用户名: 密码: 验证码:
基于聚乳酸的生物可降解复合材料的制备和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚乳酸(PLA)是一种高强度的生物可降解高分子材料,目前可被应用于医药、包装等行业,但由于聚乳酸的一些致命缺陷——脆性高、耐热性差、抗冲击性低、结晶速率过慢,严重限制了其在更多领域的应用。本论文在保持聚乳酸及其复合材料生物降解性的基础上,加入各种生物可降解填料,改善聚乳酸及其复合材料的力学、耐热等性能,扩大聚乳酸的应用范围。
     本文采用天然竹纤维(BF)和滑石粉(Talc)作为聚乳酸的填料,通过熔融共混和成型后热处理等方式得到PLA/BF/Talc复合材料。经过热处理后,PLA复合材料的耐热性能(HDT)得到大幅提高,PLA/20 wt%BF/20 wt%Talc复合材料提高了将近40℃;而单独加入竹纤维或滑石粉,PLA复合材料的HDT提高幅度不大;在PLA/20 wt%BF/ 20 wt%Talc复合材料热处理前后通过热变形温度仪(HDT)、差示扫描量热(DSC)、偏光显微镜(POM)、动态机械性能(DMA)、广角X-射线衍射(WAXD)等测试表征,发现PLA基体内并未发生键合、氢键等化学反应,而是在竹纤维、滑石粉同时存在下,基体中出现了横晶结晶现象;研究了在不同温度、时间、组份下PLA复合材料的横晶现象,并提出了形成横晶的机理;同时还发现,横晶结晶的形成在一定程度、一定填料含量内,提高了PLA/BF/Talc复合材料的力学性能。
     接着利用解偏振光法考察了PLA/BF/Talc复合材料的等温结晶动力学,结果表明只有在较低温度下结晶才基本符合等温结晶动力学Avrami方程,滑石粉促进基体结晶过程中的成核、竹纤维促进晶体生长;用Jeziorny法、Ozawa方程和综合法研究了PLA/BF/Talc复合材料的非等温结晶动力学,Ozawa方程可以描述纯PLA的非等温结晶动力学但不适用于PLA复合材料;综合法则可以很好地描述PLA和PLA复合材料的结晶动力学;另外,通过不同降温速率和升温速率得到的DSC熔融双峰,提出了形成熔融双峰的机理和示意图;在降温和升温过程中,竹纤维结构中的大量缺陷使得重结晶在熔融和重结晶竞争中的确立了优势,与此同时,由于滑石粉促使PLA形成细小晶体,从而使含有滑石粉的PLA复合材料熔融峰在较低温度。
     采用淀粉和甘油共混制备了热塑性淀粉(TPS),加入甲基丙烯酸缩水甘油酯接枝的POE (GPOE)作为增塑、增韧剂改性PLA,得到PLA/TPS/GPOE复合材料。PLA/TPS/ GPOE复合材料力学性能优异,当同时加入20 wt%TPS和10 wt%GPOE时,断裂伸长率可达到200%左右,冲击强度10 kJ/m2左右,同时拉伸、弯曲强度均保持较高值;通过热力学测试(DSC、DMA)、SEM观察、FT-IR分析和TGA降解温度的提高,证实了三元PLA复合材料中的各组分间相互作用、发生了反应(微交联),并提出了TPS在基体中分布和其结构模型,得到了可能的反应示意图;最后用堆肥法和TGA法研究了PLA/TPS/GPOE的降解性能,表明PLA复合材料保持了优异的生物降解性能,在热降解过程中发现,三元的PLA复合材料热降解性能比纯PLA或二元的PLA复合材料优异。
     最后,成功制备天然纳米纤维素(NC)和马来酸酐改性聚乳酸(MPLA),用静电纺丝制备的MPLA/NC无纺布纤维直径远远小于PLA/NC无纺布纤维直径,MPLA/5wt%NC体系的纤维直径仅为132 nm;详细研究了无纺布膜与普通薄膜的拉伸原理和过程,从力学性能中显示,PLA/NC和MPLA/NC无纺布膜体系在NC含量为5 wt%时性能最优;而在热力学性能中,当NC含量较低时,MPLA/NC无纺布膜性能较好;采用体外降解实验研究了PLA和MPLA无纺布膜的降解性能,并展望了该无纺布膜的应用前景。
Poly(lactide) (PLA) is a biodegradable aliphatic polyester, which derived from renewable resources, and it has good mechanical properties and biocompatibility, thus being a promising polymer either for biomedical applications or to replace petrol based polymers in medical, packaging and other fields. Unfortunately, with the inherent brittleness, low heat resistant, slow crystallization rate, and poor impact properties, PLA is restricted to apply in more fileds. In this thesis, the major goal is to improve the heat resistant and toughness of PLA by physical blending. Moreover, the novel PLA composite remain its excellent biodegradable with adding biodegraded fillers.
     PLA/ Bamboo Fiber (BF)/ Talc composites have been gained by mixing in Haake mixture and their properties have been investigated by heat-resistant testing (HDT), differential scanning calorimetry (DSC), polarized optical microscope (POM), dynamics mechanical analysis (DMA) and wide X-ray (WAXD). The effect of bamboo fiber and talc on heat resistant and crystallization of PLA have been studied carefully. Great high HDT value of PLA hybrid bio-composites was obtained which was loading BF and talc simultaneously after heat treatment. However, there was little improvement in HDT of PLA bio-composites which has only BF or talc loaded. With 20 wt% BF and 20 wt% talc loading; the HDT of PLA composites increased about 40℃. This is due to the hybrid and synergism of BF and talc in PLA composites. Transcrystallization was observed in PLA composite which has BF and talc simultaneously loaded and no similar phenomenon in other kinds of PLA composite. Improvement in HDT of PLA composite was not due to the effect of crystallinity. Furthermore, the formation of transcrystallization was the main effect in HDT of PLA composites and mechanism of forming transcrystallization was proposed. Transcrystallization improves the mechanical properties of PLA/ BF/ Talc in certain content of fillers and heat treatment.
     By DSC, polarized light method and XRD, the isothermal and non-isothermal crystallized kinetics of PLA/ BF/ Talc composites have been researched, and the influences of cooling rate or heating rate on thermal properties of PLA composites are also studied. Isothermal kenetic of PLA/ BF/ Talc composites could fit the Avrami equation in only low temperature. The non-isothermal kinetic of PLA/ BF/ Talc composites has been also investigated by Jeziorny, Ozawa and Synthesis methods. The non-isothermal kinetic of Pure PLA fits the Ozawa equation and non-isothermal of all composites fit the Synthesis equation. With different cooling rates and heating rates, the double-melting peak has been gained and the mechanism of forming double-melting peak has been proposed. The defects of BF structure promoted the recrystallization in the melting process and the talc promoted forming small crystals. With this reason, the main melting peak temperature was at a low temperature.
     PLA/TPS/GPOE composites have been gained by mixing of PLA, thermal starch (TPS, prepared by starch and glycerol) and glycidyl methacrylate grafted POE (GPOE). The mechanical, dynamic mechanical, phase structures, degradation properties and toughness mechanism of PLA/TPS/GPOE have been investigated in details. Important improvements in the elongation at break and impact properties of PLA with the addition of TPS and GPOE are reported here. For 10 wt% GPOE, the ternary blends (with 20 wt% TPS content) have improved mechanical properties. The blends have nearly 200% elongation at break and more than 10 kJ/m2 in impact strength. GPOE reduces the size of the TPS phase and improves the compatibility of the PLA blends as shown in the SEM images. The binary and ternary blends have excellent biodegradation by using composting method. In thermal decomposition, ternary blends have higher decomposition temperatures than pure PLA due to glycerol plasticization. A possible reaction mechanism and schematic diagram has also been proposed. The mechanism of reactions has been proved by many characterized methods.
     At the end, the natural nano-fiber (NC) was prepared by simply method and the PLA/NC non-woven mats have been prepared by electrospun method. We have researched the mechanical, thermal properties and appearance structures of PLA non-woven mats with different testing ways. Natural nano-fiber and maleic anhydride (MAH) grafted PLA (MPLA) have been prepared before mixing PLA and natural fiber in the solvent. Also, the PLA/NC or MPLA/NC non-woven mats have been gained by electrospun and the diameter of MPLA non-woven mats were smaller than that of PLA non-woven mats. The diameter of MPLA/5 wt% NC is only about 132 nm. The tensile mechanism and processing of non-woven mats and normal films have been studied carefully. From the results of mechanical and thermal properties, the PLA/5 wt% NC and MPLA/5 wt% NC non-woven mat has the best mechanical property and the MPLA/NC non-woven mat with lower NC content has the better thermal property in MPLA/NC mats. The degradation properties of PLA and MPLA nanocomposites were studied carefully through in vitro degradation method and SEM.
引文
[1]J. Lunt. Large-scale production, properties and commercial applications of polylactic acid polymers [J]. Polym. Degrad. Stab,1998,59(1-3):145-152.
    [2]W. Holdings. Bioplastics Supply Chains-Implications and agriculture. A report for the Rural Industries Research and Development Corporation. November 2004:P 4-175.
    [3]J. L. Eguiburu, J. J. Iruin, M. J. Fernandez-Berridi, et al. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate):a miscibility study [J]. Polymer,1998,39(26):6891-6897.
    [4]G. B. Zhang, J. M. Zhang, S. G. Wang, et al. Miscibility and phase structure of binary blends of polylactide and poly(methyl methacrylate) [J]. J. Polym. Sci. Part B:Polym. Phys.,2003,41(1):23-30.
    [5]S. Fujii, T. Matsumoto (UNITIKA Ltd). Polylactic acid-containing resin composition and molded body obtained from same [P]. WO 2005123831.2005
    [6]S. R. Suprakas, Y. Kazunobu, O. Masami, et al. New Polylactide/Layered Silicate Nanocomposites.3. High-Performance Biodegradable Materials [J]. Chem. Mater., 2003,15(7):1456-1465.
    [7]R. Auras. [PhD Thesis]. East Lansing:Michigan State University [D],2004,268.
    [8]土肥羲治著.生物高分子(第四卷),陈国强译,北京:化学工业出版社,2004.
    [9]H. Matsumoto, T. Masuda (Toray Industries). Aliphatic polyester resin and molded product [P]. JP 2001261797.2001
    [10]T. Furukawa. Polylactic acid-based resin composition and expanded beads thereof and expanded molded body thereof [P]. JP 2006111735.2006
    [11]N. Sato, T. Noguchi (Sony Corp). Resin composition [P]. JP 2003327803.2003
    [12]H. MATSUMOTO, Y. MAEDA (Toray Industries). Polylactic acid resin composition and molded article [P]. JP 2002030208.2002
    [13]T. OCHI, A. KIDAI (Toray Industries). Polylactic acid fiber excellent in hydrolysis resistance [P]. JP 2003301327.2003
    [14]K. Kanamori (Shimadzu Corp). hydrolysis-resistant resin composition and molded part [P].JP 2002338791.2002
    [15]王国全,王秀芬编著.聚合物改性[M],中国轻工业出版社,2000年,第一版:1-3.
    [16]R. E. Drumright, P. R. Gruber, D. E. Henton. Polylactic Acid Technology [J]. Adv. Mater., 2000,12(23):1841-1846.
    [17]K. Kitano. Long Glass Fiber-Reinforced Polylactic Acid Resin Composition, Its Pellet and Its Molded Article [P]. JP 2005336220.2005
    [18]H. Higasbayama (Asahi Fiberglass Co). Long Fiber-Reinforced Polylactic Acid-Based Resin Composition and Method for Producing the Same [P]. JP 2005220177.2005
    [19]H. Higashiyama (Asahi Fiberglass Co). Fiber-Rdnforced Polylactic Acid-based Resin Composition[p]. JP 2005200517.2005
    [20]Y. Takumal (Unitika LTD). Resin Composition and Molded Article Obtained from the Same [P]. JP 2005171204.2005
    [21]R.S. Sinha. New Polylactide/Layered Silicate Nanocomposites 3. High-Performance Biodegradable Materials [J]. Chem. Mater.,2003,15:1456-1465.
    [22]K. Ohshima. Technology and Market Development of Green Plastic Polylactide(PLA) [M]. Japan:Frontier Publishing Co. Ltd.,2005.
    [23]R. Kunii, H. Onishi, Y. Machida. Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin [J]. Eur. J. Pharm. Biopharm.,200767(1):9-17.
    [24]X.Y. Xiong, K.C. Tam, L.H. Gan. Release kinetics of hydrophobic and hydrophilic model drugs from pluronic F127/poly (lactic acid) nanoparticles [J]. J. Control. Release.,2005 103(1):73-82.
    [25]J.K. Lee, M.R. Kim, H.J. Lee, et al. Surface structure and stereocomplex formation of enantiomeric polylactide blends using poly(dimethyl siloxane) as a probe polymer [J]. Macromol. Symp.,2006239(1):91-96.
    [26]M. Hiljanen-Vaino, P. Varpomaa, J. Seppala, et al. Modification of poly(L-lactides) by blending:mechanical and hydrolytic behavior [J]. Macromol. Chem. Phys.,1996, 197(4):1503-1523.
    [27]J.M. Yang, H.L. Chen, J.W. You, et al. Miscibility and crystallization of poly(L-lactide)/poly(ethylene glycol) and poly(L-lactide)/poly(s-caprolactone) blends [J]. Polym. J.,1997,29(8):657-662.
    [28]M.E. Broz, D.L. VanderHart, N.R. Washburn. Structure and mechanical properties of poly(D,L-lactic acid)/poly(ε-caprolactone) blends [J]. Biomaterials 2003,24(10): 4181-4190.
    [29]R.D. Erba, G. Groenincks, G. Maglio, et al. Immiscible polymer blends of semicrystalline biocompatible components:thermal properties and phase morphology analysis of PLLA/PCL blends [J]. Polymer 2001,42(18):7831-7840.
    [30]T. Takayama, M. Todo, H. Tsuji, et al. Effect of LTI content on impact fracture property of PLA/PCL/LTI polymer blends [J]. Journal of Materials Science,2006,41(19): 6501-6504.
    [31]Y.M. Yuan, E. Ruckenstein. Polyurethane toughened polylactide [J]. Polymer Bulletin, 1998,40(4-5):485-490.
    [32]M. Crank, B.E. Chem, M. Patel. Reports:"Techno—Economic Feasibility of Large Scale Production of Bio-Based Polymers in Europe," Institute for Prospective Technological Studies, European Commission, October.2004:9-82.
    [33]L. Jiang, M.P. Wolcott, J.W. Zhang. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends [J]. Biomacromolecules,2006,7 (1):199-207.
    [34]M. Shibata, Y. Inoue, M. Miyoshi. Mechanical properties, morphology, and crystallization behavior of blends of poly(l-lactide) with poly(butylene succinate-co-l-lactate) and poly(butylene succinate) [J]. Polymer,2006,47(10): 3557-3564.
    [35]M. Shibata, N. Teramoto, Y. Inoue. Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends [J]. Polymer 2007,48(9):2768-2777.
    [36]G.X. Chen, H.S. Kim, E.S. Kim, et al. Compatibilization-like effect of reactive organoclay on the poly(l-lactide)/poly(butylene succinate) blends [J]. Polymer,2005, 46(25):11829-11836.
    [37]J.W. Park, S.S. Im. Phase behavior and morphology in blends of poly(L-lactic acid) and poly(butylene succinate) [J]. J. Appl. Polym. Sci.,2002,86(3):647-650.
    [38]R.Y. Wang, S.F. Wang, Y. Zhang, et al. Toughening modification of PLLA/PBS blends via In situ compatibilization [J]. Polym. Eng. Sci.,2009,49(1):26-33.
    [39]J.L. Eguiburu, J.J. Iruin, M.J. Fernandez-Berridi, et al. Blends of amorphous and crystalline polylactides with poly(methyl methacrylate) and poly(methyl acrylate):a miscibility study [J]. Polymer 1998,39(26):6891-6897.
    [40]Y. Kumagai, Y. Doi. Enzymatic degradation and morphologies of binary blends of microbial poly(3-hydroxy butyrate) with poly(s-caprolactone), poly(l,4-butylene adipate and poly(vinyl acetate) [J]. Polym Degrad Stab 1992,36(3):241-248.
    [41]A. Gajria, V. Dave, A. Richar, et al. Miscibility and biodegradability of blends of poly(lactic acid) and poly(vinyl acetate) [J]. Polymer 1996,37(3):437-444.
    [42]J.W. Park, S.S. Im. Miscibility and morphology in blends of poly(L-lactic acid) and poly(vinyl acetate-co-vinyl alcohol) [J]. Polymer 2003,44(15):4341-4354.
    [43]K. Hashima, S. Nishitsuji, T. Inoue. Structure-properties of super-tough PLA alloy with excellent heat resistance [J]. Polymer,2010,51(17):3934-3939.
    [44]S.H. Gob, K.S. Siow. Miscibility of poly(p-vinyl phenol) with polymethacrylates [J]. Polym. Bul.,1987,17(5):453-458.
    [45]J. Hong, S.H. Goh, S.Y. Lee, et al. Miscibility of poly(p-vinylphenol) with poly(dialkyl itaconate)s and poly(methoxycarbonylmethyl methacrylate) [J]. Polymer,1995,36(1): 143-147.
    [46]M.M. Coleman, A.M. Lichkus, P.C. Painter. Thermodynamics of hydrogen bonding in polymer blends.3. Experimental studies of blends involving poly(4-vinylphenol) [J]. Macromolecules,1989,22(2):586-595.
    [47]P. Iriondo, J.J. Iruin, M.J. Fernandez-Berridi. Thermal and infra-red spectroscopic investigations of a miscible blend composed of poly(vinyl phenol) and poly(hydroxybutyrate) [J]. Polymer,1995,36 (16):3235-3237.
    [48]P. Iriondo, J.J. Iruin, M.J. Fernandez-Berridi. Association equilibria and miscibility prediction in blends of poly(vinylphenol) with poly(hydroxybutyrate) and related homo-and copolymers:An FTIR study [J]. Macromolecules,1996,29 (17):5605-5610.
    [49]L. Zhang, S.H. Goh, S.Y. Lee. Miscibility and crystallization behaviour of poly(L-lactide)/poly(p-vinylphenol) blends[J]. Polymer,1998,39(20):4841-4847.
    [50]A.J. Nijenhuis, E. Colstee, D.W. Grijpma, et al. High molecular weight poly(L-lactide) and poly(ethylene oxide) blends:thermal characterization and physical properties [J]. Polymer,1996,37(26):5849-5857.
    [51]E.H. Merz, G.G. Glaver and M. Baer. Studies on heterogeneous polymer systems [J]. J. Polym. Sci.,1956,22(8):325-341
    [52]吴培熙等编,聚合物共混改性[M],第二版,中国轻工业出版社,1998.
    [53]J.A. Schmitt, H. Keskkula. Short-time stress relaxation and toughness of rubber-modification polystyrene [J]. J. Appl. Polymer. Sci.,1960,3(2):132-142.
    [54]Newman's, Strella's. Stress-strain behavior of rubber-reinforced glassy polymer [J], J. Appl. Polym. Sci.,1965,9(6):2297-2305.
    [55]R.N. Haward, C.B. Bucknall The provision of toughness in one and two phase polymers [J]. Pure. Appl. Chem.,1976,46(2-4):227-238.
    [56]A.F. Yee, R.A. Pearson. Toughening mechanisms in elastomer-modified epoxies part 1: Mechanical studies [J]. J. Mater. Sci.,1986,21(7):2462-2474.
    [57]S. Newman, S. Strella. Stress-strain behavior of rubber-reinforced glassy polymers [J]. J. Appl. Polym. Sci.,1965,9(6):2297-2310.
    [58]J.A. Schmitt, H. Keskkula. Short-time stress relaxation and toughness of rubber-modified polystyrene [J]. J. Appl. Polym. Sci.,1960,3(2):132-142.
    [59]C.G. Bragaw. Multi-component Polymer Systems. R.obert Ed., Plastic piping handbook, 1971,86.
    [60]R.P. Kambour. A review of crazing and fracture in thermoplastics [J]. J. Polym. Sci., 1973, D7:1-154.
    [61]G.P. William. Polymer toughness and impact resistance [J]. Polym. Eng.& Sci.,1999, 39(8):2445-2460.
    [62]S. Wu. Phase structure and adhesion in polymer blends:A criterion for rubber toughening [J]. Polymer,1985,26(12):1855-1863.
    [63]S. Wu. A generalized criterion for rubber toughening:the critical matrix ligament thickness [J]. J. Appl. Polym. Sci.,1988,35(2):549-561.
    [64]C. Baillie. Eco-composites [J]. Compos. Sci. and Technol.,2003,63(9):1223-1224.
    [65]A.K. Mohanty, M. Mistra, L.T. Drzal. Sustainable bio-composites from renewable resources:opportunities and challenges in the green materials world [J]. J. Polym. Environ.,2002,10(1/2):19-25
    [66]A.K. Mohanty, M.A. Khan, G. Hinrichsen. Surface modification of jute and its influence on performance of biodegradable jute-fibrie/Biopol composites [J].Compos. Sci. Technol.,2000,60(7):1115-1124.
    [67]A. Keller. Compounding and mechanical properties of bioegradable hemp fibre composites [J]. Compos. Sci. Technol.,2003,63(9):1307-1316.
    [68]K. Oksman, M. Skrifvars, J. Selin. Natural fibres as reinforcement in polylactic acid(PLA)composites [J]. Compos. Sci. Technol.,2003,63(9):1317-1324.
    [69]S. Iannace, R. Ali, L. Nicolais. Effect of processing conditions on dimentsions of sisal fibers in thermoplastic biodegradable composites [J]. J. Appl. Polym. Sci.,2001,79(6): 1084-1091.
    [70]S. Peterson, K. Jayaraman, D. Bhattacharyya. Forming performance and biod egradability of woodfiber-BiepolTM composites [J]. Compos Part A:Appl Sci and Manuf(Incorporating),2003,33(8):1123-1134.
    [71]S.H. Lee, T. Ohkita, K. Kitagawa. Eco-composite from poly(lactic acid)and bamboo fiber [J]. Holzforschung,2004,58(5):529-536.
    [72]V. Tserki, P. Matzinos, C. Panayiotou. Effect of compatibilization on the performance of biodegradable composites using cotton fiber waste as filler [J]. J. Appl. Polym. Sci., 2003,88(6):1825-1835.
    [73]Q.X. Hou, X.S. Chai, R. Yang. Characterization of lignocellulosic-poly(lactic acid) reinforced composites [J]. J. Appl. Polym. Sci.,2006,99(10):1346-1349.
    [74]杨斌.绿色塑料聚乳酸[M].北京:化学工业出版社,2007.
    [75]梁小波,杨桂成,曾汉民.表面处理对剑麻纤维表面状况及热性能的影响[J].广东化工,2004,1:12-15.
    [76]戚裕.聚乳酸/木粉复合材料的制备与性能研究[D].南京理工大学,2007.
    [77]D.H. Reneker, A.L. Yarin, H. Fong, et al. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning [J]. J. Appl. Phys.,2000,87(9): 4531-4547.
    [78]袁晓燕,董存海,赵瑾,等.静电纺丝制备生物降解性聚合物超细纤维[J].天津大学学报,2003,36(6):707-709.
    [79]Y. Young, M. Byung, S. Min, et al. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide) [J]. J Appl. Polym. Sci.2005, 95(2):193-200.
    [80]C.H. Xiang, Y.L. Joo, M.W. Frey. Nanocomposite Fibers Electrospun from Poly(lactic acid)/Cellulose Nanocrystals [J]. Journal of Biobased Materials and Bioenergy,2009, 3(2):147-155
    [81]吉宏武,丁霄霖,檀亦兵.百合淀粉糊化特性的研究[J].食品工业科技,2002,23(11):9-13.
    [82]段善海,徐大庆,缪铭.物理法在淀粉改性中的研究进展[J].食品科学,2007,28(3):361-365.
    [83]R.F. Scguffnab. Microwave processing in the U.S. food industry [J]. Food. Technol., 1992,46(2):50-53.
    [84]G. Lewandowicz, J. Fornal, A. Walkowskia. Effect of microwave radiation on physic-chemical properties and structure of photo and tapioca starches [J]. Carbohyd. Polym,1997,34(4):213-220.
    [85]马晓飞,于九皋.淀粉/聚酯体系生物可降解材料[J].高分子通报,2003,4(2):15-22.
    [86]B. Catia. Properties and Application of Mater-Bi Starch-based Materials [J]. Polym. Degrad. Stabil.,1998,59(123):263-272.
    [87]K.E. Tainyi, X.Z. Sun. Physical Properties of Poly (Lactic Acid) and Starch Composites with Various Blending Rations [J]. Cereal. Chem.,2000,77(6):761-768.
    [88]K.E. Tainyi, X.Z. Sun. Effects of Moisture Content and Heat Treatment on the Physical Properties of Starch and Poly (lactic acid) Blends [J]. J. Appl. Polym. Sci.,2001,81(12): 3069-3082.
    [89]K.E. Tainyi, X.Z. Sun. Thermal and Mechanical Properties of Poly (Lactic Acid) and Starch Blends with Various Plasticizers [J]. Transactions of the ASAE,2001,44(4): 945-953
    [90]P.J. Wuk, I.M. Seung Soon. Biodegradable polymer blends of poly(L-lactic acid) and gelatinized starch [J]. Polym. Eng. Sci.,2000,40(12):2539-2550.
    [91]H. Wang, X.Z. Sun, P. Seib. Strengthening Blends of Poly(Lactic Acid) and Starch With Methylenediphenyl Diisocyanate [J]. J. Appl. Polym. Sci.,2001,82(10):1761-1767.
    [92]O. Tsutomu, L. Seunghwan. Effect of Aliphatic Isocyanates (HDI and LDI) as Coupling Agents on the Properties of Eco-composites from Biodegradable Polymers and Corn Starch [J]. J. Adhe. Sci. Techno.,2004,18(8):905-924.
    [93]H.D. Pan, X.Z. Sun. Effects of Moisture Content and Extrusion Parameters on Tensile Strength of Starch and Poly(Lactic Acid) Blends [J]. Appl. Engin. Agricu.,2003,19(5): 573-579.
    [94]J.W. Park. Biodegradable polymer blends of poly (L-lactic acid) and gelatinized starch [J]. Polym. Eng. Sci.,2000,40(12):2539-2550.
    [95]O. Martin, L. Averous. Poly(lactic acid):plasticization and properties of biodegradable multi-phase systems [J]. Polymer,2001,42(14):6209-6219.
    [96]J.F. Zhang, X.Z. Sun. Mechanical properties of poly(lactic acid)/starch composites compatibilized by maleic anhydride [J]. Biomacromolecules,2004,5(4):1446-1451.
    [97]J.F. Zhang, X.Z. Sun. Mechanical and thermalproperties of poly (lactic acid)/starch blends with dioctylmaleate [J]. J. Appl. Polym. Sci.,2004,94(4):1697-1704.
    [98]H. Wang, X.Z. Sun, P. Seib. Properties of poly (lacticacid)blends with various starches as affected by physicalaging [J]. J. Appl. Polym. Sci.,2003,90(13):3683-3689.
    [99]F.W. Xie. Rheological properties of starch based materials and starch/poly(lactic acid) blends [J]. Macrom. Symp.,2007, (1):529-534.
    [100]H. Wang, X.Z. Sun, P. Seib. Effects of starch moisture on properties of wheat starch/poly(lactic acid) blend containing methylenediphenyl diisocyanate [J]. Poly. Env., 2002,10(4):133-138.
    [101]M.A. Huneaur, H.B. Li. Morphology and properties of compatibilized polylactide/thermoplastic starch blends [J]. Polymer,2007,48(1):270-280.
    [102]方显力.聚乳酸固相接枝马来酸酐及与淀粉共混研究[J].包装工程,2007,28(11):3]-33.
    [103]C. Li, X.Y. Qiu, M.X. Deng. The starch grafted poly(L-lactide)and the physical properties of its blending composites [J]. Polymer,2005,46(15):5723-5729.
    [104]由英才,沈忻,焦京亮,等.乙酰化淀粉/D,L-丙交酯接枝共聚物的合成及降解性能研究[J].离子交换与吸附,2002,18(1):58-63.
    [105]ASTM D 5210-92; D 5271-93; D 5511-94; D 5522-94a; D 5526-94; D5951-96; D 5998-96; D 6002-96; D 6003-96; D 5338-98; D 6340-98; D 6691-01; D 6692-01.
    [106]ISODIS 14851 (1999); ISODIS 14852 (1999); ISODIS14855 (1999).
    [107]R. Smith, C. Oliver, D.F. Williams. The enzymatic degradation of polymers [J]. J. Biomed. Mater. Res.,1987,21(8):991-1003.
    [108]C.G Pitt, F.I. Chasalow, Y.M. Hibionada, et al. Aliphatic polyesters. I. The degradation of poly (s-caprolactone) in vivo [J]. J. Appl. Polym. Sci.,1981,26(11):3779-3787.
    [109]S. Hideo. ISO standard activities in standardization of biodegradability of plastics—development of test methods and definitions [J]. Polym. Degrad. Stabil.,1998, 59(1-3):365-370.
    [110]S. Johannes. Creating the framework for a widespread use of biodegradable polymers (standardization, labelling, legislation, biowaste management) [J]. Polym. Degrad. Stabil.,1998,59(1-3):377-381.
    [111]J.M. Mayer, A.L. Allen, et al. Polymer Preprints, Division of Polymer Chemistry [M], ACS,1990,31(1):434
    [112]A.K. Mohanty, M. Misra, L.T. Drzal. Sustainable Bio-Composites from Renewable Resources:Opportunities and Challenges in the Green Materials World [J]. J. Polym. Environ.2002,10(1-2),19-26.
    [113]K. Oksman, J.F.Selin. Plastics and composites from polylactic acid [M]. In:F.T. Wallenberger, N. Weston, editors, Natural fibers, plastics and composites, Boston,2004.
    [114]P.Y. Deng, M.H. Liu, X.W. Zheng, et al. Improvement of Heat Stability of PLA/Fiber Composite by Radiation Induced Cross-linking [J]. Chem. J. Chinese. U.,2009,30(12): 2530-2533.
    [115]L.B Gregory, B.V. Erin, R.S. Milton. Glass Transitions in Polylactides [J]. Polym. Rev. 2008,48(1),64-84.
    [116]M.S. Huda, L.T. Drzal, A.K. Mohanty, et al. The effect of silane treated-and untreated-talc on the mechanical and physico-mechanical properties of poly(lactic acid)/newspaper fibers/talc hybrid composites [J]. Compos. Part B-Eng,2007,38(3), 367-379.
    [117]A Whaling, R.Bhardwaj, A. K.Mohanty. Novel Talc-Filled Biodegradable Bacterial Polyester Composites [J]. Ind. Eng. Chem. Res.,2006,45(22),7497-7503.
    [118]M.K. Joshy, L. Mathew, R. Joseph. Influence of fiber surface modification on the mechanical performance of isora-polyester composites [J]. Int. J. Polym. Mater.,2009, 58(1):2-20.
    [119]L.A. Pothan, C.N. George, M. Jacob, et al. Effect of chemical modification on the mechanical and electrical properties of banana fiber polyester composites [J]. J. Compos. Mater.,2007,41(19):2371-2386.
    [120]J. Rout, M. Misra, S.S. Tripathy, et al. The influence of fiber surface modification on the mechanical properties of coir-polyester composites [J]. Polym. Compos.,2001, 22(4):468-476.
    [121]X. Li, L.G. Tabil, S. Panigrahi. Chemical treatment of natural fiber for use in natural fiber-reinforced composites:A review [J]. J. Polym. Environ.,2007,15(1):25-33.
    [122]A.K. Bledzki, J. Gassan. Composites reinforced with cellulose based fibers [J]. Prog. Polym. Sci.,1999,24(2):221-274.
    [123]W. Hoogsten, A.R. Postema, A.J. Pennings, et al. Crystal Structure, Comformation, and Morphology of Solution-Spun Poly(L-lactide) Fiber [J]. Macromolecules,1990,23(2): 634-642.
    [124]S. Sasaki, T. Asakura. Helix Distortion and Crystal Structure of the a-Form of Poly(1-lactide) [J]. Macromolecules,2003,36(22):8385-8390.
    [125]J. Puiggali, Y. Ikada, H. Tsuji, et al. The frustrated structure of poly(-lactide) [J]. Polymer,2000,41(25):8921-8930.
    [126]L. Cartier, T. Okihara, Y. Ikada, et al. Epitaxial crystallization and crystalline polymorphism of polylactides [J]. Polymer,2000,41(25):8909-8919.
    [127]S.B. Xie, S.M. Zhang, F.S. Wang, et al. Influence of annealing treatment on the heat distortion temperature of nylon-6/montmorillonite nanocomposites [J]. Polym. Eng. Sci.,2005,45(9):1247-1253.
    [128]D. Brizzolara, H.J. Cantow, K. Diederichs, et al. Mechanism of the Stereocomplex Formation between Enantiomeric Poly(lactide)s [J]. Macromolecules 1996,29(1): 191-197.
    [129]M.S. Jahan, S.P. Mun. Effect of tree age on the cellulose structure of Nalita wood (Trema orientalis) [J]. Wood. Sci. Technol.,2005,39(5):367-373.
    [130]C. Nkoumbou, D. Njopwouo, F. Villieras, et al. Talc indices from Boumnyebel (Central Cameroon), physico-chemical characteristics and geochemistry [J]. J. Afr. Earth. Sci., 2006,45(1):61-73.
    [131]D.G. Gray. "Transcrystallization" induced by mechanical stress on a polypropylene melt [J]. J. Polym. Sci.:Polym. Lett. Ed.,1974,12(11):645-650.
    [132]D.G. Gray. Transcrystallization of polypropylene at cellulose nanocrystal surfaces [J]. Cellulose,2008,15(2):297-301.
    [133]贺昌城,董侠孙,王笃金,等.纤维增强树脂基复合材料中的横穿结晶研究[J].高分子通报.2008,4(4):12-20.
    [134]D.F. Wu, L. Wu, L.F. Wu, et al. Comparison Between Isothermal Cold and Melt Crystallization of Polylactide/Clay Nanocomposites [J]. J. Nanosci. Nanotechno.,2008, 8(4):1658-1668.
    [135]D.R.Pau, C.B. Bucknall. Polymer Blends [M], Wiley, New York,2000.
    [136]T.D. Fornes, D.R. Paul. Modeling properties of nylon 6/clay nanocomposites using composite theories [J]. Polymer,2003,44(17):4993-5013.
    [137]Y.P. Khanna. Overview of transition phenomenon in nylon 6 [J]. Macromolecules,1992, 25(12):3298-3300.
    [138]A.C. Fowlks, R. Narayan. The Effect of Maleated Polylactic Acid (PLA) as an Interfacial Modifier in PLA-Talc Composites [J]. J. Appl. Polym. Sci.,2010,118(5): 2810-2820.
    [139]L. Suryanegara, A.N. Nakagaito, H. Yano. Thermo-mechanical properties of microfibrillated cellulose-reinforced partially crystallized PLA composites [J]. Cellulose, 2010,17(4):771-778.
    [140]M. Avrami. Kinetic of phase change. Ⅱ Transformation-time relations for random distribution of nuclei [J]. J. Chem. Phys.1940,8(2):212-217.
    [141]A. Jeziorny. Parameters characterizing the kinetics of the non-isothermal Crystallization of Poly(ethylene terephthalate) Determined by D.S.C. [J]. Polymer 1978,19(10): 1142-1144.
    [142]T. Ozawa. Kinetics of non-isothermal crystallization [J]. Polymer 1971,12(3):150-158.
    [143]T. Liu, Z. Mo, S. Wang, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polym. Eng. Sci.1997,37(3):568-575.
    [144]Y. Kong, J.N. Hay. Multiple melting behaviour of poly(ethylene terephthalate) [J]. Polymer 2003,44(3):623-633.
    [145]邱高,黄南薰,唐志廉,P ET熔融双峰的模拟分析[J].高分子材料科学与工程.1998,14(5):9-14.
    [146]韩哲文主编,高分子科学教程.华东理工大学出版社,上海,2001.
    [147]M. Avrami. Kinetics of Phase Changel.General Theory [J]. J. Chem. Phy.,1939, 7(8):1103-1112.
    [148]M. Avrami. Kinetics of Phase Change Ⅱ. Transformation-Time Rela-tions for Random Distribution of Nuclei [J]. J. Chem. Phy.,1940,8:212-224.
    [149]M. Avrami. Kinetics of Phase ChangeⅢ. Granulation, Phase change and Microstructure [J]. J. Chem. Phy.,1941,9():177-184.
    [150]李强,赵竹第,欧玉春,等.尼龙6/蒙脱土纳米复合材料的结晶行为[J],高分子学报,1997,2(6):188-193.
    [151]边界,叶胜荣,封麟先PET, PBT结晶Avrami方程的探讨[J],高等学校化学学报.2000,21(9):1481-1484.
    [152]A. Jeziorny. Parameters Characterizing the Kinetics of The Non-isothermal Crystallization of Poly(Ethylene Terephtalate) Determined by d.s.c. [J]. Polymer,1978, 19(10):1142-1144.
    [153]J.W. Huang, H.C. Hung, K.S. Tseng, et al. Nonisothermal crystallization of poly (ethylene-co-glycidyl methacrylate)/clay nanocomposites [J]. J. Appl. Polym. Sci., 2006,100(2):1335-1343.
    [154]M. Mucha, J. Marszalek, A. Fidrych. Crystallization of isotactic polypropylene containing carbon black as a filler [J]. Polymer,2000,41(11):4137-4142.
    [155]T. Wan, L. Chen, Y. Chua, et al. Crystalline morphology and isothermal crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites [J]. J. Appl. Polym. Sci., 2004,94(4):1381-1388.
    [156]W. Weng, G. Chen, D. Wu. Crystallization kinetics and melting behaviors of nylon 6/foliated graphite nanocomposites [J]. Polymer,2003,44(26):8119-8132.
    [157]T. Liu, Z. Mo, S. Wang, et al. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone) [J]. Polym. Eng. Sci.,1997,37(3):568-575.
    [158]H.E. Kissinger. Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis [J]. J.Res.Natl.Stand.(US),1956,57:217-221.
    [159]H.W. Xiao, P. Li, X.M. Ren, T. Jiang, et al. Isothermal crystallization kinetics and crystal structure of poly (lactic acid):effect of triphenyl phosphate and talc [J]. J. Appl. Polym. Sci.,2010,118(6):3558-3569.
    [160]X.F. Lu and J.N. Hay. Isothermal crystallization kinetics and melting behaviour of polyethylene terephthalate) [J]. Polymer,2001,42(23):9423-9431.
    [161]M.H. Rahman, A.K. Nandi. On the crystallization mechanism of poly(ethylene terepthalate) in its blends with poly(vinylidene fluoride) [J]. Polymer,2002,43(25): 6863-6870.
    [162]Y. Munehisa, S. Tadashi. Multiple melting behavior of poly(butylene succinate). I. Thermal analysis of melt-crystallized samples [J]. J. Polym. Sci. Pol. Phys.,2002, 40(21):2411-2420.
    [163]D. Garlotta, W. Doanew, R. Shagren, et al. Mechanical and thermal properties of starch-filled poly (D,L-lactic acid)/poly(hydroxy ester ether) biodegradable blends [J]. J. Appl. Polym. Sci.,2003,88(7):1775-1786.
    [164]C. Denise, N. Li, N. Ramani, et al. Maleation of polylactide (PLA) by reactive extrusion [J]. J. Appl. Polym. Sci.,1999,72(4):477-485.
    [165]O. Martin, L. Averous. Poly (lactic acid):plasticization and properties of biodegradable multiphase systems [J]. Polymer,2001,42(14):6209-6219.
    [166]王华林,盛敏刚,史铁均,等.PLA及PLA复合材料降解性能研究进展[J].高分子材料科学与工程,2004,20(6):20-23.
    [167]钱欣,沈兆宏.增塑剂对聚乳酸性能的影响[J].塑料工业,2006,34(12):63-65.
    [168]P. Martina, C. Maqueta, R. Legrasa, et al. Particle-in-particle morphology in reactively compatibilized poly(butylene terephthalate)/epoxide-containing rubber blends[J]. Polymer,2004,45:3277-3284.
    [169]M. Pracella, D. Chionna. Reactive compatibilization of blends of PET and PP modified by GMA grafting [J]. Macromol. Symp.,2003,198:161-172.
    [170]M. Pluta, Z. Bartczak, A. Pawlak, et al. Phase structure and viscoelastic properties of compatibilized blends of PET and HDPE recyclates [J]. J. Appl. Polym. Sci.,2001,82: 1423-1436.
    [171]Y. Pietrasanta, J.J. Robin, N. Torres, et al. Reactive compatibilization of HDPE/PET blends by glycidyl methacrylate functionalized polyolefins [J]. Macromol. Chem. Phys., 1999,200:142-149.
    [172]G.H. Hu, Y.J. Sun, M. Lambla. Devolatilization:A critical sequential operation for in-situ compatibilization of immiscible polymer blends by one-step reactive extrusion [J]. Polym. Eng. Sci.,1996,36(5):676-684.
    [173]G.H. Hu, Y.J. Sun, M. Lambla. Effects of processing parameters on the in situ compatibilization of polypropylene and poly(butylene terephthalate) blends by one-step reactive extrusion [J]. J. Appl. Polym. Sci.,1996,61:1039-1047.
    [174]Y.J. Sun, G.H. Hu, M. Lambla. In-situ compatibilisation of polypropylene and poly(butylene terephthalate) blends by one-step reactive extrusion [J]. Polymer,1996, 37:4119-4127.
    [175]H. Cartier, G.H. Hu. Compatibilisation of polypropylene and poly(butylene therephthalate) blends by reactive extrusion:effects of the molecular structure of a reactive compatibiliser [J]. J. Mater. Sci.,2000,35 (8):1985-1996.
    [176]P. Sarazin, G. Li, W.J. Orts, B.D. Favis. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch [J]. Polymer,2008,49(2):599-609.
    [177]R. Souza, C. Andrade. Investigation of the gelatinization and extrusion processes of corn starch [J]. Adv. Polym. Tech.,2002,21(1):17-24.
    [178]R. Stepto. The processing of starch as a thermoplastic [J]. Macromol. Symp.,2003, 201(1):201-212.
    [179]X.Z. Tang, S. Alavi, T.J. Herald. Effects of plasticizers on the structure and properties of starch-clay nanocomposite films [J]. Carbohyd. Polym.,2008,74(3):552-558.
    [180]H.B. Li, M.A. Huneault. Comparison of Sorbitol and Glycerol as Plasticizers for Thermoplastic Starch in TPS/PLA Blends [J]. J. Appl. Polym. Sci.,2011, 119(4):2439-2448.
    [181]J. Ren, H.Y. Fu, T.B. Ren, et al. Preparation, characterization and properties of binary and ternary blends with thermoplastic starch, poly(lactic acid) and poly(butylene adipate-co-terephthalate). Carbohyd. Polym.,2009,77 (3):576-582.
    [182]P. Sarazin, G. Li, W.J. Orts, et al. Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch [J]. Polymer,2008,49(2):599-609.
    [183]M.A. Huneault, H.B. Li. Morphology and properties of compatibilized polylactide/thermoplastic starch blends [J]. Polymer,2007,48(1):270-280.
    [184]G.H. Yew, A.M.M. Yusof, Z.A.M. Ishak. Water absorption and enzymatic degradation of poly(lactic acid)/rice starch composites [J]. Polym. Degrad. Stab.,2005; 90(3): 488-500.
    [185]Z.Z. Su, Q.Y. Li, Y.J. Liu, et al. Compatibility and phase structure of binary blends of poly(lactic acid) and glycidyl methacrylate grafted poly(ethylene octane) [J]. Eur. Polym. J.,2009,45(8):2428-2433.
    [186]X.X. Liu, L. Yu, H. Liu, et al. In situ thermal decomposition of starch with constant moisture in a sealed system [J]. Polym. Degrad. Stab.,2008,93(1):260-262.
    [187]R.M.D. Soares, A.M.F. Lima, R.V.B. Oliveira, et al. Thermal degradation of biodegradable edible films based on xanthan and starches from different sources [J]. Polym. Degrad. Stab.,2005,90(3):449-454.
    [188]E. Petinakis, X.X. Liu, L. Yu, et al. Biodegradation and thermal decomposition of poly(lactic acid)-based materials reinforced by hydrophilic fillers [J]. Polym. Degrad. Stab.,2010,95(9):1704-1707.
    [189]G. Galgali, C. Ramesh, A. Lele. A rheological study on the kinetics of hybrid formation in polypropylene nanocomposites [J].Macromolecules,2001,34(4):852-859.
    [190]J. Li, C.X. Zhou, G. Wang, et al. Study on kinetics of polymer melt intercalation by a rheological approach [J]. J. Appl. Polym. Sci.,2003,89(2):318-323.
    [191]D.F. Wu, C.X. Zhou, F. Xie, et al. Study on rheological behaviour of poly(butylene terephthalate)/montmorillonite nanocomposites [J]. Eur. Polym. J.,2005,41(9): 2199-2207.
    [192]A.C. OSullivan. Cellulose:the structure slowly unravels [J]. Cellulose,1997,4(): 173-207.
    [193]A. Fomhals. Process and Apparatus for Preparing Artificial Threads [P]. US Patent Specification:1975504,1934.
    [194]A. Fomhals. Artificial Fiber Construction [P]. US Patent Specification:2109333,1938.
    [195]A. Fomhals. Method and Apparatus for the Production of Fiber [P]. US Patent Specification:2116942,1938.
    [196]X. Li, L.G. Tabil, S. Panigrahi. Chemical treatments of natural fiber for use in natural fiber-reinforced composites:A review [J]. J. Polym. Environ.,2007,15(1):25-33.
    [197]C.H. Xiang, Y.L. Joo, M.W. Frey. Nanocomposite Fiber Electrosun from Poly(lactic acid)/Cellulose Nanocrystals [J]. J. Biobased Mater. Bioenergy,2009,3(2):147-155.
    [198]J. Lee, G.Y. Tae, Y.H. Kim, et al. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ε-caprolactone) fiber on mechanical properties and cytocompatibility [J]. Biomaterials,2008,29(12):1872-1879.
    [199]A.H. Touny, S.B.. Bhaduri. A reactive electrospinning approach for nanoporous PLA/monetite nanocomposite fibers [J]. Mater. Sci. Engin.,2010,30(8):1304-1312.
    [200]C.L. Casper, J.S. Stephens, N.G. Tassi, et al. Controlling surface morphology of electrospun polystyrene fibers:effect of humidity and molecular weight in the electrospinning process [J]. Macromolecules,2004,37(2):573-578.
    [201]A.G. Jose, V.O. Niek, R. Patricia, et al. Assessment of the parameters influencing the fiber characteristics of electrospun poly(ethyl methacrylate) membranes [J]. Eur. Polym. J.,2010, In Press.
    [202]A.K. Mohanty, A. Wibowo, M. Misra, et al. Effect of Process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites [J]. Compos. part A,2004,35(3):363-370.
    [203]A.K. Bledzki, A. Jaszkiewicz. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibers-A comparative study to PP [J]. Compos. Sci. Technol.,2010,70(12):1687-1696.
    [204]M.D.H. Beg, K.L. Pickering. Accelerated weathering of unbleached and bleached kraft wood fibre reinforced polypropylene composites [J]. Polym. Degrade. Stab.,2008, 93(10):1939-1946.
    [205]C. H. Xiang, Y. L. Joo, M. W. Frey. Nanocomposite fibers electrospun from poly(lactic acid)/cellulose nanocrystals [J]. J. Biobased Mater. Bioenergy,2009,3(2):147-155.
    [206]C. Migliaresi, D. Cohn, A. Delollis, et al. Protease immobilization onto porous chitosan beads [J]. J. Appl. Polym. Sci.,1991,43(1):85-92.
    [207]K. Kim, M.K. Yu, X.H. Zong, et al. Control of degradation rate and hydrophilicity in electrospun non-woven poly (D, L-lactide) namofiber scaffolds for biomedical applications [J]. Biomaterials,2003,24(27):4977-4985.
    [208]X.L. Xu, X.S. Chen, A.X. Liu, et al. Electrospun poly(L-lactide)-grafted hydroxyapatite/poly(L-latide) nanocomposite fibers [J]. Eur. Polym. J.,2007,43(8): 3187-3196.
    [209]A.C. Vieira, J.C. Vieira, J.M. Ferra, et al. Mechanical study of PLA-PCL fibers during in vitro degradation [J]. J. Mecha. Behav. Biomed. Mater.,2011, In Press.
    [210]J. J. Miao, M. Miyauchi, T. J. Simmons, et al. Electrospinning of nanomaterials and applications in electronic components and devices [J]. J. Nanosci. Nanotechnol.,2010, 10(9):5507-5519.
    [211]X. G. Luo, L. N. Zhang. New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system [J]. Food Res. Int.,2011, In Press.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700