用户名: 密码: 验证码:
不同结构的双环笼状含磷阻燃剂的合成及其在聚丙烯阻燃改性中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚丙烯(PP)是全球产量最大的树脂之一,具有生产成本低,综合力学性能好,无毒、质轻、耐腐蚀、电气性能好、易加工、易于回收等诸多优点,被广泛用于包装、纺织品、建材、汽车、电子/电气、办公用品及日用品领域。但是聚丙烯氧指数低,极易燃烧,这在一些领域限制了它的发展。
     膨胀型阻燃剂(IFR)是一种以磷氮碳为主要成分的“环境友好”的阻燃剂,用该阻燃剂阻燃PP时表面能生成膨胀炭层,该膨胀炭层隔热、隔氧、抑烟,并能防止产生熔滴,从而使PP具有较好的阻燃性能,越来越受到人们的青睐。针对PP易燃烧的缺点,本论文从当前研究比较活跃的膨胀型阻燃体系的阻燃化设计原理入手,对双环笼状膦/磷酸酯阻燃剂的合成、应用及阻燃机理等方面进行了较为系统而深入的研究和探讨,取得了一些创新性成果。主要内容概要如下:
     1.以季戊四醇和三氯氧磷为原料,合成了阻燃中间体1-氧代-4-羟甲基-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷(PEPA)。采用亲核取代的方法,以PEPA和苯膦酰二氯、硫代苯膦酰二氯为原料,合成了两种全新阻燃剂:二(1-氧代-4-亚甲氧基-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷)苯基膦酸酯(BCPPO)和二(1-氧代-4-亚甲氧基-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷)硫代苯基膦酸酯(BCPPS);改进了阻燃剂二(1-氧代-4-亚甲氧基-2,6,7-三氧杂-1-磷杂双环[2.2.2]辛烷)苯氧基磷酸酯(BCPPOO)的合成方法。研究了以上三种阻燃剂的合成路线和反应条件对产率的影响,结果表明:采用乙腈为溶剂、三乙胺为缚酸剂时,产率最高,分别为58.1% (BCPPO),73.5% (BCPPS)和61.0% (BCPPOO);采用FT-IR、1H-NMR对BCPPO、BCPPS和BCPPOO的结构进行了表征;采用TGA对三种化合物的热性能进行了研究,结果表明三者都具有优异的热稳定性和很高的残炭量。
     2.分别将BCPPO、BCPPS、BCPPOO与聚磷酸铵(APP)、三聚氰胺(MA)或三聚氰胺磷酸盐(MP)以不同的配比进行复配,并用于PP的阻燃处理,经LOI和UL-94测试表明,当APP: MA: BCPPO= 3: 1: 1,APP: MP: BCPPS= 2: 1: 2和APP: MP: BCPPOO=4: 2: 9,总添加量为30wt.%时,阻燃PP的LOI值分别是30.3,31.3和27.1,均通过UL-94 V-0级。对PP/APP/MA/BCPPO和PP/APP/MP/BCPPS体系的锥形量热测试表明,膨胀型阻燃剂的加入使PP的热释放速率、质量损失速率和烟释放速率都有明显的下降,证明其具有优异的阻燃性能。
     3.通过热重分析和扫描电镜对以BCPPO、BCPPS和BCPPOO为炭源的三种膨胀阻燃PP的热降解过程和燃烧残余物的形态进行了研究,探讨了不同阻燃剂的结构对膨胀PP阻燃体系阻燃性能的影响。
     4.采用协同阻燃技术处理膨胀阻燃PP体系(APP:MA:BCPPO=3:1:1),结果表明:硼酸、氧化锌和醋酸镍的加入进一步提高了体系的阻燃性能。分别添加1 wt.%的硼酸、氧化锌和醋酸镍,LOI值分别是34.2,32.2和32.8。其中以硼酸为协效剂效果最好,按最佳比例将体系的总添加量降低为25wt.%时,LOI值仍可达30.4,并且可通过UL-94 V-0级测试。
     5.热重分析表明,不论是在空气中还是在氮气中,膨胀阻燃PP体系的初始热分解温度都提前了,但最终的残炭量都大于纯PP,这在一定程度上有利于提高阻燃性能。通过对膨胀阻燃PP体系(APP:MA:BCPPO=3:1:1)热降解残余量的计算,发现实验值比计算理论值高,表明膨胀型阻燃剂各组分间存在着协同阻燃效果。采用Broido方法对PP/APP/MP/BCPPOO体系和纯PP的热氧化降解活化能进行了计算,表明阻燃剂的加入降低了热氧化降解活化能。
     6.采用SEM、FT-IR、XPS和XRD等分析测试方法,对膨胀型阻燃PP和协效阻燃机理进行了初步探讨。结果表明阻燃PP在燃烧时都可以形成膨胀炭层,但致密的炭层是决定阻燃性能好坏的重要标准。残炭分析表明,残炭中有磷酸类物质,这类物质具有很强的脱水作用,能使成炭剂等脱水成炭形成膨胀炭层,覆盖于聚合物表面,延缓了聚合物的氧化和脱水速度,保护了基体。在所研究的协同阻燃体系中,发现添加硼酸体系的炭层质量更好,其P/C、O/C、N/C元素浓度比率的变化表明了硼酸的加入改变了成炭过程,使阻燃性能得到进一步提高。
     7.对纯PP及阻燃PP体系的流变性能研究表明:在测试温度下所有试样均表现出假塑性流体的特征,表观粘度均随切变速率的增大而减小,即切力变稀行为。在同一温度下,阻燃PP比纯PP的表观粘度大,但阻燃PP各配方的表观粘度相差不大。XRD分析表明,IFR对PP的晶体结构没有影响,它们之间基本处于一种物理共混的状态。对纯PP和膨胀阻燃PP体系(APP:MA:BCPPO=3:1:1)进行了力学性能测试,结果表明IFR的加入使PP的拉伸性能、断裂伸长率和冲击强度有所下降,但弯曲强度有所提高;其力学性能与许多文献和商业产品报道的其他阻燃体系的值接近,甚至还略好。
As one of the maximal output resin, polypropylene (PP) is widely used in many fields such as housing, automobiles, electronic and electric industry, wire and cables due to its low cost, low density, low toxicity, excellent electrical resistance and ease of processing and moulding and so on. However, the flammability of PP limits its application fields.
     Intumescent flame retardant (IFR) is usually composed of phosphorus, nitrogen and carbon. To impart flame retardancy of PP, IFR can afford a swelling char layer, which can provides a thermal and physical barrier to the underlying material or bulk polymer during combustion. This dissertation mainly studies the synthesis, application and flame-retardant mechanism of three kinds of phosphorus-containing caged bicyclic flame retardants. The main contents are summarized as follows: 1. As an intermediate, 1-oxo-4-hydroxymethyl-2, 6, 7-trioxa-1-phosphabicyclo [2.2.2] octane (PEPA) was synthesized from pentaerythritol and phosphorus oxychloride. Phenylphosphonic dichloride (PPD), phenylphosphonothioic dichloride (PPTD) and phenyl dichlorophosphate (PDCP) were reacted with PEPA to produce bis (2, 6, 7- trioxa- 1- phosphabicyclo [2.2.2]octane- 1- oxo- 4- hydroxymethyl) phenylphosphonate (BCPPO), bis (2, 6, 7- trioxa- 1- phosphabicyclo [2.2.2] octane- 1- oxo- 4- hydroxymethyl) phenylphosphine sulfide (BCPPS) and bis (2, 6, 7- trioxa- 1- phosphabicyclo [2.2.2] octane- 1- oxo- 4- hydroxymethyl) phenyloxyphosphine (BCPPOO), respectively. Furthermore the routines were optimized, and the structures were characterized by FT-IR and 1H-NMR. The result of TGA showed that all of BCPPO, BCPPS, and BCPPOO had good thermal stability and high residues at 600℃, respectively.
     2. A large amount of flame retardant PP formulations based on BCPPO, BCPPS, BCPPOO, APP, MA or MP had been studied. Based on the results of LOI and UL-94 tests, three good flame retardant formulations were obtained: APP: MA: BCPPO= 3: 1: 1, APP: MP: BCPPS= 2: 1: 2 and APP: MP: BCPPOO= 4: 2: 9 when keeping the total loading of 30 wt.%, whose LOI values were 30.3, 31.3 and 27.1, respectively. The cone calorimeter tests showed that heat release rate (HRR), mass loss rate (MLR) and rate of smoke release (RSR) were decreased largely compared to pure PP.
     3. The thermal degradation process and residue after combustion of three flame-retardant PP based on BCPPO, BCPPS and BCPPOO as carbonization resource were studied by TG and SEM, respectively. The influence of different structures on flame retardancy was discussed.
     4. In order to improve further the flame retardancy of IFR-PP system, some potential synergistic flame retardants such as boric acid, zinc oxide and nickel acetate were added to IFR-PP systems. When small amount of boric acid was added to the BCPPO-based IFR-PP system (APP: MA: BCPPO=3: 1: 1), much better flame retardant effect was obtained than the corresponding system without boric acid. The mechanism analysis indicates that boric acid could be decomposed into boron oxide, which could paste the char and make the char more compact. However, zinc oxide and nickel acetate could react with APP to produce cross-linking materials to decrease the speed of the melt to flame area.
     5. The thermal behaviors were investigated by means of TG, and the results showed that the flame retardant PP degraded ahead of pure PP under both air and nitrogen atmosphere, but the final residue was much higher than that of neat PP. The Broido method was used to calculate the activation energy of PP/APP/MP/BCPPOO system and pure PP, and the incorporation of IFR could decrease the activation energy.
     6. The flame retardant mechanism of various systems was studied by means of SEM, FT-IR, XPS and XRD. Results showed that the compact char layer was a crucial factor for flame retardancy. Phosphorus-containing compounds were detected in intumescent char, and they could delay the oxidation of PP. The XRD analysis of intumescent char containing nickel acetate showed that phosphorus-nickel oxide and inorganic salts were detected.
     7. A capillary rheometer was used to investigate the rheological properties of various IFR-PP systems. Both neat PP and flame-retardant PP systems exhibit the pseudoplastic flow behavior, and the apparent viscosity decreases with the increase of shear rate. At a certain temperature, the IFR-PP systems had much higher apparent viscosities than neat PP, but there were not obvious differences of apparent viscosities among various IFR-PP systems. XRD was used to investigate the crystalline behaviors of various IFR-PP systems. IFR had no effect on the crystalline structure of PP. The investigation of mechanical properties showed that the tensile strength, elongation at break and Izod impact strength of IFR-PP systems decreased, especially elongation at break, but flexural strength increased compared to those of neat PP. However, the mechanical properties of the IFR-PP systems were a little better than those of some commercial flame-retardant PP products.
引文
1. 蒋爱山. 新疆克拉玛依“12·8”特大火灾. 人民公安. 1999, Z1: 67.
    2. 陈耀宏 , 任炳潭. 洛阳市东都商厦 “12.25”特大火灾人员大量死亡原因分析 . 消防科学与技术. 2001, (5): 57-58.
    3. Duquesne S., Le Bras M., Jama C., Weil E. D., Gengembre L. X-ray photoelectron spectroscopy investigation of fire retarded polymeric materials: Application to the study of an intumescent system. Polym. Degrad. Stab. 2002, 77(2): 203-211.
    4. Mercado L. A., Galià M., Reina J. A. Silicon-containing flame retardant epoxy resins: Synthesis, characterization and properties. Polym. Degrad. Stab. 2006, 91(11): 2588-2594.
    5. 徐应麟, 王元宏, 夏国梁. 高聚物材料的实用阻燃技术. 化学工业出版社. 北京. 1987, 16-17.
    6. 王永强. 阻燃材料及应用技术. 化学工业出版社. 北京. 2003, 9. 121-122.
    7. Horrocks A. R., Price D. Fire retardant materials. Woodhead Publishing Limited. Abington Hall. England. 2001, 9.
    8. 王玉忠, 郑长义. 阻燃材料与阻燃技术展望. 大自然探索. 1993, 12(3): 77-81.
    9. 欧育湘, 陈宇, 王筱梅. 阻燃高分子材料. 国防工业出版社. 北京. 2001, 3.
    10. Davis J., Huggard M. The technology of halogen-free flame retardant phosphorus additives for polymeric systems. J. Vinyl Addit. Technol. 1996, 2(1): 69-75.
    11. Braun U., Balabanovich A. I., Schartel B., Knoll U., Artner J., Ciesielski M., D?ring M., Perez R., Sandler J. K. W., Altst?dt V. Influence of the oxidation state of phosphorus on the decomposition and fire behaviour of flame-retarded epoxy resin composites. Polymer. 2006, 47(26): 8495-8508.
    12. Jimenez M., Duquesne S., Bourbigot S. Characterization of the performance of an intumescent fire protective coating. Surf. Coat. Technol. 2006, 201(3-4): 979-987
    13. Wang Z. Y., Han E. H., Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating. Prog. Org. Coat. 2005, 53(1): 29-37.
    14. Martín C., Hunt B. J., Ebdon J. R., Ronda J. C., Cádiz V. Synthesis, crosslinking and fame retardance of polymers of boron-containing difunctional styrenic monomers. React. Funct.Polym. 2006, 66(10): 1047–1054.
    15. Balabanovich A. I. The effect of melamine on the combustion and thermal decomposition behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 2004, 84(3): 451-458.
    16. Du L. C., Qu B. J., Xu Z. J. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite. Polym. Degrad. Stab. 2006, 91(5): 995-1001.
    17. Yeh J. T., Yang H. M., Huang S. S. Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene. Polym. Degrad. Stab. 1995, 50(2): 229-234.
    18. Sain M., Park S. H., Suhara F., Law S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 2004, 83(2): 363-367.
    19. Gui H., Zhang X. H., Liu Y. Q., Dong W. F., Wang Q. G., Gao J. M., Song Z. H., Lai J. M., Qiao J. L. Effect of dispersion of nano-magnesium hydroxide on the flammability of flame retardant ternary composites. Compos. Sci. Technol. 2007, 67(6): 974-980.
    20. Li Z. Z., Qu B. J. Flammability characterization and synergistic effects of expandable graphite with magnesium hydroxide in halogen-free flame-retardant EVA blends. Polym. Degrad. Stab. 2003, 81(3): 401-408.
    21. Fu M. Z., Qu B. J. Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends. Polym. Degrad. Stab. 2004, 85(1): 633-639.
    22. Chang S. Q., Xie T. X., Yang G. S. Effects of polystyrene-encapsulated magnesium hydroxide on rheological and flame-retarding properties of HIPS composites. Polym. Degrad. Stab. 2006, 91(12): 3266-3273.
    23. Liu Y., Wang Q. Synthesis of in situ encapsulated intumescent flame retardant and the flame retardancy in polypropylene. Polym. Compos. 2007, 28(2): 163-167
    24. Wang J. C., Chen Y. H. Microencapsulation of intumescent flame-retardant agent: Application to flame-retardant natural rubber composite. J. Appl. Polym. Sci. 2007, 104(3): 1828-1838.
    25. Montaudo G., Scamporrino E., Puglisi C., Vitalini D. Intumescent flame retardant for polymers. III. The polypropylene-ammonium polyphosphate-polyurethane system. J. Appl.Polym. Sci. 1985, 30(4): 1449-1460.
    26. Ma Z. L., Gao J. G., Niu H. J., Ding H. T., Zhang J. Polypropylene-intumescent flame-retardant composites based on meleated polypropylene as a coupling agent. J. Appl. Polym. Sci. 2002, 85(2): 257-262.
    27. Gao F., Tong L. F., Fang Z. P. Effect of a novel phosphorous–nitrogen containing intumescent flame retardant on the fire retardancy and the thermal behaviour of poly(butylene terephthalate). Polym. Degrad. Stab. 2006, 91(6): 1295-1299.
    28. Modesti M., Lorenzetti A., Simioni F., Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polym. Degrad. Stab. 2002, 77(2): 195-202.
    29. 王玉忠. 聚酯纤维阻燃化设计. 四川科学技术出版社. 成都. 1994, 53.
    30. 薜恩钰, 曾敏修. 阻燃科学及应用. 国防工业出版社. 北京. 1988, 109.
    31. 欧育湘. 阻燃剂-制造、性能及应用. 兵器工业出版社. 北京. 1997, 2-3.
    32. 骆介禹, 骆希明. 纤维素基质材料阻燃技术——织物、木材、涂料及纸制品的阻燃处理.化学工业出版社. 北京. 2003, 270.
    33. Christy R. M. Standards, bans and flame retardants. Plastics Compounding. 1993, 16(5): 56-72.
    34. 王保正. 聚丙烯用阻燃剂及阻燃聚丙烯. 塑料. 2004, 33(1): 54-59.
    35. 李向梅, 杨荣杰, 李晓东. 纳米材料对聚丙烯/八溴醚阻燃体系的影响研究. 中国塑料. 2005, 19(7): 71-74.
    36. 鲍志素. 低烟低卤阻燃聚丙烯的研制. 塑料助剂. 2006, (4): 34-36.
    37. 陈福花, 李荣勋, 陈国昌, 李超勤, 李少香, 刘光烨. 十溴二苯乙烷阻燃改性聚丙烯的研究. 塑料科技. 2004, (6): 30-34.
    38. 彭治汉, 欧育湘. 三(2,2-二溴甲基-3-溴丙基)磷酸酯对聚丙烯阻燃及流变性的影响中国料. 1999, 13(7): 68-71.
    39. 孙承凡. 塑料用无机阻燃剂技术进展与方向. 化工技术与开发. 2006, 35(9): 28-30.
    40. 钱军民, 李旭祥. 聚乙烯改性研究进展. 塑料. 2001, 30(2): 38-41.
    41. 王丽丽, 邱桂学, 潘炯玺, 王洪武. 氢氧化物阻燃剂在聚乙烯中的应用技术和研究进展. 塑料助剂. 2005, (1):12-16.
    42. Liu Y., Wang Q. Melamine cyanurate-microencapsulated red phosphorus flame retardant unreinforced and glass fiber reinforced polyamide 66. Polym. Degrad. Stab. 2006, 91(12): 3103-3109.
    43. Harashina H., Tajima Y., Itoh T. Synergistic effect of red phosphorus, novolac and melamine ternary combination on flame retardancy of poly(oxymethylene). Polym. Degrad. Stab. 2006, 91(9): 1996-2002..
    44. Du L. C., Qu B. J., Xu Z. J. Flammability characteristics and synergistic effect of hydrotalcite with microencapsulated red phosphorus in halogen-free flame retardant EVA composite. Polym. Degrad. Stab. 2006, 91(5): 995-1001.
    45. Braun U., Schartel B. Flame retardant mechanisms of red phosphorus and magnesium hydroxide in high impact polystyrene. Macromol. Chem. Phys. 2004, 205(16): 2185-2196.
    46. 马晓燕, 梁国正. 鹿海军改性双马来酰亚胺树脂体系的固化工艺及热稳定性研究. 化工新型材料. 2001, 29(8): 26-28.
    47. 张忠厚, 阎春绵. 膨胀石墨红磷复合阻燃聚丙烯的研究. 郑州轻工业学院学报(自然科学版). 2004, 19(3): 13-15.
    48. 张忠厚, 阎春绵, 王海旺, 布文安. 偶联剂对膨胀石墨复合阻燃聚丙烯的影响. 现代塑料加工应用. 2005, 17(2): 37-40.
    49. 刘丽君, 郭奋, 陈建峰. 纳米氢氧化铝阻燃剂表面改性及其在聚丙烯中的应用. 中国塑料. 2004, 18(2): 74-77.
    50. 姚佳良, 彭红瑞, 张志焜. 聚丙烯/纳米氢氧化镁阻燃复合材料的性能研究. 青岛科技大学学报. 2003, 24(2): 142-144.
    51. 张兵波, 戴礼兴. 聚丙烯氢氧化镁红磷无卤阻燃体系的研究. 河北工业大学学报. 2005, 34(4): 94-98.
    52. Shehata A. B. A new cobalt chelate as flame retardant for polypropylene filled with magnesium hydroxide. Polym. Degrad. Stab. 2004, 85(1): 577-582.
    53. Sain M., Park S. H., Suhara F., Law S. Flame retardant and mechanical properties of natural fibre–PP composites containing magnesium hydroxide. Polym. Degrad. Stab. 2004, 83(2): 363-367.
    54. Wang J., Tung J. F., Ahmad Fuad M. Y., Hornsby P. R. Microstructure and mechanicalproperties of ternary phase polypropylene/elastomer/magnesium hydroxide fire-retardant compositions. J. Appl. Polym. Sci. 1996, 60(9): 1425-1437.
    55. 贾修伟. 纳米阻燃材料. 化学工业出版社. 北京. 2005, 25.
    56. Gilman J. M. Flammability and thermal stability studies of polymer layered-silicate(clay) nanocomposites. Appl. Clay Sci. 1999, 15(1-2): 31-49.
    57. Zhu J., Wilkie C. A. Thermal and fire studies on polystyrene-clay nanocomposites. Polym Int. 2000, 49(10): 1158-1163.
    58. Bourbigot S., Devaux E., Flambard X. Flammability of polyamide-6/clay hybrid nanocomposite textiles. Polym. Degrad. Stab. 2002, 75(2): 397-402.
    59. Kashiwagi T, Harris R. H. Flame retardant mechanism of polyamide 6–clay nanocomposites. Polymer. 2004, 45(3): 881-891.
    60. Zhu J., Start P., Mauritz K. A., Wilkie C. A. Thermal stability and flame retardancy of poly(methyl methacrylate)-clay nanocomposites. Polym. Degrad. Stab. 2002, 77(2): 253-258.
    61. Chiang C. L., Ma C. C. M. Synthesis, characterization, thermal properties and flame retardance of novel phenolic resin/silica nanocomposites. Polym. Degrad. Stab. 2004, 83(2): 207-214.
    62. Lewin M. Some comments on the modes of action of nanocomposites in the flame retardancy of polymers. Fire Mater. 2003, 27(1): 1-7.
    63. Manias E., Touny A., Wu L. Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 2001, 13(10): 3516-3523.
    64. Tang Y., Hu Y., Song L. Preparation and thermal stability of polypropylene/ montmorillonite nanocomposites. Polym. Degrad. Stab. 2003, 82 (1): 127-131.
    65. Morgan A. B. Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym. Adv. Technol. 2006, 17(4): 206-217.
    66. Tang Y., Hu Y., Wang S. F., Gui Z., Chen Z. Y., Fan W. C. Intumescent flame retardant-montmorillonite synergism in polypropylene-layered silicate nanocomposites. Polym. Int. 2003, 52(8): 1396-1400.
    67. 何淑琴, 胡源, 宋磊, 唐勇. 阻燃聚丙烯/蒙脱土纳米复合材料的燃烧性能. 中国科学技术大学学报. 2006, 36(4): 408-412.
    68. 李田, 曾幸荣. 用Epoxy/OMMT纳米复合材料制备阻燃聚丙烯. 华南理工大学学报(自然科学版). 2006, 34(10): 50-54.
    69. Hu Y., Tang Y., Song L. Poly(propylene)/clay nanocomposites and their application in flame retardancy. Polym. Adv. Technol. 2006, 17(4): 235-245.
    70. 王彪, 孙广平, 孙国恩, 何晓峰, 刘景江. 聚丙烯/多壁碳纳米管复合材料的热性能和流变性能. 高分子学报. 2006, (3): 408-413.
    71. Hong C. E., Lee J. H., Kalappa P., Advani S. G. Effects of oxidative conditions on properties of multi-walled carbon nanotubes in polymer nanocomposites. Compos. Sci. Technol. 2007, 67(6): 1027-1034.
    72. Satapathy B. K., Weidisch R., P?tschke P., Janke A. Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos. Sci. Technol. 2007, 67(5): 867-879.
    73. Lisunova M. O., Mamunya Y. P., Lebovka N. I., Melezhyk A. V. Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur. Polym. J. 2007, 43(3): 949-958.
    74. Jose M. V., Dean D., Tyner J., Price G., Nyairo E. Polypropylene/carbon nanotube nanocomposite fibers: Process-morphology-property relationships. J. Appl. Polym. Sci. 2007, 103(6): 3844-3850.
    75. Moore E. M., Ortiz D. L., Marla V. T., Shambaugh R. L., Grady B. P. Enhancing the strength of polypropylene fibers with carbon nanotubes. J. Appl. Polym. Sci. 2004, 93(6): 2926-2933.
    76. Chang T. E., Jensen L. R., Kisliuk A., Pipes R. B., Pyrz R., Sokolov A. P. Microscopic mechanism of reinforcement in single-wall carbon nanotube/polypropylene nanocomposite. Polymer. 2005, 46(2): 439-444.
    77. Funck A., Kaminsky W. Polypropylene carbon nanotube composites by in situ polymerization. Compos. Sci. Technol. 2007, 67(5): 906-915.
    78. López Manchado M. A., Valentini L., Biagiotti J., Kenny J. M. Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by meltprocessing. Carbon. 2005, 43(7): 1499-1505.
    79. Xiao Y., Zhang X.Q., Cao W., Wang K., Tan H., Zhang Q., Du R. N., Fu Q. Dispersion and mechanical properties of polypropylene/multiwall carbon nanotubes composites obtained via dynamic packing injection molding. J. Appl. Polym. Sci. 2007, 104(3): 1880-1886.
    80. 赵芸, 丁雪佳, 矫庆泽, 梁吉, 张立群. 聚丙烯/碳纳米管复合材料的热稳定性研究. 中国塑料. 2006, 20(4): 43-46.
    81. Kashiwagi T., Grulke E., Hilding J., Harris R., Awad W., Douglas J. Thermal degradation and flammability properties of poly(propylene)/carbon nanotube composites. Macromol. Rapid. Commun. 2002, 23(13): 761-765.
    82. Kashiwagi T., Grulke E., Hilding J., Groth K., Harris R., Butler K., Shields J., Kharchenko S., Douglas J. Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer. 2004, 45(12): 4227-4239.
    83. Riva A., Camino G., Fomperie L., Amigouet P. Fire retardant mechanism in intumescent ethylene vinyl acetate compositions. Polym. Degrad. Stab. 2003, 82(1): 341-346.
    84. Reshetnikov I. S., Garashchenko A. N., Strakhov V. L. Experimental investigation into mechanical destruction of intumescent chars. Polym. Adv. Technol. 2000, 11(8-12): 392-397.
    85. Laoutid F., Ferry L., Leroy E., Lopez Cuesta J. M. Intumescent mineral fire retardant systems in ethylene–vinyl acetate copolymer: Effect of silica particles on char cohesion. Polym. Degrad. Stab. 2006, 91(9): 2140-2145.
    86. Liang H. B., Shi W. F., Gong M. Expansion behaviour and thermal degradation of tri(acryloyloxyethyl) phosphate/methacrylated phenolic melamine intumescent flame retardant system. Polym. Degrad. Stab. 2005, 90(1): 1-8.
    87. Modesti M., Lorenzetti A., Simioni F., Camino G. Expandable graphite as an intumescent flame retardant in polyisocyanurate–polyurethane foams. Polym. Degrad. Stab. 2002, 77(2): 195-202.
    88. Reshetnikov I. S., Yablokova M. Y., Khalturinskij N. A. Influence of surface structure on thermoprotection properties of intumescent systems. Appl. Surf. Sci. 1997, 115(2): 199-201.
    89. Wang Z. Y., Han E. H., Ke W. Fire-resistant effect of nanoclay on intumescent nanocomposite coatings. J. Appl. Polym. Sci. 2007, 103(3): 1681-1689.
    90. Kandola B. K., Horrocks A. R., Horrocks S. Char formation in flame-retarded fibre-intumescent combinations. Part V. Exploring different fibre/intumescent combinations. Fire Mater. 2001, 25(4): 153-160.
    91. Siat C., Le Bras M., Bourbigot S. Combustion behaviour of ethylene vinyl acetate copolymer-based intumescent formulations using oxygen consumption calorimetry. Fire Mater. 1998, 22(3): 119-128.
    92. 鲍治宇, 董延茂. 膨胀型阻燃剂的研究进展. 化学世界. 2006, (5): 311-315.
    93. Xie F., Wang Y. Z., Yang B., Liu Y. A novel intumescent flame-retardant polyethylene system. Macromol. Mater. Eng. 2006, 291(3): 247-253.
    94. Le Bras M., Camino G., Bourbigot S., Delobel R. Fire retardancy of polymers-the use of intumescence. Cambridge: The royal sociey of chemistry. 1998, 64.
    95. Camino G., Costa L., Trossarelli L. Study of the mechanism of intumescence in fire retardant polymers: Part I-Thermal degradation of ammonium polyphosphate-pentaerythritol mixtures. Polym. Degrad. Stab. 1984, 6(4): 243-252.
    96. 郭卫红, 汪济奎, 张德震, 徐种德. 聚烯烃阻燃剂及膨胀型阻燃剂的研究进展与展望. 材料导报. 2002, 16(3): 56-58.
    97. Jeffrey E. T., Tarrytown N. Y. Bis(pentaerythritol phosphate alcohol) alkylphosphonate. US 1994, 5362898.
    98. William J. P., Arthur G. M., Paul Y. Y. M., Des P. Bicyclic phosphate ether, ester, and carbonate intumescent flame retardant compositions. US 1989, 4801625.
    99. Joseph A. H., Bridgewater N. J. Cyclic diphosphonates. US 1981, 4268459.
    100. 欧育湘, 李昕. 双环笼状磷酸酯类膨胀阻燃聚丙烯的研究. 高分子材料科学与工程. 2003, 19(6): 198-201.
    101. Chen Y. H., Liu Y., Wang Q., Yin H., Aelmans N., Kierkels R. Performance of intumescent flame retardant master batch synthesized through twin-screw reactively extruding technology: effect of component ratio. Polym. Degrad. Stab. 2003, 81(2): 215-224.
    102. Le Bras M., Bourbigot S., Delporte C., Siat C., Tallec Y. L. New intumescent formulationsof fire-retardant polypropylene-discussion of the free radical mechanism of the formation of carbonaceous protective material during the thermo-oxidative treatment of the additives. Fire Mater. 1996, 20(4): 191-203.
    103. Almeras X., Le Bras M., Hornsby P., Bourbigot S., Marosi G., Keszei S., Poutch F. Effect of fillers on the fire retardancy of intumescent polypropylene compounds. Polym. Degrad. Stab. 2003, 82(2): 325-331.
    104. Almeras X., Dabrowski F., Le Bras M., Poutch F., Bourbigot S., Marosi G., Anna P. Using polyamide-6 as charring agent in intumescent polypropylene formulationsI. Effect of the compatibilising agent on the fire retardancy performance. Polym. Degrad. Stab. 2002, 77(2): 305-313.
    105. Almeras X., Dabrowski F., Le Bras M., Delobel R., Bourbigot S., Marosi G., Anna P. Using polyamide 6 as charring agent in intumescent polypropylene formulations II. Thermal degradation. Polym. Degrad. Stab. 2002, 77(2): 315-323.
    106. Almeras X., Renaut N., Jama C., Le Bras M., Tóth A., Bourbigot S., Marosi G., Poutch F. Structure and morphology of an intumescent polypropylene blend. J. Appl. Polym. Sci. 2004, 93(1): 402-411.
    107. Le Bras M., Bugajny M., Lefebvre J. M., Bourbigot S. Use of polyurethanes as char-forming agents in polypropylene intumescent formulations. Polym. Int. 2000, 49(10): 1115-1124.
    108. Wu Q., Qu B. Synergistic effects of silicotungistic acid on intumescent flame-retardant polypropylene. Polym. Degrad. Stab. 2001, 74(2): 255-261.
    109. Chen X. C., Ding Y. P., Tang T. Synergistic effect of nickel formate on the thermal and flame-retardant properties of polypropylene. Polym. Int. 2005, 54(6): 904-908.
    110. 田春明, 谢吉星. 金属氧化物对阻燃聚丙烯热降解动力学的影响. 山西大学学报(自然科学版). 2003, 26(3): 231-234.
    111. Lewin M., Endo M. Catalysis of intumescent flame retardancy of polypropylene by metallic compounds. Polym. Adv. Technol. 2003, 14(1): 3-11.
    112. Li B., Xu M. J. Effect of a novel charring–foaming agent on flame retardancy and thermal degradation of intumescent flame retardant polypropylene. Polym. Degrad. Stab. 2006, 91(6): 1380-1386.
    113. Demir H., Ark?s E., Balk?se D., ülkü S. Synergistic effect of natural zeolites on flame retardant additives. Polym. Degrad. Stab. 2005, 89(3): 478-483.
    114. Demir H., Balk?se D., ülkü S. Influence of surface modification of fillers and polymer on flammability and tensile behaviour of polypropylene-composites. Polym. Degrad. Stab. 2006, 91(5): 1079-1085.
    115. 廖凯荣, 卢泽俭, 倪跃新. 膨胀型阻燃剂中协效剂的碳化作用及其对阻燃性能的影响.高分子材料科学与工程. 1999, 15(1): 100-103.
    116. Verkade J. G., Reynolds L. T. Notes- The synthesis of a novel ester of phosphorus and of arsenic. J. Org. Chem. 1960, 25(4): 663-665.
    117. 周少林. 新型磷氮系阻燃剂的合成及其阻燃性能研究. 华中师范大学硕士学位论文. 2003, 10.
    118. 徐旭荣, 陈关喜, 胡耿源, 张雪芳. 磷杂螺环化合物的合成及表征. 精细化工. 1997, (14): 35-38.
    119. Li X., Ou Y. X., Zhang Y. H., Lian D. J. Synthesis and structure of a novel caged bicyclic phosphate flame retardant. Chin. Chem. Lett. 2000, 11(10): 887-890.
    120. Liu T. S., Wang C. S. Synergistic effect of a phosphorus-nitrogen flame retardant on engineering plastics. J. Appl. Polym. Sci. 2004, 91(1): 410-417.
    121. Balabanovich A. I., Balabanovich A. M., Engelmann J. Intumescence in poly(butylene terephthalate): the effect of 2-methyl-1,2-oxaphospholan-5-one 2-oxide and ammonium polyphosphate. Polym. Int. 2003, 52(8): 1309-1314.
    122. Babrauskas V., Peacock R. D. Heat release rate: the single most important variable in fire hazard. Fire Safety J. 1992, 18(3): 255-272.
    123. 舒中俊, 徐晓楠, 杨守生, 王勇. 基于锥形量热仪试验的聚合物材料火灾危险评价研究. 高分子通报. 2006, (5): 37-44.
    124. Gao M., Yang S. S., Yang R. J. Flame retardant synergism of GUP and boric acid by cone calorimetry. J. Appl. Polym. Sci. 2006, 102(6): 5522-5527.
    125. Schartel B., Braun U., Schwarz U., Reinemann S. Fire retardancy of polypropylene/flax blends. Polymer. 2003, 44(20): 6241-6250.
    126. Gallina G., Bravin E., Badalucco C., Audisio G., Armanini M., De Chirico A., Provasoli F.Application of cone calorimeter for the assessment of class of flame retardants for polypropylene. Fire Mater. 1998, 22(1): 15-18.
    127. Liu Y. L., Hsiue G. H., Lan C. W., Chiu Y. S. Phosphorus-containing epoxy for flame retardance: IV. Kinetics and mechanism of thermal degradation. Polym. Degrad. Stab. 1997, 56(3): 291-299.
    128. 李斌, 王建祺. 聚合物材料燃烧性和阻燃性的评价—锥形量热仪(CONE)法. 高分子材料科学与工程. 1998, 14(5): 15-19.
    129. 李斌, 孙才英, 张秀成. 用CONE/TG研究含淀粉膨胀阻燃聚丙烯体系的阻燃和烟释放.高分子材料科学与工程. 2000, 16(5): 146-149.
    130. 徐晓楠, 张健, 徐文毅, 郭子东. 膨胀阻燃聚丙烯(PP)的燃烧、裂解及热化学性能研究.消防科学与技术. 2005, 24(2): 215-217.
    131. Lv P., Wang Z. Z., Hu K. L., Fan W. C. Flammability and thermal degradation of flame retarded polypropylene composites containing melamine phosphate and pentaerythritol derivatives. Polym. Degrad. Stab. 2005, 90(3): 523-534.
    132. Fina A., Abbenhuis H. C. L., Tabuani D., Camino G. Metal functionalized POSS as fire retardants in polypropylene. Polym. Degrad. Stab. 2006, 91(10): 2275-2281.
    133. Bourbigot S., Le Bras M., Duquesne S., Rochery M. Recent advances for intumescent polymers. Macromol. Mater. Eng. 2004, 289(6): 499-511.
    134. Petrella R. V. The Assessment of Full-Scale Fire Hazards from Cone Calorimeter Data. J. Fire Sci. 1994, 12(1): 14-43.
    135. 齐兴国, 黄兆阁, 姚伟, 丁乃秀, 李荣勋, 刘光烨. Mg(OH)2及其与红磷复配阻燃聚丙烯复合材料的性能研究. 塑料. 2006, 35(5): 53-56.
    136. 胡小平. 聚乙烯用新型膨胀型阻燃剂的合成与应用及阻燃机理研究. 四川大学博士论文. 2005, 68.
    137. Camino G., Martinasso G., Costa L. Thermal degradation of pentaerythritol diphosphate, model compound for fire retardant intumescent systems: Part I—Overall thermal degradation. Polym. Degrad. Stab. 1990, 27(3): 285-296.
    138. Balabanovich A. I., Engelmann J. Fire retardant and charring effect of poly (sulfonyldiphenylene phenylphosphonate) in poly(butylene terephthalate). Polym. Degrad.Stab. 2003, 79(1): 85-92.
    139. Marosi G., Márton A., Anna P., Bertalan G., Marosf?i B., Szép A. Ceramic precursor in flame retardant systems. Polym. Degrad. Stab. 2002, 77(2): 259-265.
    140. Marosi G., Anna P., Márton A., Bertalan G., Bóta A., Tóth A., Mohai M., Rácz I. Flame-retarded polyolefin systems of controlled interphase. Polym. Adv. Technol. 2002, 13(10-12): 1103-1111.
    141. Zhu S. W., Shi W. F. Synthesis, characterization and flame retardancy of methacrylated phosphate/diphosphate. Polym. Int. 2004, 53(3): 266-271.
    142. Li Q., Zhong H. F., Wei P., Jiang P. K. Thermal degradation behaviors of polypropylene with novel silicon-containing intumescent flame retardant. J. Appl. Polym. Sci. 2005, 98(6): 2487-2492.
    143. Pages P., Carrasco F., Saurina J., Colom X. FTIR and DSC study of HDPE structural changes and mechanical properties variation when exposed to weathering aging during canadian winter. J. Appl. Polym. Sci. 1996, 60(2): 153-159.
    144. Bugajny M., Borbigot S. The origin and nature of flame retardance in ethylene-vinyl acetate copolymers containing hostaflam AP 750. Polym. Int. 1999, 48(4): 264-270.
    145. Bourbigot S., Le Bras M., Gengembre L., Delobel R. XPS study of an intumescent coating application to the ammonium polyphosphate/pentaerythritol fire-retardant system. Appl. Surf. Sci. 1994, 81(3):299-307.
    146. Pels J. R., Kapteijn F., Moulijn J. A., Zhu Q., Thomas K. M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon. 1995, 33(11): 1641-1653.
    147. Qu B. J., Xie R. C. Intumescent char structures and flame-retardant mechanism of expandable graphite-based halogen-free flame-retardant linear low density polyethylene blends. Polym. Int. 2003, 52(9): 1415-1422.
    148. Brown N. M. D., Hewitt J. A., Meenan B. J. X-ray-induced beam damage observed during x-ray photoelectron spectroscopy (XPS) studies of palladium electrode ink materials. Surf. Interf. Anal. 1992, 18(3): 187-198.
    149. Zhu S. W., Shi W. F. Thermal degradation of a new flame retardant phosphate methacrylatepolymer. Polym. Degrad. Stab. 2003, 80(2): 217-222.
    150. Rosenquist N. R. Flame retardant copolyester-carbonate compositions. US 1984, 4454275.
    151. Liu P. G., Liu N. I. Flame retardant polyester blends. US 1995, 5256714.
    152. Lewin M. Flame retardant polyamide compositions. US 1995, 5424344.
    153. Ban D. M., Wang Y. Z., Yang B., Zhao G. M. A novel non-dripping oligomeric flame retardant for polyethylene terephthalate. Eur. Polym. J. 2004, 40(8): 1909-1913.
    154. Krause W. Process for making alkyl or arylthiophosphonic acid. US 1983, 4415505.
    155. Camino G., Costa L., Martinasso G. Intumescent fire-retardant systems. Polym. Degrad. Stab. 1989, 23(4): 359-376.
    156. Hu X. P., Li Y. L., Wang Y. Z. Synergistic effect of the charring agent on the thermal and flame retardant properties of polyethylene. Macromol. Mater. Eng. 2004, 289(2): 208-212.
    157. Bourbigot S., Le Bras M., Delobel R., Gengembre L. XPS study of an intumescent coating: II. Application to the ammonium polyphosphate/pentaerythritol/ethylenic terpolymer fire retardant system with and without synergistic agent. Appl. Surface Sci. 1997, 120(1-2): 15-29.
    158. 王建祺. 电子能谱学(XPS/XAES/UPS)引论. 国防工业出版社. 北京. 1992, 546-550.
    159. Gresham J. T., Somerset N. J. Flame-retardant polyester fiber compositions. US 1975, 3883478.
    160. Gresham J. T., Somerset N. J. Phosphate esters. US 1976, 3944633.
    161. Sato T., Tando K., Taketani Y. Fire- and heat-resistant polycarbonate resin compositions containing bicyclophosphates. JP 2001, 106889.
    162. Jimenez M., Duquesne S., Bourbigot S. Intumescent fire protective coating: Toward a better understanding of their mechanism of action. Thermochimica acta. 2006, 449(1–2): 16–26.
    163. 黄承亚, 龚克成, 赵彦芝, 李红. 氧化锌催化膨胀型阻燃剂对PP阻燃及力学性能的影响. 塑料工业. 2006, 34(12): 57-59.
    164. 赵斌, 杨阳, 包建华, 陈慧兰. 利用环糊精包结的醋酸镍制备NiO纳米粒子. 无机化学学报. 2006, 22(5): 952-956.
    165. 马延风, 张明慧, 李伟, 张宝贵, 陶克毅. 高比表面NiP非晶态合金的制备及其催化性能. 催化学报. 2004, 25(12): 973-978.
    166. 马延风, 李伟, 张明慧, 张宝贵, 陶克毅. 以次磷酸镍为原料制备NiP和非晶态NiPB合金的新方法. 物理化学学报. 2002, 18(10): 938-942.
    167. Gugumus F. Re-examination of the thermal oxidation reactions of polymers 3. Various reactions in polyethylene and polypropylene. Polym. Degrad. Stab. 2005, 77(1): 147-155.
    168. 王玉忠, 郑长义. 高聚物流变学导论. 四川大学出版社. 成都. 1989, 121.
    169. 杨永芳, 刘敏江, 田立斌. 聚乙烯/石墨阻燃复合材料的研究. 中国塑料. 2003, 17(2): 43-45.
    170. Jha N. K., Misra A. C., Bajaj P. Flame retardation of polypropylene: Effect of organoantimony compounds on the melt flow behavior. Polym. Eng. Sci. 1986, 26(4): 332-336.
    171. Jha N. K., Misra A. C., Tiwary N. K., Bajaj P. Flame retardation of polypropylene: Effect of silane treated antimony compounds. Polym. Eng. Sci. 1985, 25(7): 434-441.
    172. 何曼君, 陈维孝, 董西侠. 高分子物理. 复旦大学出版社. 上海. 1990, 275-276.
    173. 周箭. 无卤阻燃剂磷酸酯蜜胺盐聚合物的制备及应用. 浙江大学硕士论文. 2004, 80.
    174. 曲敏杰, 冯钠, 王新红, 夏英, 蔡月芬. 无卤阻燃剂对聚丙烯复合材料阻燃性能及力学性能的影响. 大连轻工业学院学报. 2001, 20(4): 245-247.
    175. 马志领, 高俊刚. 阻燃剂组成对膨胀型阻燃聚丙烯性能的影响. 高分子材料科学与工程. 2004, 20(2): 107-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700