soc.,2003,150(6): A679-A683.
    [95] Fu-Sheng Ke, Ling Huang, Jin-Shu Cai, et al. Electroplating synthesis andelectrochemical properties of macroporous Sn-Cu alloy electrode for lithium-ionbatteries [J]. Electrochimi Acta,2007,52(24),6741-6747.
    [96]王璞,努丽燕娜,杨军.锂离子电池中高容量Si-Cu/C复合负极材料的制备与性能研究[J].稀有金属,2007,31(1):63-66.
    [97]张涛.博士学位论文[D].上海:复旦大学,2007.
    [98]赵灵智,胡社军,田琴.溅射功率对Sb薄膜负极材料循环性能的影响[J].电源技术,2009,33(8):652-654.
    [99]蒋小兵,赵新兵,张丽等.MSb2型金属间化合物作为锂离子电池负极材料的研究[J].材料科学与工程,2001,19(1):60-62.
    [100]陈敬波,胡国荣,彭忠东等.锂离子电池氧化物负极材料研究进展[J].电池,2003,33(3):183-186.
    [101] R. Zhang, J. Y. Lee, Z. Liu. Pechini p rocess-derived tin oxide and tin oxide–graphite composites for lithium-ion batteries [J]. J. Power Sources,2002,112(2):596-605.
    [102] Tao Wang, Zhuona Ma, Fan Xu, et al. The one-step preparation andelectrochemical characteristics of tin dioxide nanocrystalline materials[J].Electrochem. Commun.,2003,5(7):599-602.
    [103] S. Ng, D. Santos, S. Chew, et al. Polyol-mediated synthesis of ultrafine tinoxide nanoparticles for reversible Li–ion storage[J]. Electrochem. Commun.,2007,9(5):915-919.
    [104] A. Odani, A. Nimberger, B. Markovsky, et al. Development and testing ofnanomaterials for rechargeable lithium batteries[J]. J. Power Sources,2003,119-121(1):517-521.
    [105] H. Uchiyama, E. Hosono, I. Honma, et al. A nanoscale meshed electrode ofsingle–crystalline SnO for lithium-ion rechargeable batteries[J]. Electrochem.Commun.,2008,10:51-55.
    [106]黄峰,周运鸿,袁正勇等.锂离子电池锡负极材料研究进展[J].电池,2002,32(5):298-300.
    [107]黄峰,周运鸿,袁正勇等.纳米SnO2和SnO的制备及其电化学性能[J].电池,2005,35(6):417–419.
    [108]张颖,张海芳,韩恩山.锂离子电池氧化物负极材料的研究进展[J].无机盐工业,2009,41(1):1-4.
    [109]阿荣,王明东,姚宏林.锂离子电池氧化物负极材料的研究进展[J].化工新型材料,2008,36(10):48-50.
    [110] Y. M. Kang, K. T. Kim, J. H. Kim, et al. Electrochemical properties of Co3O4,Ni-Co3O4mixture and Ni-Co3O4composite as anode materials for Li ionsecondary batteries [J]. J. Power Sources,2004,133(2):252-259.
    [111] Han-Chang Liu, Shiow-Kang Yen. Characterization of electrolytic Co3O4thinfilms as anodes for lithium-ion batteries [J]. J. Power Sources,2007,166(2):478-484.
    [112] J. Morales, L. Sanchez, F. Martin, et al. Nanostructured CuO thin film electrodesprepared by spray pyrolysisa simple method for enhancing the electrochemicalperformance of CuO in lithium cells [J]. Electrochim. Acta,2004,49(26):4589-4597.
    [113] A. Guerfi, S. Sevigny, M. Lagace, et al. Nano-particle Li4Ti5O12spinel aselectrode for electrochemical generators [J]. J. Power Sources,2003,119-121(1):88-94.
    [114] A. Guerfi, P. Charest, K. Kinoshita, et al. Nano electronically conductivetitanium-spinel as lithium ion storagenegative electrode[J]. J. Power Sources,2004,126(1/2):163-168.
    [115] Fu Zhou, Xiaomin Ni, Yongfeng Zhang, et al. Size–controlled synthesis andelectrochemical characterization of spherical CeO2crystallites[J]. Journal ofColloid and Interface Science,2007,307(1):135-138.
    [1] Ji Hyun Min, Boo Hyun An, Ji Ung Cho, et al. Effects of Cu doping on themicrostructure and magnetic properties of CoPt nanowires [J]. Journal of appliedphysics,2007,101:09K513.
    [2] J. L. Duvail, S. Dubois, L. Piraux, et al. Electrodeposition of patterned magneticnanostructures [J]. Journal of applied physics,1998,84:6359-6365.
    [3] Michael E. Walsh, Yaowu Hao, C. A. Ross, et al. Optimization of a lithographic andion beam etching process for nanostructuring magnetoresistive thin film stacks [J].J. Vac. Sci. Technol. B,2000,18:3539-3543.
    [4] Genaro A. Gelves, Uttandaraman Sundararaj, Joel A. Haber. Electrostaticallydissipative polystyrene nanocomposites containing copper nanowires [J].Macromolecular Rapid Communications,2005,26:1677-1681.
    [5] Xue-Liang Zhai, Mi-Ying Jia, Yu-Shuang Shen. Structure and properties ofNi/Sepiolite catalyst [J]. Chinese Journal of Chemistry,2005,23:557-561.
    [6] P. L. Taberna, S. Mitra, P. Poizot, et al. High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications [J]. NatureMaterials,2006,5:567-573.
    [7] Huanan Duan, Joe Gnanaraj, Xiangping Chen el al. Fabrication andcharacterization of Fe3O4-based Cu nanostrutured electrode for Li-ion battery [J].Journal of Power Sources,2008,185:512-518.
    [8] Genaro A. Gelves, Zakari T. M. Murakami, Matthew J. Krantz,et al. Multigramsynthesis of copper nanowires using ac electrodeposition into porous aluminiumoxide templates [J]. J. Mater. Chem.,2006,16:3075–3083.
    [9] I. Lombardi, L. Magagnin, P. L. Cavallotti, et al. Electrochemical fabrication ofsupported Ni nanostructures through transferred porous anodic alumina mask [J].Electrochem. Solid-State Lett.,2006,9: D13-D16.
    [10] P. R. Evans, W. R. Hendren, R. Atkinson, et al. Nickel-coated gold-corenanorods produced by template assisted electrodeposition [J]. J. Electrochem.Soc.,2007,154: K79-K82.
    [11] Jaya Sarkar, G. Khan, A. Basumallick. Nanowires: properties, applications andsynthesis via porous anodic aluminium oxide template [J]. Bulletin of MaterialsScience,2007,30:271-290.
    [12] Liang, J., Chik, H., Xu J.. Nonlithographic fabrication of lateral superlattices fornanometric electromagnetic-optic applications [J]. Ieee Jounal of Selected Topicsin Quantum Electronics,2002,8:998–1008.
    [13] L.L. Barbosa, M.R.H. de Almeida, R.M. Carlos, et al. Study and development ofan alkaline bath for copper deposition containing sorbitol as complexing agentand morphological characterization of the copper film [J]. Surface and CoatingsTechnology,2005,192:145-153.
    [14] Schlesinger M, Paunovic M. Modern Electroplating[M].(New York: Wiley),2000:61-120.
    [15] http://www.bioxys.com/i_Whatman/anopore_inorganic_membranes.htm l
    [16]查全性.电极过程动力学导论(第三版)[M].北京:科学出版社,2002. P77.
    [17] Xiangping Chen, Huanan Duan, Zhentao Zhou et al. Fabrication of free-standingCu nanorod arrays on Cu disc by template-assisted electrodeposition [J].Nanotechnology,2008,19:365306.
    [1] A. Tischner, T. Maier, C. Stepper, et al. Ultrathin SnO2gas sensors fabricated byspray pyrolysis for the detection of humidity and carbon monoxide [J]. Sensors andActuators B: Chemical,2008,134:796-802.
    [2] M. A. L. Pinheiro, T. F. Pineiz, E. A. Morais et al. Schottky emission innanoscopically crystallized Ce-doped SnO2thin films deposited bysol-gel-dip-coating [J]. Thin Solid Films,2008,517:976-981.
    [3] J. H. Im, J. H. Lee, D. W. Park. Synthesis of nano-sized tin oxide powder by argonplasma jet at atmospheric pressure [J]. Surface and Coating Technology,2008,202:5471-5475.
    [4] L.C. Tien, D.P. Norton, J.D. Budai. Epitaxial growth of transparent tin oxide filmson (001) sapphire by pulsed laser deposition [J]. Materials Research Bulletin,2009,44:6-10.
    [5] S.T. Chang, I. C. Liao, J. H. Yen et al. Electrochemical behavior of nanocrystallinetin oxide electrodeposited on a Cu substrate for Li-ion batteries [J]. J. Mater.Chem.,2004,14:1821-1826.
    [6] X.S. Peng, G.S. Wu, P. Holt-Hindle et al. Growth and characterization offree-standing single crystalline tin and tin oxide nanobelts [J]. Mater. Lett.,2008,62:1969-1972.
    [7] C.Y. Kuo, K.H. Huang, S.Y. Lu. Fabrication of synthetic opals composed ofmesoporous SnO2spheres with an anodization-assisted double template process [J].Electrochem. Commun.,2007,9:2867-2870.
    [8]张祖训.超微电极电化学[M].第一版,北京:科学出版社,1998.8-10.
    [9] Sophie Peulon, Daniel Lincot. Cathodic electrodeposition from aqueoussolution of dense or open-structured zinc oxide Films [J]. Advanced Materials,1996,8:166-170.
    [10] Masanobu Izaki. Electrolyte optimization for cathodic growth of zinc oxide films[J]. J. Electrochem. Soc.,1996,143: L53-L55.
    [11] Thierry Pauporté, Daniel Lincot. Electrodeposition of semiconductors foroptoelectronic devices: results on zinc oxide [J]. Electrochimica Acta,2000,45:3345-3353.
    [12] G. Helen Annal Therese, P. Vishnu Kamath. Electrochemical synthesis of metaloxides and hydroxides [J]. Chem. Mater.,2000,12,1195–1204.
    [13] Min Lai, José A. Gonzalez Martinez, Michael Gr tzel et al. Preparation of tindioxide nanotubes via elelctrosynthesis in a template [J]. Journal of MaterialsChemistry,2006,16:2843-2845.
    [14] Mordechay Schlesinger, Milan Paunovic. Modern Electroplating4thedition [M].New York: Wiley,2000.
    [15]曹锡章,张畹蕙,杜尧国.无机化学[M].北京:高等教育出版社,1983.
    [16] N. Khakpash, A. Simchi, P. Kohi. Gas phase synthesis of SnOxnanoparticles andcharacterization [J]. Journal of alloys and compounds,2009,470:289-293.
    [17] David M. Sherman, K. Vala Ragnarsdottir, Eric H. Oelkers et al. Speciation of tin(Sn2+and Sn4+) in aqueous Cl solutions from25°C to350°C: an in situ EXAFSstudy [J]. Chemical Geology,2000,167:169-176.
    [18] S. S. Nikulin, I. N. Akatova, N. A. Kondrat'eva. Recovery of butadiene-styrenerubber from latex at low temperature with various coagulants [J]. Russian Journalof Applied Chemistry,2003,76:652-655.
    [19] Sumio Sakka, Hiromitsu Kozuka. Handbook of sol-gel science and technology[M]: processing, characterization and applications, V. I-Sol-gel processing,Springer,2005:115.
    [20] James Lingane. Polarographic behavior of chloro and bromo complexes ofstannic tin [J]. J. Am. Chem. Soc.,1945,67:919–922.
    [21] A.C.A. de Vooys, R.A. van Santen, J.A.R. van Veen. Electrocatalytic reductionof NO3-on palladium/copper electrodes [J]. Journal of Molecular Catalysis A:Chemical,2000,154:203–215.
    [22] G.E. Dima, A.C.A. de Vooys, M.T.M. Koper. Electrocatalytic reduction of nitrateat low concentration on coinage and transition-metal electrodes in acid solutions[J]. Journal of Electroanalytical Chemistry,2003,554-555:15-23.
    [23] Albin Pintar, Jurka Batista, Janez Levee et al. Kinetics of the catalyticliquid-phase hydrogenation of aqueous nitrate solutions [J]. Applied Catalysis B:Environmental,1996,11:81-98.
    [24] I. Langmuir. The constitution and fundamental properties of solids and liquids.Part1Solids [J]. Journal of the American Chemical Society,1916,38:2221-2295.
    [25] Chi-Chang Hu, Chun-Kou Wang, Gen-Lan Lee. Composition control of tin–zincdeposits using experimental strategies [J]. Electrochimica Acta,2006,51:3692–3698.
    [26]陈逸民,付延鲍,马晓华等.热处理温度对纳米SnO2与石墨复合材料电化学性能的影响[J].复旦学报,2009,48:523-525.
    [27] P. L. Taberna, S. MitraI, P. Poizot et al. High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications [J]. NatureMaterials,2006,5:567-573.
    [1]陈敬波,胡国荣,彭忠东等.锂离子电池氧化物负极材料研究进展[J].电池,2003,33(3):183-186.
    [2] R. Zhang, J. Y. Lee, Z. Liu. Pechini p rocess-derived tin oxide and tin oxide–graphite composites for lithium-ion batteries [J]. J. Power Sources,2002,112(2):596-605.
    [3] Tao Wang, Zhuona Ma, Fan Xu, et al. The one-step preparation andelectrochemical characteristics of tin dioxide nanocrystalline materials[J].Electrochem. Commun.,2003,5(7):599-602.
    [4] S. Ng, D. Santos, S. Chew, et al. Polyol-mediated synthesis of ultrafine tinoxide nanoparticles for reversible Li–ion storage[J]. Electrochem. Commun.,2007,9(5):915-919.
    [5] A. Odani, A. Nimberger, B. Markovsky, et al. Development and testing ofnanomaterials for rechargeable lithium batteries[J]. J. Power Sources,2003,119-121(1):517-521.
    [6]黄峰,周运鸿,袁正勇等.锂离子电池锡负极材料研究进展[J].电池,2002,32(5):298-300.
    [7]黄峰,周运鸿,袁正勇等.纳米SnO2和SnO的制备及其电化学性能[J].电池,2005,35(6):417–419.
    [8] Tomonobu Tsujikawa, Toshiro Hirai. Effect of cathode active materials producedby a wet-type jet mill on lithium cell performance [J]. Journal of Power Sources,2009,192:679–683.
    [9] P. L. Taberna, S. MitraI, P. Poizot et al. High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications [J]. NatureMaterials,2006,5:567-573.
    [10]曹锡章,张畹蕙,杜尧国.无机化学[M].北京:高等教育出版社,1983.
    [11]陈敬中.现代晶体化学[M].北京:高等教育出版社,2001.
    [12]唐致远,阮艳莉,宋全生,卢星河.橄榄石LiFePO4复合正极材料的合成及其电化学性能研究[J].高等化学学报,2005,26:1905-1908.
    [13] H. Duan, J. Gnanaraj, X. Chen. Fabrication and characterization of Fe3O4-basedCu nanostructured electrode for Li-ion battery. J. Power Sources,2008,185:512-518.
    [14]周琦.材料科学基础[M].重庆:重庆大学出版社,2009.
    [15]查全性.电极过程动力学导论(第三版).北京:科学出版社,2002.
    [1] Guangli Che, Kshama B. Jirage, Ellen R. Fisher et al. Chemical-vapordeposition-based template synthesis of microtubular TiS2battery electrodes [J]. J.Electrochem. Soc.,1997,144:4396-4302.
    [2] P. L. Taberna, S. Mitra, P. Poizot et al. High rate capabilities Fe3O4-based Cunano-architectured electrodes for lithium-ion battery applications [J]. NatureMaterials,2006,5:567-573.
    [3] Jusef Hassoun, Stefania Panero, Patrice Simon et al. High-Rate, long-Life Ni–Snnanostructured electrodes for lithium-ion batteries [J]. Advanced Materials,2007,19:1632-1635.
    [4] Claire Villevieille, Florent Robert, Peter Louis Taberna et al. The good reactivityof lithium with nanostructured copper phosphide [J]. J. Materials Chemistry,2008,18,5956–5960.
    [5] H. Duan, J. Gnanaraj, X. Chen. Fabrication and characterization of Fe3O4-basedCu nanostructured electrode for Li-ion battery. J. Power Sources,2008,185:512-518.
    [6]宋怀河,杨树斌,陈晓红.影响锂离子电池高倍率充放电性能的因素.电源技术,2009,133(6):443-448.
    [7] Z. Chen, X. Xing, W. Yuan, et al. Thermodynamic properties of LaCrO3.Raremetals,2006,25(5):562-565.
    [8]曹锡章,张畹蕙,杜尧国.无机化学[M].北京:高等教育出版社,1983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700