用户名: 密码: 验证码:
银纳米碗、纳米笼与中空多孔纳米片的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金、银纳米颗粒及其纳米壳层的一切特性及其应用,与其纳米颗粒的尺寸、形貌有很大的关系,特别是特殊结构(空心、碗状、笼状等),有可能实现特殊的性能。因此,对特殊形貌,特定尺寸金银纳米颗粒的制备研究显得尤为重要。
     本文在综述了国内外纳米科技的研究进展和金属银空心孔洞纳米结构的研究现状的基础上,针对目前采用模板法制备的碗状及笼状结构,通常是多晶或无定形的缺陷,在方法上也有一定的局限性,本文提出了一种简单的化学沉积法,在不需要模板的情况下,通过控制反应前驱物形貌以及反应条件的方法,制备出了银纳米碗、纳米笼以及中空夹层银纳米片,对其形貌和结构进行了表征,并对这种结构的形成机理和影响因素进行了分析,为新的碗状、笼状及中空多孔结构的制备和应用提供了新的思路。本文主要内容及结论如下:
     采用化学沉积法,以硝酸银为原料,甲醛作为还原剂,PVP为分散剂,在0℃下成功合成了内部空心表面呈大孔洞的粒径在80-150nm的碗状银纳米结构。研究了不同阶段的形貌和结构变化,探讨了氢氧化钠浓度、反应温度、还原剂浓度、PVP含量对最终形貌的影响规律。结果表明,通过控制氢氧化钠的浓度可以控制碗状结构的尺寸。不加PVP时也得到碗状结构,PVP在这个反应中主要起着分散剂的作用。还原生成的银原子在氧化银表面的沉积生长和反应中气体的生成释放是碗状结构形成的关键。通过紫外吸收光谱的分析,碗状结构的最大吸收峰位置在478nm,相比纳米粒子和纳米线发生了很大的红移,表明其具有更好的光学吸收性能。
     在与碗状结构同等制备条件下,采用硼氢化钠为还原剂,得到了表面多孔内部空心的的笼状结构,粒径在100nm左右。温度、还原剂浓度、氢氧化钠浓度等反应条件,对笼状结构的形成有很大的影响,条件的改变,就会有环状、框架状、不规则粒子的生成,通过机理的分析,导致这些结构出现的原因是由于笼状结构生成的过程中,表面孔过大并且比较密集,使得笼的框架坍塌,就会得到环状或坍塌后的不规则粒子生成。
     通过不同阶段的研究分析,再结合不同反应条件对产物的影响因素分析,得出碗状结构形成的机理是由以下几步组成的:1.Ag2O纳米小粒子的生成;2.Ag2O纳米小颗粒聚集成球形Ag2O粒子;3.Ag2O被还原成Ag;4.生成的Ag原子在Ag2O表面沉积生长和表面带小孔洞空心结构的逐渐形成;5.反应过程中气泡的释放促使表面大孔洞的形成,最终得到碗状结构。由于ostwald熟化效应,随着反应时间的增长,表面也表的更加的光滑平整。笼状结构的形成于碗状结构的不同之处在于第五步,反应过程中气体生成和释放的速率不一样促使最终粒子表面的孔洞不同。
     以碗状结构和笼状结构的形成机理为基础,通过改变添加剂来改变前驱物的组成和结构,得到了片状的中空多孔片状银纳米结构,边长为1微米左右,厚度小于100nm。通过不同时间段的形貌和结构分析,我们初步推断了中空多孔银纳米片的形成机理。
It is well known that the properties of gold and silver nanostructures are strongly dependent on their size, morphology, and composition. Very recently, the synthesis of cavity-containing metal nanoparticles with reduced symmetry, such as nanobowls, nanocups and hollow nanospheres has attracted great attention, as it could have specific applications in optics, magnetics, catalysts, biosensors, microchip reactors. Therefore it's important to do research on the special appearance, specific size of gold and silver nanoparticles.
     This paper reviews the progress of research on metallic silver nanostructure with hollow cavity at home and abroad. The nanobowl and nanocage obtained by template recently are often polycrystalline or amorphous, and the method is limited. This paper presents a simple chemical deposition method without any templates. In our work, we have developed a simple chemical deposition method for the preparation of silver nanobowl, nanocage and hollow porousnanoplate through controlling the reaction conditions and the morphology of precursor. Their morphology and structure were characterized. The mechanism and influence factors of the formation of these structures were discussed. This may provides a new ideas for the new preparation and application of reduced symmetric structure. In this paper, the content and conclusions are as follows:
     Silver nanobowls with the diameter of 80-150 nm have been successfully synthesized in this paper at 0℃through chemical deposition method using silver nitrate as precursor, formaldehyde as reductant, and PVP as dispersing agent. The changes of morphology at different stages were characterized, and the effect of the sodium hydroxide concentration, reaction temperature, the reductant concentration, PVP content on the the final morphology were studied. Results show that, the deposition and growth of Ag reduced by formaldehyde on the surface of silver oxide and the formation of bubbles during the reactions are the key for the formation of bowllike structure. Moreover, the size of bowl particles can tuned by the concentration of sodium hydroxide. Bowllike structures were also obtained without PVP, which indicates that PVP only plays the main role of dispersant in this reaction. The UV/vis absorption spectra showed the maximum absorption peaks at 478 nm. Compared to nanoparticles and nanowires, it has red shift which show these structures has larger absorbtion region.
     Based on the bowlike structure, we have synthesis 100nm cagelike structure with internal hollow and some holes on the surface, using sodium borohydride as reducing agent. The ring-shaped, frame, and irregular particles are present following the change of reaction conditions, such as temperature and the concentration of sodium hydroxide, etc. Through the mechanism analysis, these structures obtained are attributed to the collapse of the framework,the enlarge and merging of the holes on the surface during the formation of cagelike structure.
     On the basis of the above results, the processes of bowlike nanoparticles can be possibly summarized:(i) formation of Ag2O nanocrystallites; (ii) spherical aggregation of primary Ag2O crystallites; (iii) reductive conversion of Ag2O to Ag; (iv) deposition of Ag atoms on Ag2O and formation of hollow structures with pinholes on the surface; (v) growth of the main pore on the surface caused by the releasing of bubbles and formation of the bowllike morphology. The smooth surface is due to the Ostwald ripening process as the reaction time proceeded. Compared to the bowllike structures, cagelike structures are different in the fifth step. The difference in the generating and releasing rate of bubbles lead to the diffence on the morphology of the particles.
     Based on the formation mechanism of bowlike and cagelike structures, we have obtained hollow and porous silver nanosheets with a side length of 1 micrometer and thickness less than 100 nm by turning the composition of the precursor. Through the morphology and structure change at each step in the formation, we concluded the formation mechanism of these stuctures.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:1-4.
    [2]白春礼.纳米科学与技术[M].昆明:云南科学技术出版社,1995.
    [3]Moriarty P. Nanostructured materials. Reports on Progress in Physics.2001,64, (3), 297-381.
    [4]王永康,王立.纳米材料科学与技术[M].杭州:浙江大学出版社,2002:7-8.
    [5]Lee Myung Han, Oh Seong Geun, Suh Kyung Do, et. al. Preparation of silver nanoparticles in hexagonal phase formed by nonionic Triton X-100 surfactant. Colloids and Surfaces. 2002,210:49-60.
    [6]Vorobyova S A, Lennikvich A I, Sobal N S. Preparation of silver nanoparticles by interphase reduction. Colloids and Surfaces,1999,152:375-379.
    [7]顾大明,高农,程谨宁.次磷酸盐液相还原法快速制备纳米银粉.精细化工,2002,19(11):634-635.
    [8]Nersisyan H H, Lee J H, Son H T, et al. A new and effective chemical reduction method for preparation of nanosized silver powder and colloid dispersion. Materials Research Bulletin, 2003, (38):949-956.
    [9]Sondi Ivan, Goia Dan V, Matijcvic. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. Journal of Colloid and Interface Science,2003,260:75-81.
    [10]张太蔚,张露,杨生春,杨志懋,丁秉钧.银纳米粒子的形状控制合成与应用.稀有金属材料与工程.2007,36(8):1495-1499.
    [11]Zhu J, Liu S, Palchik O, et al, Shape-controlled synthesis of silver nanoparticles by Pulse sonoelectrochemical methods. Langmuir,16 (2000):6396-6399.
    [12]Rodrigues V, Fuhrer T, Ugarte D, Signature of atomic structure in the quantum conductance of gold nanowires. Physical Review Letters.2000,85, (19):4124-4127.
    [13]Benjamin J Wiley, Zenghui Wang, Younan Xia. Synthesis and Electrical Characterization of Silver Nanobeams. Nano Lett,2006,6 (10),2273-2278.
    [14]Egorova E.M, Revina A A. Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces,2000, (168):87-96.
    [15]Michaels A M, Nirmal M, Brus L E. Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. Journal of the American Chemical Society,1999,121(43):9932-9939.
    [16]Wiley B J, Im S H, Li Z Y, McLellan J, Siekkinen A, Xia Y A. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B,2006,110(32):15666-15675.
    [17]Nagy A J; Mestl G, Schlogl R. The role of subsurface oxygen in the silver-catalyzed, oxidative coupling of methane. Journal of Catalysis,1999,188(1):58-68.
    [18]Ishizaka T, Muto S, Kurokawa Y. Nonlinear optical and XPS properties of Au and Ag nanometer-size particle-doped alumina films prepared by the sol-gel method. Optics Communications,2001,190(6):385-389.
    [19]Hou H W, Wei Y L, Song Y L, Mi L W, Tang M S, Li L K, Fan Y T. Metal ions play different roles in the third-order nonlinear optical properties of d(10) metal-organic clusters. Angewandte Chemie-International Edition,2005,44(37):6067-6074.
    [20]Oh M, Mirkin C A. Chemically tailorable colloidal particles from infinite coordination polymers. Nature,2005,438(7068):651-654.
    [21]Pelton M, Aizpurua J, Bryant G. Metal-nanoparticle plasmonics. Laser & Photonics Reviews,2008,2(3):136-159.
    [22]Rosi N L, Mirkin C A, Nanostructures in biodiagnostics. Chemical Reviews,2005,105(4): 1547-1562.
    [23]Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods. Journal of the American Chemical Society 2002,124, (48),14316-14317.
    [24]Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors:review. Sensors and Actuators B-Chemical,1999,54(1-2):3-15.
    [25]El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts of Chemical Research,2001,34(4):257-264.
    [26]Niemeyer C M. Nanoparticles, proteins, and nucleic acids:Biotechnology meets materials science. Angewandte Chemie-International Edition,2001,40(22):4128-4158.
    [27]Jiang J, Bosnick K, Mailard M, et al. Single molecule Raman spectroscopy at the junctions of large Ag nanocrystals. J. Phys. Chem. B,2003,107:9964-9972.
    [28]Corni S, Tomasi J. Surface enhanced Raman scattering from a single molecule adsorbed on a metal particle aggregate:a theoretical study. J. Chem. Phys.,2002,116:1156-1164.
    [29]Kneipp K, Wang Y, Kneipp H, et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett.,1997,78:1667-1670.
    [30]Xu H M, Bjerneld E J, Kall M, et al. Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett.,1999,83:4357-4360.
    [31]Taton T A, Mirkin C A, Letsinger R L. Scanometric DNA array detection with nanoparticle probes. Science,2000,289:1757-1760.
    [32]Thanh N T, Rosenzweig Z. Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles. Anal. Chem.,2002,74:1624-1628.
    [33]Kim F, Song J H, Yang P D, Photochemical synthesis of gold nanorods. Journal of the American Chemical Society,2002,124(48):14316-14317.
    [34]Evanoff D D, Chumanov G. Synthesis and optical properties of silver nanoparticles and arrays. Chem. Phys.,2005,6(7):1221-1231.
    [35]Nair L S, Laurencin C T. Silver nanoparticles:Synthesis and therapeutic applications. Journal of Biomedical Nanotechnology,2007,3(4):301-316.
    [36]Kawasaki M, Mine S. Enhanced molecular fluorescence near thick Ag island film of large pseudotabular nanoparticles. J. Phys. Chem. B,2005,109:17254-17261.
    [37]Lesniak W, Bielinska A U, Sun K, et al. Silver/dendrimer nanocomposites as biomarkers: Fabrication, characterization, invitrotoxicity, and intracellular detection. Nano. Lett., 2005(5):2123-2130.
    [38]Daniel M C, Astruc D. How to very efficiently functionalize gold nanoparticles by "click" chemistry. Chemical Communications,2008, (44):5788-5790.
    [39]Benjamin Wiley, Yugang Sun, Younan Xia. Synthesis of Silver Nanostructures with Controlled Shapes and Properties. Acc. Chem. Res.,2007,40 (10):1067-1076.
    [40]Murphy C J, Sau T K, Gole A, Orendorff C J, Gao J, Gou L, Hunyadi S, Li T. Anisotropic Metal Nanoparticles:Synthesis, Assembly, and Optical Applications. J. Phys. Chem. B, 2005,109:13857.
    [41]Xia Y N, Sun Y U. Increased sensitivity of surface plasmon resonance of gold nanoshells compared to that of gold solid colloids in response to environmental changes. Anal. Chem. 2002,74:5297-5305.
    [42]Sun Y G, Xia Y N. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002,298:2176-2179
    [43]Jana N R, Ciearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem. Comm.,2001:617-618.
    [44]Wiley B J, Chen Y C, McLellan J M, Xiong Y J, Li Z Y, Ginger D, Xia Y N. Synthesis and optical properties of silver nanobars and nanorice. Nano Letters,2007,7(4):1032-1036.
    [45]Andrea Tao, Franklin Kim, Christian Hess, Joshua Goldberger. Langmuir-Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy. Nano Letters,2003,3 (9):1229-1233.
    [46]Qu L T, Shi G Q, Wu X F, Fan B. Facile route to silver nanotubes. Advanced Materials, 2004,16(14):1200.
    [47]Kim J U, Cha S H, Shin K, et al. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater.,2004,16:459-464.
    [48]Wen Xiaogang, Xie Yu Tao, Mak W C, Kwan Yee. Dendritic Nanostructures of Silver: Facile Synthesis, Structural Characterizations, and Sensing Applications. Langmuir,2006, 22 (10):4836-4842.
    [49]Jin R C, Cao Y W, Mirkin C A, et al. Photoinduced conversion of silver nanospheres to nanoprisms. Science,2001,294:1901-1903.
    [50]Chen S H, Wang Z L, Ballato J, et al. Monopod, bipod, tripod,and tetrapod gold nanocrystals. J.Am.Chem. Soc.,2003,125:16186-16187.
    [51]Wiley B J, Xiong Y J, Li Z Y, Yin Y D, Xia Y A. Right bipyramids of silver:A new shape derived from single twinned seeds. Nano Letters,2006,6(4):765-768.
    [52]Caswell K K, Bender C M, Murphy C J. Seedless, Surfactantless wet chemical synthesis of silver nanowires. Nano Lett.,2003,3:667-669.
    [53]Filankembo A, Pileni M P. Is the template of self-colloidal assemblies the only factor that controls nanocrystal shapes? J.Phys Chem.B.,2000,104:5865-5868.
    [54]Dinesh Jagadeesan, Uzma Mansoori, Pranab Mandal, Athinarayanan Sundaresan, and Muthusamy Eswaramoorthy. Hollow Spheres to Nanocups:Tuning the Morphology and Magnetic Properties of Single-Crystalline a-Fe2O3 Nanostructures. Angew. Chem. Int. Ed., 2008,47:7685-7688.
    [55]Wang Yanfang, Zhang Junhu, Chen Xiaolu, Li Xiao, Sun Zhiqiang, Zhang Kai, Wang Dayang, Yang Bai. Morphology-controlled fabrication of polygonal ZnO nanobowls templated from spherical polymeric nanowell arrays. Journal of Colloid and Interface Science,2008(322):327-332.
    [56]Jiao Liying, Fan Ben, Xian Xiaojun, Wu Zhongyun, Zhang Jin, Liu Zhongfan. Creation of Nanostructures with Poly(methyl methacrylate)-Mediated Nanotransfer Printing. J. Am. Chem. Soc.,2008,130 (38):12612-12613.
    [57]Peng Juan, Li Xue, Kim Dong Ha, Knoll Wolfgang. Fabrication and Photocatalytic Activities of Morphology-Controlled Titania Nanoobject Arrays by Block Copolymer Templates. Macromol. Rapid Commun.,2007,28:2055-2061.
    [58]Liu Junbing, Zhu Mingwei, Zhan Peng, Dong Han, Dong Youer, Qu Xiaotian, Nie Yihang, Wang Zhenlin. Morphology-controllable fabrication of ordered platinum nanoshells with reduced symmetry. Nanotechnology,2006(17):4191-4194.
    [59]Wang Xu Dong, Graugnard Elton, King Jeffrey S, Wang Zhong Lin, Christopher J. Summers. Large-Scale Fabrication of Ordered Nanobowl Arrays. Nano Letters,2004, 4(11):2223-2226.
    [60]Srivastava A K, Madhavi S, White T J, Ramanujan R V. Template assisted assembly of cobalt nanobowl arrays. J. Mater. Chem.,2005,15:4424-4428.
    [61]Wang Wang, Lao, Graugnard Elton, Summers Christopher J, Wang Zhong L. Large-Size Liftable Inverted-Nanobowl Sheets as Reusable Masks for Nanolithiography. Nano Lett., 2005,5(9):1784-1788.
    [62]Tsung Han Chen, Tsung-Yen Tsai, Shih-Chin Chang, Nyan-Hwa Tai, Hsuen-Li Chen. Two-dimensional metallic nanobowl array transferred onto thermoplastic substrates by microwave heating of carbon nanotubes. Nanotechnology,2008(19):465303.
    [63]Jian Ye, Pol Van Dorpe, Willem Van Roy, Gustaaf Borghs, and Guido Maes. Fabrication, Characterization, and Optical Properties of Gold Nanobowl Submonolayer Structures. Langmuir,2009,25 (3):1822-1827.
    [64]Lu Xianmao, Au Leslie, Joseph McLellan, Li Zhi Yuan, Manuel Marquez, Xia Younan. Fabrication of Cubic Nanocages and Nanoframes by Dealloying Au/Ag Alloy Nanoboxes with an Aqueous Etchant Based on Fe(NO3)3 or NH4OH. Nano Lett.,2007,7(6): 1764-1769.
    [65]Skrabalak Sara E, Chen Jingyi, Au Leslie, Lu Xianmao, Li Xingde, Xia Younan. Gold Nanocages for Biomedical Applications. Adv. Mater.,2007,19:3177-3184.
    [66]Chen Jingyi, Wiley Benjamin, Li ZhiYuan, Xia Younan. Gold Nanocages:Engineering Their Structure for Biomedical Applications. Adv. Mater.,2005,17:2255-2261.
    [67]Hristina Petrova, Lin Chien Hua, Hu Min, Chen Jingyi, Andrew R.Siekkinen, Xia Younan. Vibrational Response of Au-Ag Nanoboxes and Nanocages to Ultrafast Laser-Induced Heating. Nano Lett.,2007,7 (4):1059-1063.
    [68]Chen Jingyi, Wiley Benjamin, Joseph McLellan, Xiong Yujie, Li ZhiYuan, Xia Younan. Optical Properties of Pd-Ag and Pt-Ag Nanoboxes Synthesized via Galvanic Replacement Reactions. Nano Lett.,2005,5 (10):2058-2062.
    [69]Zeng Haibo, Liu Peisheng, Cai Weiping, Yang Shikuan, Xu Xiaoxia. Controllable Pt/ZnO Porous Nanocages with Improved Photocatalytic Activity. J. Phys. Chem. C,2008,112 (49):19620-19624.
    [70]Chen Jingyi, McLellan Joseph M, Andrew Siekkinen, Xiong Yujie, Li Zhi Yuan, Xia Younan. Facile Synthesis of Gold-Silver Nanocages with Controllable Pores on the Surface. J. Am. Chem. Soc.,2006,128 (46):14776-14777.
    [71]Prasad P N. Nanophotonics. John Wiley & Sons Inc, Hoboken, NJ,2004.
    [72]Wolf E L. Nanophyscis and Nanotechnology:an Introduction to Modern Concepts in Nanoscience. Wiley-VCH Verlag GmbH & Co. KGaA:Weinheim,2004.
    [73]Love J C, Gates B D, Wolfe D B, Paul K E, Whitesides G M. Fabrication and Wetting Properties of Metallic Half-Shells with Submicron Diameters. Nano Lett,2002(2): 891-894.
    [74]Charnay C, Lee A, Man S, Moran C E, Radloff C, Bradley R K, Halas N J. "Reduced Symmetry Metallodielectric Nanoparticles:Synthesis and Plasmonic Properties. J. Phys. Chem. B,2003,1077327.
    [75]Lu Y, Liu G L, Kim J, Mejia Y X, Lee L P. Nanophotonic crescent moonstructures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic fifld enhancement effect. Nano Lett.,2005,5119.
    [76]Li Z Y, Wang J, Gu B Y. Creation of partial band gaps in anisotropic photonic-band-gap structures. J. Phys. Soc., Japan,1998,67,3288.
    [77]Chen J, Chao D, Lu X, Zhang W, Manohar S K. General Synthesis of Two-Dimensional Patterned Conducting Polymer-Nanobowl Sheet via Chemical Polymerization. Macromol. Rapid Commun.2006,27,771.
    [78]Wang X D, Graugnard CS, Summers E, Wang CJ. Large-size liftable inverted-nanobowl sheets as reusable masks for nanolithiography. Nano letters 2005,5,1784-1788.
    [79]Xu D W, Graugnard, E King, Zhong JS, Summers LW. Large-scale fabrication of ordered nanobowl arrays, Nano letters 2004,4:2223-2226.
    [80]Peng J, Li X, Kim D H, Knoll W. Fabrication and photocatalytic activities of morphology-controlled titania nanoobject arrays by block copolymer templates. Macromol. Rapid Commun,2007,28,2055.
    [81]Liu J, Zhu M, Zhan P, Dong H, Dong Y, Qu X, Nie Y, Wang Z. Morphology-Controllable Fabrication of Ordered Platinum Nanoshells with Reduced Symmetry.Nanotechnology, 2006,17,4191.
    [82]Chen X, Wei X, Jiang K. Large-scale fabrication of ordered metallic hybrid nanostructures. Opt Express.2008,16,11888.
    [83]Srivastava A K, Madhavi S, White T J, Ramanujan R V. Template assisted assembly of cobalt nanobowl arrays. J. Mater.Chem.,2005,15,4424.
    [84]Xia Y, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. N. J. MRS Bulletin,2005,30,338.
    [85]Liu J, Dong H, Li Y, Zhan P, Zhu M, Wang Z. J. Appl. Phys,2006,45, L582.
    [86]Jian Ye, Pol Van Dorpe, Willem Van Roy, Gustaaf Borghs, Guido Maes. Fabrication, Characterization, and Optical Properties of Gold Nanobowl Submonolayer Structures. Langmuir,2009,25(3):1822-1827.
    [87]Dinesh Jagadeesan, Athinarayanan Sundaresan, Muthusamy Eswaramoorthy. Hollow Spheres to Nanocups:Tuning the Morphology and Magnetic Properties of Single-Crystalline a-Fe2O3 Nanostructures. Angew. Chem. Int. Ed.,2008,47:7685-7688.
    [88]Xiong Y J, Washio I, Chen J Y, Cai H G, Li Z Y, Xia Y N. Poly(vinyl pyrrolidone):a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions. Langmuir,2006,22:8563.
    [89]Sun Y G, Mayers B, Herricks T, Xia Y N. Transformation of silver nanospheres into nanobelts and triangular nanoplates through a thermal process. Nano Lett.,2003,3:955.
    [90]Chen, S. H.; Carroll, D. L., Synthesis and characterization of truncated triangular silver nanoplates. Nano Letters 2002,2, (9),1003-1007.
    [91]P Mulvaney, S Underwood. Effect of the solution refractive index on the color of gold colloids Langmuir,1994(10):3427-3430.
    [92]Kelly K L, Coronado E, Zhao L L, Schatz G C. The Optical Properties of Metal Nanoparticles:The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B,2003(107):668-677.
    [93]Lee K S, M A El-Sayed. Gold and silver nanoparticles in sensing and imaging:Sensitivity of plasmon response to size, shape, and metal composition. J. Phys. Chem. B,2006(110): 19220.
    [94]Burda C, Chen X B, Narayanan R, et al. Chemistry and properties of nanocrystals of different shapes [J]. ChemRev,2005,105:102521102.
    [95]John D, Aiken III, Richard G F. A review of modern transition-metal nanoclusters:their synthesis, characterization, and app lications in catalysis[J]. J M ol Catal A:Chem,1999, 145:1244.
    [96]Wiley B, Sun Y G, Mayers B, et al. Shape-controlled synthesis of metal nanostructures:The case of silver[J]. Chem Eur J,2005,11:4542463.
    [97]杨志林,胡建强,李秀燕,等.银纳米棒光学的离散偶极近似计算[J].化学物理学报,2004,17(3):532258.
    [98]谢丹,齐卫宏,汪明朴.金属纳米微粒熔化热力学性能的尺寸形状效应[J].金属学报,2004,10:104121044.
    [99]阮圣平,王兢,张力,等.纳米晶钛酸铅表面态对介电性能的影响[J].物理化学学报,2003,19(7):5932596.
    [100]Miller R E, ShenoyVB. Size dependent elastic propertie sof nanosized structural elements[J]. Nanotechnology,2000,11:1392147.
    [101]Jingyi Chen, Joseph M. McLellan, Andrew Siekkinen, Yujie Xiong, Zhi-Yuan Li, Younan Xia. Facile Synthesis of Gold-Silver Nanocages with Controllable Pores on the Surface. J. Am. Chem. Soc.,2006,128 (46):14776-14777.
    [102]赵秀芳,张少华.层状硅酸钠的研究.轻金属.2004,12:39-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700