用户名: 密码: 验证码:
准一维半导体纳米结构中量子输运性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介观体系中的量子输运性质的研究是当前凝聚态物理的重要前沿研究方向。特别是电导量子化和热导量子化现象受到了广大科学工作者的关注,这些成果在纳米尺度电子器件和热量子器件方面具有广阔的应用前景。本文针对具有重要理论意义和应用前景的介观、纳米尺度量子结构中的输运机理开展了一系列的研究,获得了一些有意义的成果:
     运用模匹配方法研究了非对称T型磁量子结构的电子输运性质。结果表明,结构因子和磁势垒都能改变电子散射模数,电子输运谱因此变得复杂而丰富,散射区域出现了完全局域态和磁边缘态。在特定的结构参数和磁场强度下,能观测到宽谷、尖峰、共振透射和共振反射等电子输运现象,即可以通过调节磁场大小和结构参数来实现波矢过滤。
     研究了双磁垒量子结构中,磁场强度和偏压大小对电子自旋极化输运的影响。结果表明:零偏压下,电子在反平行等强磁垒结构中输运不会产生自旋极化;电子传输的阈值能量随磁场强度或偏置电压的增大而增大;在一定的磁场强度和偏压大小下,比较由半导体InAs和GaAs两类材料构成的量子结构中电子输运自旋极化度,发现它们的电子输运自旋极化度都随入射能量的增大而呈振荡衰减趋势,朗德有效因子高的InAs材料比GaAs的自旋极化度高出一个数量级。运用散射矩阵方法,研究了台阶磁势垒量子结构中二维电子气的隧穿输运性质。结果表明:零偏压下,电子的自旋极化曲线随入射能量的增加而振荡衰减;随着磁台阶数的增加,电子自旋极化度最大值减小,同时自旋极化度振荡衰减也越来越慢。在偏置电压的作用下,电子自旋极化度在宽广的入射能量区出现明显的振荡增大,电子隧穿磁台阶势垒表现出更明显的自旋过滤效应。
     研究了Neumann边界条件和Dirichlet边界条件下,不连续的纳米结构中的声学声子输运性质的影响。结果表明:两种边界条件下,声学声子输运谱呈不同的输运行为,我们能观察到共振透射和禁止频带,这是由于声子模与模的耦合作用。
     研究了含侧面端子的非均匀量子线的声子热耦合效应。这里我们考虑了两种典型的边界条件,即弹性自由和硬壁边界条件。研究结果表明:在应力自由边界条件下,我们能观察到热导量子化现象,而在硬壁边界条件下,不能观察到这一现象。两侧端结构之间的耦合效应对热导的影响随边界条件的不同而不同,随着两侧端结构的距离的增加,热导呈振荡衰减现象。这一结果对热调控器件的设计提供了新的思路。
     研究了周期性调控的介电量子线的声学声子输运几率和热导。研究结果表明:周期性的散射导致了一些有趣的物理现象:(1)观察到声子谱的峰谷结构,随周期数的增加,某些深谷发展为禁止频带,而且禁带的宽度可以通过改变结构参数和周期数来控制;(2)热导依赖于周期数和结构参数,而且在周期数较少时,热导随结构参数的变化更明显。
Electronic transport and thermal transport in semiconductor quantum structures are important issues in condensed matter physics and have attracted considerable attention in recent years. Many interesting physical properties have been found in those structures such as quantized electronic conductance and thermal conductance, which are very useful properties in device application. In this thesis we present some detailed theoretical investigations on electronic transport and thermal transport in semiconductor quantum structures. The achievements made in this thesis are summaried as:
     We investigate transport properties of electrons through an asymmetric T-shaped magnetic quantum structure with the use of the mode-mathcing technique. The results show that the changes of both structural factors and magnetic field can affect the electronic scattering behavior and result in various patterns of electronic transmission. When different magnetic configurations and structural factors are applied, the transmission exhibits various patterns such as wide valley, sharp peak, resonant reflect, resonant transmission, and so on. Our results show that one may control the transmission property to design interferential quantum devices by adjusting magnetic configurations or structural parameters.
     The effects of magnetic field and bias voltage on spin polarized electron transport through a dual magnetic barriers quantum structure are investigated in this paper。The results show that: (i) the spin-polarization of electron can not be produced in the anti-parallel magnetic barriers structure at zero bias voltage; (ii) the energy threshold of electronic transmission are increase with the increases of magnetic field or bias voltage; (iii) the comparison of the electron spin polarization degree is made between the electron transport through GaAs and through InAs quantum structure, and find that though the spin polarization degree oscillation decrease with the increase of the incidence energy, the spin polarization degree of InAs is an order of magnitude higher than that of GaAs because of the higher Lande effective factor。
     By using the scattering matrix method, the properties of two-dimensional electron gas spin polarized transport through step-magnetic barriers structure at different bias voltage are investigated. The results show that the degree of spin polarization (i) is oscillation reduce if the incidence energy increase at zero bias voltage and (ii) reduce slower and the maximum of spin polarization decreases when the number of steps increase in this structure and (iii) enhance significantly in wider energy region at applied bias voltage, and more distinct spin-filtering properties are shown in the step-magnetic barriers.
     We investigate the effect of boundary conditions on acoustic phonon transport in a quantum waveguide with structural defects at low temperatures by using the scattering-matrix method. Here both Neumann and Dirichlet boundary conditions are considered. The results indicate that the transmission coefficients versus reduced phonon frequency is qualitatively different for different of boundary conditions. The stop-frequency gap and the transmission resonance can be observed for certain structural parameters due to mode-mode coupling.
     By using the scattering matrix method, we investigate the thermal conductance in a double-stub quantum wire at low temperatures. It is found that the quantum structures exhibit oscillatory decaying thermal conductance with the width between two stubs. When the stress-free boundary condition in used for the structures, thr universal quantized thermal conductance can be clearly observed. As the hard-wall boundary condition is considered, the quantized conductance can not be observed. The coupling effect between two stubs is qualitatively different for the different boundary conditions. This appears to be important for applications in devices.
     We investigate acoustic phonon transport and thermal conductance at low temperatures in a quantum wire with rectangle scatters periodically placed in the quantum channel. It is found that the transmission spectra of zero mode exhibits a series of resonant peaks-valleys structures, and the transport valley gradually develop into stop-frequency gap with increasing the number of the period. The number of resonant peaks or valleys between two nearest gaps is just twice as large as the number of the period. The result also indicates that the thermal conductance is sensitive to the number of the period and structural parameters, and the change is more pronounced in the structure with smaller number of period.
引文
[1] Kelly M. J. and Weisbuch C., The Physics and Fabrication of Microstructures, Berlin, Springer-Verlag, 1988.
    [2] Heinrich H., Bauer G. and Kuchar F., Physics and Technology of Submicron Structures, Berlin, Springer-Verlag, 1988.
    [3] Cho A. Y., Panish M, hayashi I. Molecular beam epitaxy of GaAs, AlxGa1-xAs and GaP. Proc. Symp. GaAs and Related Compounds, 1970, 2:18
    [4] Cho A. Y., Molecular beam epitaxy. America Institute of Physics, 1994, 1-70
    [5] Birringer R., Gleiter H., Klein H P., et al. Nanocrystalline materials an approach to a novel solid structure with gas-like disorder? Physics Letters A, 1984, 102:365-369.
    [6] 夏建白. 现代半导体物理. 北京:北京大学出版社,2000.
    [7] Esaki L, Tsu R. Supperlattice and negative differential conductivity in semiconductors. IBM J. Res. Devel., 1970, 14:61-65
    [8] 夏建白和朱邦芬著;黄昆审订. 半导体超晶格物理. 上海:上海科学技术出版社,1995:1-14,207-276
    [9] 康昌鹳和杨树人 . 半导体超晶格材料及应用 . 北京:国防工业出版社,1995:1-20
    [10] 严守胜,甘子钊. 介观物理. 北京:北京大学出版社,1995:214-275
    [11] Weisbuch C., Miller R. C., Dingle R., et al. Intrinsic radiative recombination from quantum states in GaAs-AlxGa1-xAs multi-quantum well structures. Solid State Commun., 1981, 37:219-222
    [12] Wood T. H., Burrus C. A., Miller D. A., et al. High-speed optical modulation with GaAs/GaAlAs quantum wells in a p-i-n diode structure. Appl. Phys. Lett., 1983, 44:16-18
    [13] 杜磊,庄弈琪 纳米电子学 北京:电子工业出版社,2004:152-164
    [14] Dingle R, Wiegmann W, Henry C H. Quantum states of confined carriers in very thin AlxGa1-xAs-GaAs-AlxGa1-xAs heterostructures. Phys. Rev. Lett., 1974, 33: 827- 830
    [15] Dingle R, Gossard A C, Wiegmann W. Direct observation of superlattice formation in a semiconductor heterostructure. Phys. Rev. Lett., 1975, 34: 1327-1330
    [16] Sai-Halasz G A, Esaki L. InAs-GaSb superlattice energy structure and its semiconductor-semimetal transition. Phys. Rev. B, 1978, 18: 2812-2818
    [17] Schulman J N, Chang Y C. Band mixing in semiconductor superlattice. Phys. Rev. B, 1985, 31: 2056-2068
    [18] 郑厚植. 人工物性裁剪. 长沙:湖南科学技术出版社,1997:1-25
    [19] Levine B F, Choi K K, Bethea C G, et al. New 10μm infrared detector using intersubband absorption in resonant tunneling GaAlAs superlattices. Appl. Phys. Lett., 1987, 50:1092-1094
    [20] Brown E R, Goodhue W D, Sollner T C L G. Fundamental oscillations up to 200 GHz in resonant tunneling diodes and new estimates of their maximum oscillation frequency from stationary-state tunneling theory. J. Appl. Phys., 1988, 64:1519-1529
    [21] Goldman, Jun Liu and Zaslavsky A., Electron tunneling spectroscopy of a quantum anitidot in the integer quantum Hall regime. Phys. Rev. B., 2008, 77:115328-115333
    [22] Nikolaeva A, Gitsu D, Yonopko L, et al. Quantum interference of surface states in bismuth nanowires probed by the Aharonow-Bohm oscillatory behavior of the magnetoresistance. Phys. Rev. B 2008, 77:075332-075338
    [23] Wees V B J, et al. Quantized conductance of point contacts in a two-dimensional electron-gas. Phys. Rev. Lett., 1988, 60: 848-850
    [24] Wharam D A, et al. One-dimensional transport and the quantization of the ballistic resistance. J. Phys. C, 1988, 21: L209-L214
    [25] Angelescu D E, Cross M C, Roukes M L. Heat transport in mesoscopic systems. Superlatt. Microstruct., 1998, 23:673-689
    [26] Rego L G C, kirczenow G. Quantized thermal conductance of dielectric quantum wires. Phys. Rev. Lett., 1998, 81: 232-235
    [27] Schwab K, Henriksen E A, Worlock J M, et al. Measurement of the quantum of thermal conductance. Nature, 2000, 404:974-977
    [28] Aguado Ramon. Many-body effects and quantum coherence in electron transport through quantum dots, International Journal of Nanotechnology, 2005, 2: 129-143
    [29] Wei S, Liu F Q, Cao S X and Zhang J C. Local electronic density and vacancy properties for YBa2Cu3?xMxOy (M=Al, Sn) ceramic materials. Materials Letters, 1998, 35: 270-276
    [30] Lee P A and Stone A D. Universal conductance fluctuations in metals. Phys. Rev. Lett., 1985, 55: 1622-1628
    [31] Peeper M, Smith C G, Wharam D A, et al. One-dimensional ballistic transport of electrons. Semicond. Sci. Technol. 1990, 5: 1185-1188
    [32] Bastard G. Superlattice band structure in the envelope-function approximation. Phys. Rev. B, 1981, 24: 5693-5697; Theoretical investigations of superlattice band structure in the enmelope-function approximation. Phys. Rev. B 1982, 25:7584-7597
    [33] Altarelli M. Electronic structure and semiconductor-semimetal transition in InAs-GaSb superlattice.Phys. Rev. B, 1983, 28: 842-845
    [34] Caruthers E, Lin-Chung P J. Pseudopotential calculations for (GaAs)1-(AlAs)1 and related monolayer heterostuctures. Phys. Rev. B, 1978, 17: 2705-2718
    [35] Pickett W E, Louie S G, Cohen M L. Self-consistent calculations of interface states and electronic structure of the (110) interfaces of Ge-GaAs and AlAs-GaAs. Phys. Rev. B, 1971, 17: 815-828
    [36] 夏建白,Baldereschi A. 超晶格电子结构的赝势计算. 半导体学报,1987,8:574-584
    [37] Imry Y, Landauer R. Conductance viewed as transmission. Rev. Modern Phys., 1999, 71: S306-S312
    [38] Büttiker M, Imry Y, Landauer R and Pinhas S. Generalized many-channel conductance formula with application to small rings. Phys. Rev. B, 1985, 31: 6207-6215
    [39] Büttiker M, Absence of backscattering in the quantum Hall effect in multiprobe conductors. Phys. Rev. B, 1988, 38: 9375-9389
    [40] Büttiker M, Four-Terminal Phase-Coherent Conductance. Phys. Rev. Lett., 1986, 57: 1761-1764
    [41] Combescot M, Guillaume C B. Two-dimensional electrons-holes droplets in superlattices. Solid State Commun., 1981, 39: 651-654
    [42] Lenz G, Salzman J. Bragg confinement of carriers in a quantum barrier. Appl. Phys. Lett., 1990, 56: 871-873
    [43] Zahler M, Brener I, Lenz G, et al. Experimental evidence of Bragg confinement of carriers in a quantum barrier. Appl. Phys. Lett., 1992, 61: 949-951
    [44] Capasso F, Sirtori C, Faist J, et al. Observation of an electronic bound state above a potential well. Nature, 1992, 358:565-567
    [45] Sirtori C, Capasso F, Faist J, et al. Quantum wells with localized states at energies above the barrier height: A Fabry-Perot electron filter. Appl. Phys. Lett., 1992, 61: 898-890
    [46] Wang X H, Gu B Y, Yang G Z, et al. Parity anomaly of bound states and optical properties in semiconductor superlattices with structural defects. Phys. Rev. B, 1998, 58: 4629-4635
    [47] Ihm G, Noh S K, Falk M L. Interface localized states in coupled superlattices. Appl. Phys. Lett., 1992, 72: 5325-5327
    [48] Suris R A, Lavallard P. Calculated defect states in semiconductor superlattices within a tight-binding model. Phys. Rev. B, 1994, 50: 8875-8877
    [49] Indjin D, Milanovic V, Ikonic Z. Bragg-confining structures with conventional and effective-mass superlattices. Phys. Rev. B, 1995, 52: 16762-16771
    [50] Indjin D, Milanovic V, Ikonic Z. Application of Bragg-confined semiconductor structures for higher-energy resonant intersubband second-harmonic generation. Phys. Rev. B, 1997, 55: 9722-9730
    [51] Huang F Y, Morkoc H. Electronic surface state (Tamm state) under electric field in semiconductor superlattices. J. Appl. Phys, 1992, 71: 524-526
    [52] Arriaga J, Garcia-Moliner F, Velasco V R. Surface states in semiinfinite superlattices. Prog. Surf. Sci., 1993, 42: 271-279
    [53] Sy H K, Chua T C. Internal Tamm states in finite and infinite superlattices. Phys. Rev. B, 1993, 48: 7930-7934
    [54] Fafard S. Bound states of near-surface multi-quantum-well structures: Evolution of the Tamm states with the cap-layer thickness. Phys. Rev. B, 1994, 50: 1961-1964
    [55] Stesficka M. Tamm surface states in semiconductor superlattices. Prog. Surf. Sci., 1995, 50: 65-76
    [56] Ohno H, Mendez E E, Brum J A, et al. Observation of “Tamm States” in superlattices. Phys. Rev. Lett., 1990, 64: 2555-2558
    [57] Miller T, Chiang T C. Study of a surface state in a Ag-Au superlattice gap. Phys. Rev. Lett., 1992, 68: 3339-3342
    [58] Ohno H, Mendez E E, Alexandrou A, et al. Tamm states in superlattices. Surf. Sci., 1992, 267: 161-165
    [59] Yu R H. Tamm states in finite semiconductor superlattices: Influence of accumulation and depletion layers. Phys. Rev. B, 1993, 47: 1379-1382
    [60] Steslicka M, Kucharczyk R, Akjouj A, et al. Localised electronic states in semiconductor superlattices. Surf. Sci. Reports, 2002, 47: 93-196
    [61] Kucharczyk R, Steslicka M. Density-of-states formalism for multi-quantum -barrier structures. Solid State Commun., 1992, 84: 727-730
    [62] Burt M R. The justification for applying the effective-mass approximation to microstructures,. J. Phys. Condens. Matter., 1992, 4: 6651-9960
    [63] Altarelli M. Band structure, impurities and excitions in superlattices, in heterostructures and semiconductor superlarrices. Berlin: Springer-Verlag, 1996, 12-37
    [64] Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. J. Appl. Phys., 2003, 93:793-818
    [65] Balandin A. Thermal properties of semiconductor low-dimensional structures. Phys. Low-Dim. Struc., 2000, 1/2: 1-28
    [66] Chen G, Zeng T F. Nonequilibrium phonon and electron transport in heterostructures and superlattices. Microscale thermophysical engineering, 2001, 5: 71-88
    [67] Chen G. Phonon heat conduction in nanostructures. Int. J. Therm. Sci., 2000, 39: 471-480
    [68] DiSalvo F J. Thermoelectric cooling and power generation. Science, 1999, 285: 703-706
    [69] Chen G. Thermal conductivity and ballistic phonon transport in cross-plane direction of superlattices. Phys. Rev. B, 1998, 57: 14958-14973
    [70] Ju Y S, Goodson K E. Phonon scattering in silicon films with thickness of order 100 nm. Appl. Phys. Lett., 1999, 74: 3005-3007
    [71] Maynard R, Akkermanns E. Thermal conductance and giant fluctuation in one-dimensional disordered systems. Phys. Rev. B, 1985,32: 5440-5442
    [72] Cross M C, Lifshitz R. Elastic wave transmission at an abrupt junction in a thin plate with application to heat transport and vibrations in mesoscopic systems. Phys. Rev. B, 2001, 64: 085324-1 - 085324-22
    [73] Joshi A A, Majumdar A. Transient ballistic and diffusive phonon heat transport in thin films. J. Appl. Phys., 1993, 74: 31-39
    [74] Chen G. Ballistic-diffusive heat-conduction equation. Phys. Rev. Lett., 2001, 86: 2297-2300
    [75] 刘静. 微米/纳米尺度传热学. 北京:科学出版社,2001:1-25
    [76] 宋青林,夏善红,陈绍凤等. 微尺度薄膜热导率测试技术. 物理学进展, 2002, 22(3):283-295
    [77] Pendry J B. Quantum limits to the flow of information and entropy. J. Phys. A, 1983, 16: 2161-2171
    [78] Rego L C G, Kirczenow G. Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Phys. Rev. B, 1999, 59: 13080-13086
    [79] Blencowe, M P. & Vitelli, V. Universal quantum limits on single-channel information, entropy, and heat flow. Phys. Rev. B 2000, 62, 052104-052108
    [80] Tighe T S, Worlock J M, Roukes M L. Direct thermal conductance measurements on suspended monocrystalline nanostructures. Appl. Phys. Lett., 1997, 70:2687-2689
    [81] Molenkamp L W, Gravier Th, Houten H, et al. Peltier coefficient and thermal conductance of a quantum point contact. Phys. Rev. Lett., 1992, 68: 3765-3768
    [82] Chiatti O, Nicholls J T, Proskuryakov Y Y, et al. Quantum thermal conductance of electrons in a one-dimensional wire. Phys. Rev. Lett., 2006, 97: 056601-1- 056601-1-4
    [83] Meschke M, Guichard W& Pekola J P. Single-mode heat conduction by photons. Nature, 2006, 444:187-190
    [84] Leivo M M, Pekola J P. Thermal characteristic of silicon nitride membranes at sub-Kelvin temperatures. Appl. Phys. Lett., 1998,72:1305-1307
    [85] Li D Y, Wu Y Y, Kim P, et al. Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett., 2003, 83: 2934-2936
    [86] Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87: 215502-1— 215502-4
    [87] Santamore D H, Cross M C. Effect of surface roughness on the universal thermal conductance. Phys. Rev. B, 2001, 63: 184306-1 – 184306-6
    [88] Santamore D H, Cross M C. Surface scattering analysis of phonon transport in the quantum limit using an elastic model. Phys. Rev. B, 2002, 66: 144302-1 – 144302-19
    [89] Santamore D H, Cross M C. Effect of phonon scattering by surface roughness on the universal thermal conductance. Phys. Rev. lett., 2001, 63: 115502-1 – 115502-4
    [90] Cross M C, Lifshitz R. Elastic wave transmission at an abtupt junction in a thinplate with application to heat transport and vibrations in mesoscopic systems. Phys. Rev. B, 2001, 64(8): 085324-1- 085324-22
    [91] Blencowe M P. quantum energy flow in mesoscopic dielectric structures. Phys. Rev. B, 1999, 59: 4992-4998
    [92] Krive I V, Mucciolo E R. Transport properties of quasiparticles with fractional exclusion statistics. Phys. Rev. B, 1999, 60: 1429-1432
    [93] Lee S M, Cahill D G. Heat transport in thin dielectric films. J. Appl. Phys., 1997, 81: 2590-2595
    [94] Majumdar A. J. Heat Transfer 1993, 115: 7
    [95] Lu X, Shen W Z, Chu J H. Size effect on the thermal conductivity of nanowires. J Appl. Phys., 2002, 91: 1542-1552
    [96] Lu X, Chu J H, Shen W Z. Modification of the lattice thermal conductivity in semiconductor rectangular nanowires. J. Appl. Phys., 2003, 93(2): 1219-1229
    [97] Volz S, Lemonnier D. Phys. Low-Dimens. Semicond. Struct., 2000, 5-6: 91
    [98] Walkauskas S G, Broido D A, Kempa K, et al. Lattice thermal conductivity of wires. J. Appl. Phys., 1999, 85: 2579-2582
    [99] Zou j, Balandin A. Phonon heat conduction in a semiconductor nanowire. J. Appl. Phys., 2001, 89: 2932-2938
    [100] Simkin M V, Mahan G D. Minimum thermal conductivity of superlattices. Phys. Rev. Lett., 2000, 84: 927-930
    [101] Chen G, Neagu M. Thermal conductivity and transfer in superlattices. Appl. Phys. Lett., 1997, 71: 2761-2763
    [102] Sparavigna A. Lattice thermal conductivity in cubic silicon carbide. Phys. Rev. B, 2002, 174301-1--174301-5
    [103] Mingo N. Calculation of Si nanowire thermal conductivity using complete phonon dispersion relations. Phys. Rev. B, 2003, 68: 113308-1—113308-4
    [104] Balandin A, Wang K L. Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys. Rev. B, 1998, 58: 1544-1549
    [105] Khitun A, Balandin A, Wang K L. Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattices and Microstructures, 1999, 26: 181-192
    [106] Mingo N, Yang L, Li D Y, et al. Predicting the thermal conductivity of Si and Ge nanowires. Nano Letters, 2003, 3: 1713-1716
    [107] Terraneo M, Peyrard M and Casati G. Controlling the Energy Flow in Nonlinear Lattices: A Model for a Thermal Rectifier. Phys. Rev. Lett., 2002, 88: 094302-094305
    [108] Baowen L, Lei W and Giulio C. Thermal Diode: Rectification of Heat Flux. Phys. Rev. Lett., 2004, 93: 184301-184304
    [109] Liang L H, Li B W. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys. Rev. B, 2006, 73(15): 153301-153303-4
    [110] Dvira S, and Abraham N. Molecular heat pump. Phys. Rev. E 2006, 73:026109-026117
    [111] Müller J E. Effect of a nonuniform magnetic field on a two-dimensional electron gas in the ballistic regime. Phys. Rev. Lett, 1992, 68: 385 - 388
    [112] Gu B Y, Sheng W D and Wang X H. Electronic states and magnetotransport in quantum waveguides with nonuniform magnetic fields. Phys. Rev. B, 1997, 56: 13434-13441
    [113] Peeters F M, Matulis A. Quantum structures created by nonhomogeneous magnetic fields. Phys. Rev. B, 1993, 48: 15166-15174
    [114] Zhang Y T, Guo Y and Li Y C. Persistent spin currents in a quantum ring with multiple arms in the presence of spin-orbit interaction. Phys. Rev. B, 2005, 72: 125334-125339
    [115] Schult R L, Wyld H W and Ravenhall. Quantum Hall effect and general narrow-wire circuits. Phys. Rev. B, 1990, 41: 12760-12780
    [116] Guo Y, Gu B L and Duan W H. Transport in asymmetric multiple-barrier magnetic nanostructures. Phys. Rev. B, 1997, 55: 9314-9317
    [117] Guo Y, Zhai F and Gu B L. Resonant enhancement and negative differential resistances in hybrid magnetic-electric barrier structures. Phys. Rev. B, 2002, 66: 045312-045318
    [118] Yang X D, Wang R Z and Guo Y. Giant magnetoresistance effect of two-dimensional electron gas systems in a periodically modulated magnetic field. Phys. Rev. B, 2004, 70: 115303-115307
    [119] Li W, Guo Y. Dresselhaus spin-orbit coupling effect on dwell time of electrons tunneling through double-barrier structures. Phys. Rev. B, 2006, 73: 205311-205317
    [120] Wang X H, Gu B Y and Yang G Z. Coupling between the transverse and longitudinal componentsof an electron in resonant tunneling. Phys. Rev. B,1997, 55: 9340-9340
    [121] Li W X, Chen K Q, et al. Acoustic phonon mode splitting behavior of an asymmetric y-branch three terminal junction. Appl. Phys. Lett.,2004, 85(5): 822-824
    [122] Chen K Q, Li W X, Duan W H, et al. Effect of defects on the thermal conductivity in a nanowire. Phys. Rev. B., 2005, 72(4): 045422-1-045422-5
    [123] Li W X, Chen K Q, et al. Acoustic phonon transport through a T-shaped quantum waveguide. J. Phys.: condens. Matter, 2004, 16(28): 5049-5059
    [124] Guo Y, Gu B L, Zeng Z, et al. Electron-spin polarization in magnetically modulated quantum structures. Phys. Rev. B, 2000, 62: 2635-2639
    [125] Guo Y, Qin J H , Zhai F, et al. Wave-vector filtering and spin filtering in a magnetic double-barrier and double-well structure. Phys. Lett. A, 2004, 322: 117-125
    [126] Lü H F and Guo Y. Kondo effect and spin-polarized transport through a quantum dot with Rashba spin-orbit interaction. Phys. Rev. B, 2007, 76: 045120-045128
    [127] Brusheim P and Xu H Q, Spin filtering through magnetic-field-modulated double quantum dot structures. Phys. Rev. B, 2006, 73: 045313-045317
    [128] Wang R and Liang J Q. Spin-polarized quantum transport through a T-shape quantum dot-array: Model of spin splitter. Phys. Rev. B, 2006, 74: 144302-144309
    [129] Misiorny, Barna? J. Spin polarized transport through a single-molecule magnet: Current-induced magnetic switching. Phys. Rev. B, 2007, 76: 054448-054452
    [130] Carmona H A, GeimA K, Nogaret A, et al. Two dimensional electrons in a lateral magnetic superlattice. Phys. Rev. Lett., 1995, 74: 3009-3012
    [131] Ye P D, Weiss D, Gerhardts R R, et al. Electrons in a periodic magnetic field induced by a regular array of micromagnets. Phys. Rev. Lett., 1995, 74: 3013-3016
    [132] Papp G, Peeters F M. Spin filtering in a magnetic–electric barrier structure. Appl. Phys. Lett., 2001, 78: 2184-2186
    [133] Chen K Q, Wang X H, Gu B Y. Localized folded acoustic phonon modes in coupled superlattices with structural defects. Phys. Rev. B , 2000, 61(18):12075 -12081
    [134] Sheng W D. The scattering matrix method for quantum waveguides. J. Phys.:condens. Matter, 1997, 9: 8369-8380
    [135] Leng M H, Lent C S. Recovery of quantized ballistic conductance in a periodically modulated channel. Phys. Rev. Lett., 1993, 71(1):137-140; Leng M H, Lent C S. Conductance quantization in a periodically modulated channel. Phys. Rev. B, 1994, 50(15): 10823-10833
    [136] Dacal L C O, Damiao A J, et al. Quantum ballistic conductance of quasi-two-dimensional and three-dimensional semiconductor nanowires. Phys. Rev. B, 2005, 71(15):155330-1-155330-6
    [137] Fujii M, Zhang X, et al. Mearsuring the Thermal Conductivity of a single Carbon Nanotube. Phys. Rev. Lett., 2005, 95(6): 065502-1-065502-4
    [138] Yao Z H, Li B W, Liu G R. Thermal conduction of carbon nanotubes using molecular dynamics. Phys. Rev. B , 2005, 71(8): 085417-1-085417-8
    [139] Lee L W, Dhar A. Heat conduction in a Two-dimensional Harmonic Crystal with Disorder. Phys. Rev. Lett., 2005, 95(9): 094302-1-094302-4
    [140] Li B W, Lan J H, Wang L. Interface Thermal Resistance between Dissimilar Anharmonic Lattices. Phys. Rev. Lett., 2005, 95(10): 104302-1-104302-4
    [141] Adu K W, Gutierrez H R, et al. Confined Phonons in Si Nanowires. Nano Letters, 2005, 5: 409-414
    [142] Wang J, Wang J S. Carbon nanotube thermal transport: Ballistic to diffusive. Appl. Phys. Lett., 2006, 88(11): 111909-1-111909-3
    [143] Chen Y F, Li D Y, et al. Minimun superlattice thermal conductivity from molecular dynamics. Phys. Rev. B, 2005, 72(17): 174302-1-174302-6
    [144] Li W X, Liu T Y, Liu C L. Phonon transport through a three-dimensional abrupt junction . Appl. Phys. Lett., 2006, 89(16): 163104-1-163104-3
    [145] Pokatilov E P, Nika D L, Balandin A A. Acoustic-phonon progation in rectangular semiconductor nanowires with elastically dissimilar barriers. Phys. Rev. B, 2005, 72(1): 113311-1-113311-4
    [146] Cao L S, Peng R W, Zhang R L, et al. Delocalization of phonons and quantized thermal conductance in a random n-mer system. Phys. Rev. B, 2005, 72(21): 214301-1-214301-7
    [147] Chang C M, Geller M R. Mesoscopic phonon transmission through a nanowire-bulk contact. Phys. Rev. B, 2005, 71(12): 125304-1-125304-8
    [148] Gemmer J, Steinigeweg R, Michel M. Limited validity of the kubo foumula for thermal conduction in modular quantum system. Phys. Rev. B, 2006, 73(10):104302-1-104302-10
    [149] Heino P. Thermal conductivity and temperature in solid argon by nonequlibrium molecular dynamics simulations. Phys. Rev. B, 2005, 71(14): 144302-1-144302-7
    [150] Ge Z B, Cahill D G, Braun P. Thermal conductance of Hydrophilic and Hydrophonic Interfaces. Phys. Rev. Lett., 2006, 96(18): 186101-1-186101-4
    [151] Bodapati A, Schelling P K, Phillpot S R, et al. Vibrations and thermal transport in nanocrystalline silicon. Phys. Rev. B, 2006, 74(24): 245207-1-245207-11
    [152] Graff K F. Wave motion in Elastic Solids. London: oxford university press. 1975: 311-320
    [153] Zhang Y M, Xiong S J. Phonon transmission and thermal conductance in quasi-one-dimensional disordered systems. Phys. Rev. B., 2005, 72(11): 115305-1-115305-5
    [154] Huang W Q, Chen K Q, et al. Acoustic-phonon transmission and thermal conductance in a double-bend quantum waveguide. J.Appl. Phys., 2005, 98(9): 93524-1-93524-7
    [155] Qu S X, Geller M R. Mesoscopic electron and phonon transport through a curved wire. Phys. Rev. B.,2004, 70: 085414-1-085414-8
    [156] Yamamoto T, Watanabe S, Watanabe K. Universal features of quantized thermal conductance of carbon nanotubes. Phys. Rev. Lett., 2004, 92: 075502-1-075502-4
    [157] Kim Y A, Kamio S, Tajiri T, et al. Enhanced thermal conductivity of carbon fiber/phenolic resin composites by the introduction of carbon nanotubes. Appl. Phys. Lett. 2007, 90 (9): 093125-1-093125-3
    [158] Zhong H L, Lukes J R. Interfacial thermal resistance between carbon nanotubes: Molecular dynamics simulations and analytical thermal modeling. Phys. Rev. B., 2006, 74(12): 125403-1-125403-10
    [159] Nie L Y, Wang L L, Zhao L H, et al. The influence of boundary conditions on thermal conductance in semiconductor quantum wire with structural defect. Phys. Lett. A , 2006, 359(3): 234-240
    [160] Xiao Y, Yan X H, Cao J X, et al. Specific heat and quantized thermal conductance of single-walled boron nitride nanotubes. Phys. Rev. B., 2004, 69: 204515-1204515-5
    [161] Yamamoto T, Watanabe K. Empirical-potential study of phonon transport ingraphitic ribbons. Phys. Rev. B., 2004, 70(24): 245402-1-245402-7
    [162] Yang R, Chen G. Thermal conductivity of simple and tubular nanowire composites in the longitudinal direction. Phys. Rev. B., 2005, 72(12) : 125418-1-125418-7
    [163] Mingo N, Broido D A. Carbon Nanotube Ballistic Thermal Conductance and Its Limits. Phys. Rev. Lett., 2005, 95(9): 096105-1-096105-4
    [164] Barman S, Srivastava G P. Thermal conductivity of suspended GaAs nanostructures: Theoretical study. Phys. Rev. B., 2006, 73(20): 205308-1-205308-6
    [165] Zhang G, Li B W. Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and temperature. The Journal of Chemical Physics, 2005, 123: 114714-1-114714-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700