用户名: 密码: 验证码:
基于光栅衍射光干涉的位移测量技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研制结构紧凑的高精度纳米分辨力位移测量装置,对基于光栅衍射光干涉的位移测量技术进行了理论研究并研制了原理样机。
     系统地分析了光栅位移测量理论及方法。基于标量衍射理论,建立了透射式单光栅系统数学模型,分析了光栅栅距等参数对莫尔干涉的影响;利用矢量衍射理论给出了任意斜入射条件下的广义光栅方程,分析了光栅栅距等参数对衍射级次和衍射效率的影响,讨论了有限尺寸高斯光束入射时的衍射特性。
     提出和实现了一种采用长度为100mm、刻线密度为400lp/mm的高密度单光栅衍射光干涉的位移测量系统,两衍射光进行差频干涉,实现了光学四倍频,原始信号周期达到0.6μm。采用偏振移相的方法获得四路空间相位相差90°的原始信号,系统进行1024倍电子细分,细分后系统分辨率达到0.586nm。
     利用三光栅理论建立了反射式双光栅系统的光强模型,分析了系统参数对调制光强的影响并与双光栅理论结果进行了对比,讨论了光源尺寸等因素对系统输出信号的影响;针对典型Littrow模式建立了输出信号之间相位关系的模型,分析了光栅栅距等参数对相位关系的影响。
     分析了影响光栅位移测量系统精度的各种误差因素,针对环境变化造成的随机误差进行了相应的滤波处理。根据信号特点设计了FIR数字滤波器,能够有效地抑制低频噪声的影响;基于平稳卡尔曼滤波理论,在典型的电机控制情况下,给出了卡尔曼滤波的一般模型,通过仿真和实验证明了方法的有效性。
In order to develop compact high-precision nano-resolution displacement measuring device, diffraction grating-based optical interferometry measuring displacement theory and prototype machine was developed.
     Grating displacement measurement theory and methods was systematically analyzed. Based on the scalar diffraction theory, single-grating transmission system model was established and the effect of parameters such as grating pitch on the Moore fringe was analyzed. Using vector diffraction theory, generalized grating equation under the condition of any oblique incidence is given. The impact of Grating pitch and other parameters on diffraction orders and the diffraction efficiency was analyzed. The diffraction characteristics when the finite-size Gaussian beam incidence was discussed.
     A diffraction interference displacement measuring system was proposed and implemented which use a high-density single-grating whose length is 100mm, groove density is 400lp/mm. When the two diffracted beam with small frequency difference meet and interfere, the interference fringes changes four periods when the grating is moving a grating period relative the reading head, so the original signal period is 0.6μm. Stable signal phase difference was obtained by polarized light interference. The resolution of the system is 0.586nm after 1024-fold subdivision.
     Reflective intensity double-grating system model was established by three grating theory. The effect of system parameters on light intensity modulation was analyzed and the result was compared with two grating theory. The impact of Source size and other factors on system output signal was discussed. For the typical Littrow mode, the model of phase relationship between the output signal was established. The effect of parameters such as grating pitch on phase relationship was analyzed.
     Factors which affect the precision grating displacement measuring system were analyzed. The random error caused by environmental changes was processed by filtering. FIR digital filter was designed according to the signal characteristics which can effectively reduce the effect of low frequency noise. The general Kalman filter was given in a typical case of motor control. The simulation and experimental results showed the effectiveness of the method.
引文
[1]张世轶,艾华,韩旭东.新型光电轴角编码器的发展与应用[J].长春理工大学学报, 2005, 28(4): 43-46.
    [2]蒋向前,肖少军,谢铁邦等.光栅技术在纳米测量中的应用[J].仪器仪表学报, 1995, 16(1): 374-377.
    [3] D. Post.莫尔条纹技术在精密测量中的应用[J].国外计量, 1975, (5): 8-10.
    [4]焦子麟.应用莫尔条纹记数系统的精密测量仪器[J].国外计量, 1976, (6): 3-5.
    [5]董莉莉,熊经武,万秋华.光电轴角编码器的发展动态[J].光学精密工程, 2000, 8(2) : 198-202.
    [6] Y. Fujiwara. The characteristic of the newest encoder and future expansion[J]. Mechanical Automation, 1986, 18(7):18-22.
    [7]艾华,丁林辉.光学式轴角编码器的研究现状与发展分析[J].智能机器人传感器实验室学术论文年报, 1993,第一卷: 130-134.
    [8]程晓辉,赵洋,李达成.光学纳米测量方法及发展趋势[J].光学技术, 1999, 3: 73-77.
    [9] Huang R, Wu H M, Kang J F, et al. Challenges of 22 nm and beyond CMOS technology[J]. Sci China Ser F-Inf, 2009, 52(9):1491-1533.
    [10] Whitehouse D.J. Nanotechnology instrumentation[J]. Measurement and control, 1991, 24(2): 37~46.
    [11] Franks A. Nanotechnology opportunities[J]. Physics engineering science instrument, 1987, 20: 237~238.
    [12]齐永岳,赵美蓉,林玉池.纳米测量系统的研究现状与展望[J].仪器仪表学报2003, 24(4): 91~94.
    [13] Nakayama K. Precision physical measurement and nanotechnology[M]. Metrologia, 1992, 28(6): 443~453.
    [14] Rakels J. H. Nanometric surface finish measurement by optical diffraction[J]. Measurement and control, 1991, 24(2): 156~162.
    [15]周兆英,叶雄天,崔天佑等.微纳米技术及微型机电系统[J].光学精密工程,1998, 6(1): 1~7.
    [16]李代林,王向朝,王学锋等.复合光源实时微振动干涉测量仪[J].中国激光,2004, 31(3): 350~353.
    [17]卢国钢.现代光栅测量技术[J].世界制造技术与装备, 2002 (5)
    [18]程晓辉,赵洋,李达成.光学纳米测量方法及发展趋势[J].光学技术, 1999, 3:73-77.
    [19] Kai Engelhardt and Peter Seiltz. Absolute, high-resolution optical position encoder[J]. January 1996, 35(1), 201-208.
    [20] Yin Chunyong, Chao Zhixia, Gao Sai, et al. New advance in laser interferometry[J]. Proceedings of SPIE, 2000, 4221:19~23.
    [21] Dario Mancini, Enrico Cascone, Pietro Schipni. Ganlileo High-Resolution Encoder System[J]. SPIE, Vol.3112, 1997, 328-334
    [22] KAJIMA M, MATSUMOTO H. Picometer positioning system based on a zooming interferometer using a femtosecond optical comb[J]. OPTICS EXPRESS, 2008, 16(3) :1497-1506
    [23] Koich Kudo, Hido Meada, Nobuyuki Baba. High Resolution Encoder Using Double Gratings[J]. SPIE, 1995(2577): 138-145.
    [24] A. T. Shepherd.莫尔条纹测量的进展[J].国外计量, 1980, (6): 1-5.
    [25]森山茂夫等.用衍射光栅进行精密位移检测[J].国外计量, 1984, (6): 11-13.
    [26]王力锋.衍射光栅技术进展[J].光机电信息, 1981, 15(1): 23-25.
    [27]王宇志,艾华,韩旭东.应用光栅自成像的编码器莫尔条纹信号提取[J].光电工程, 2009,36(1):78-87
    [28]李成贵,董申.高精度光栅干涉测量技术及仪器[J].国外计测, 2000, 20(1): 36-39
    [29]艾华.单光栅计量系统的研究[J].全国第二届机器人学术论文集, 1989
    [30]孔智勇,赵红颖,熊文卓,等.采用衍射、干涉技术提高光电轴角编码器的测角精度和分辨率[J].光学精密工程, 2001, 9(3): 260-265.
    [31] Ishizuka et al. DISPLACEMENT MEASURING APPARATUS [P]. United States Patent: 4979826, 1990-12-25
    [32] Ishizuka et al. ROTARY ENCODER USING REFLECTED LIGHT [P]. United States Patent: 5036192, 1991-7-30
    [33] Ishii et al. DEVICE HAVING SIGNAL INTERPOLATION CIRCUIT AND DISPLACEMENT MEASURING APPARATUS COMPRISING THE DEVICE [P]. United States Patent: 5067089, 1991-11-19
    [34]索尼磁尺株式会社.光学位移测量仪[P].中国专利:CN 85102930A, 1986-10-8
    [35] Chiang, W.W. and Lee, C.K., Wavefront reconstruction optics for use in disk drive position measurement system, U.S. Patent No. 5442172, 1995.
    [36] Donald K. Mitchell, A Radiation-Hardened, High-Resolution Optical Encoder for Use in Aerospace Applications[M], Proc. of SPIE Vol. 6958, 69580O, 2008
    [37]米凤文,戴旭涵,沈亦兵等. 0.1μm大行程精密定位控制系统的研究[J].仪器仪表学报, 2000(1): 89-94
    [38]郭军,王选择,谢铁邦.一种二维测长单元[P].中国专利: CN02290387.9, 2002-12-13
    [39] U.S. Patent 6,259,531. Displacement information measuring apparatus with hyperbolic diffraction grating.
    [40] U.S. Patent 5,621,527. Apparatus for measuring relative displacement between the apparatus and a scale which a grating is formed.
    [41] U.S. Patent 5,574,559. Displacement detection apparatus using multiple displacement detection signals formed by a multiple phase combination grating.
    [42] U.S. Patent 5,517,307. Probe measurement apparatus using a curved grating displacement interferometer.
    [43] U.S. Patent 5,499,096. Optical instrument and measurement for measuring displacement of scale using different order diffraction of a diffraction grating.
    [44] U.S. Patent 5,424,833. Interferential linear and angular displacement apparatus having scanning and scale grating respectively greater than and less than the source wavelength.
    [45] U.S. Patent 5,404,220. Measuring method and measuring apparatus for determining the relative displacement of a diffraction grating with respect to a plurality of beams.
    [46] U.S. Patent 5,351,230. Optical information system focal point displacement detecting means having Fresnel zone plates with rectilinear grating.
    [47] U.S. Patent 5,327,218. Method and apparatus for measuring displacement by using a diffracted inverted image projected on a diffraction grating.
    [48] U.S. Patent 5,165,045. Method and apparatus for measuring displacement having parallel grating lines perpendicular to a displacement direction for diffracting a light beam.
    [49] U.S. Patent 5,164,789. Method and apparatus for measuring minute displacement by subject light diffracted and reflected from a grating to heterodyne interference.
    [50] U.S. Patent 5,035,507. Grating-interference type displacement meter apparatus.
    [51] U.S. Patent 4,912,320. Optical type encoder including diffraction grating for producing interference fringes that are processed to measure displacement.
    [52] U.S. Patent 4,874,941.Optical displacement sensor with a multi-period grating.
    [53] U.S. Patent 4,079,252. Photoelectric grating displacement measuring apparatus.
    [54] U.S. Patent 4,595,991. Position measuring method and annaratus.
    [55]薛实福等.一种新型的单频激光干涉技术[J].清华大学学报, 1993, 33(2).
    [56]徐毓娴,薛实福,李庆祥.新型自扫描激光干涉系统[J].光学技术, 1998,(4).
    [57]赵洋,李达成,梁晋文.外差激光干涉仪的实现方法及其特点[J].计量技术, 1996, 7
    [58]韩旭东,艾华.一种新型单频激光干涉系统的研究[J].光电工程, 2002, 29(5): 49-51.
    [59]韩旭东,艾华.共光路移相单频激光干涉测长系统[J].光学技术, 2004, 30(2): 195-197.
    [60]邵根富,张旭等.计量光栅莫尔信号微控制器细分技术的研究[J].电子测量技术, 1994, 4: 44-46.
    [61]张善钟等.计量光栅技术[M].北京:机械工业出版社,1985
    [62]祝绍箕等.衍射光栅[M].北京:机械工业出版,1986
    [63]叶盛祥.光电位移精密测量技术[M].成都:四川科技出版社, 2003.
    [64]郁道银等.工程光学[M].北京:机械工业出版,1999
    [65]梁拴廷.物理光学[M].北京:机械工业出版社,1987
    [66]金国藩等.二元光学[M].北京国防工业出版社,1998
    [67]李景镇.光学手册[M].西安:陕西科学技术出版社,1986
    [68] M. Neviere, E. Popov. Electromagnetic theory of gratings: review and potential applications[J]. SPIE, 1998, Vol. 3450:2-10.
    [69] E. Lalor. Conditions for the validity of the angular spectrum of plane waves[J]. J.Opt.Soc.Am., 1968, 58: 1235-1237.
    [70] Jon M. Bendickson. Analysis of finite diffractive optical elements[D]. Georgia institute of technology, 2000.
    [71]金国藩,谭峭峰.二元光学[J].光电子技术与信息, 2001, 14(5): 1-10.
    [72] Prather D. W., Mirotznik M. S., Mait J. N. Boundary integral methods applied to the analysis of diffractive optical elements[J]. J.Opt. Soc.Am., 1997, 14(1):34-43.
    [73] Sony Penh, Morris G M. Efficient implementation of the rigorous coupled-wave analysis for surface-relief gratings[J]. J.Opt.Soc.Am, 1995, 12(5): 1087-1096.
    [74] Burckhardt C. B. Diffraction of a plane wave at a sinusoidally stratified dielectric grating[J]. J.Opt.Soc.Am, 1966,A56(11): 1502-1509.
    [75] Kaspar F. G. Diffraction by thick, periodically stratified gratings with complex dielectric constant[J]. J.Opt.Soc.Am, 1973, A63(1): 37-45.
    [76] Kong J. A. Second-order coupled-mode equations for spatially periodic media[J]. J.Opt.Soc.Am, 1977, A67(6): 825-829.
    [77] Knop K. Rigorous diffraction theory for transmission phase crating with deep rectangular grooves[J]. J.Opt.Soc.Am, 1978, A68(9): 1206-1210.
    [78] Magnusson R, Gaylord T. K. Analysis of multiwave diffraction of thick crating[J]. J.Opt.Soc.Am, 1977, A67(9): 1165-1170.
    [79] Moharam M. G, Gaylord T. K. Rigorous coupled-wave analysis of planar-grating diffraction[J]. J.Opt.Soc.Am, 1981, A71(7): 811-818.
    [80] Moharam M. G, Gaylord T. K. Chain-matrix analysis of arbitrary-thickness dielectric reflection crating[J]. J.Opt.Soc.Am, 1982, A72(10): 1385-1392.
    [81] Moharam M. G, Gaylord T. K. Rigorous coupled-wave analysis of crating diffraction E-mode polarization and losses[J]. J.Opt.Soc.Am, 1983, A73(4): 451-455.
    [82] Magnusson R, Gaylord T. K. Equivalence of multiwave couple-wave theory and modal theory for periodic-media diffraction[J]. J.Opt.Soc.Am, 1978, A68(12): 1777-1779.
    [83]吕乃光.傅里叶光学[M].北京:机械工业出版社, 2002
    [84]顾德门.傅里叶光学导论[M].北京:科学出版社, 1979.
    [85]王雅黎.莫尔条纹的傅里叶分析[J].光学机械, 1983, 74(5): 33-36.
    [86] J. C. Brasunas and G. M. Cushman. Uniform time-sampling Fourier transform spectroscopy[J]. Appl. Opt. 1997, 36, 2206-2210
    [87] J. W. Brault. New approach to high-precision Fourier transform spectrometer design[J]. Appl. Opt. 1996, 35, 2891-2896
    [88]蒋诚志,陈林才,徐可欣.光栅衍射多普勒效应位移测量的理论分析和实验结果[J].光学学报, 1992, 12(8): 755-758.
    [89]郝德阜.衍射光栅的半波相位差面及其与光栅误差的关系[J].光学机械, 1983, (5): 54-60.
    [90]熊文卓,吴江洪,孔智勇等.细光栅自成像光电轴角编码器[J].光电工程, 2004, 31(1):46-48.
    [91] M. C. Hutley. Diffraction Gratings[M]. New York: Academic Press,1982.
    [92] Wronkowski L. Diffraction model of an optoelectronic displacement measuring transducer [J]. Opt. Laser. Technol, 1995, 27(2):81-88.
    [93]吴凡.高精度编码器的裂相指示光栅[J].光电工程, 2001, (05).
    [94]刘晓军,宋浩.基于偏振相移的干涉条纹细分原理[J].华中科技大学学报(自然科学版), 2008, (06)
    [95]周常河,陆云清.高密度光栅偏振相关自成像的探测装置[P].中国专利:CN2911666,2007.
    [96]匡萃方,冯其波,刘欣.用矢量方法分析角锥棱镜的反射特性[J].应用光学, 2004,(2).
    [97]田国周;王江;钟鸣等.“猫眼”效应及其应用[J].激光杂志, 2006,(4).
    [98]程笑天,李银柱,刘诚.波片位相延迟的测量方法[J].中国激光, 2003,(7).
    [99]叶声华.激光在精密计量中的应用[M].北京:机械工业出版社,1979
    [100] B. Lengeler. Semiconductor devices suitable for use in cryogenic environments[J]. Cryogenics, 1974, 14, 439-447
    [101] C. S. Chin, B. K. A. Ngoi. Self-Compensated Heterodyne Laser Interferometer[J]. International Journal of Advanced Manufacturing Technology, 2000,2: 217-219.
    [102]吕海宝主编.激光光电检测[M].长沙:国防科技大学出版社,2001
    [103]叶嘉雄等.光电系统与信号处理,北京:科学出版社,1997
    [104] CHENG F, FEI YT, FAN KC. New Method on Real-time Signal Correction and Subdivision for Grating-based Nanometrology[C]. 4th International Symposium on Advanced Optical Manufacturing and Testing Technologies, SPIE. 2009
    [105]朱孝立,陈军宁.光电编码器LED光源的准直[J].光学精密工程, 2009.17(4):750-756
    [106] D. Vukobratovich. Lens mounting. in Introduction to Optomechanical Design, SPIE ShortCourse SC014, SPIE, Bellingham, Wash., 2000
    [107]余光清.反射式光电轴角编码器的研究[D].电子科技大学, 2007.
    [108]曹向峰.反射式金属码盘及其轴角编码器[P].中国专利:CN2767958,2006.
    [109]郑力.三光栅系统[J],光学仪器,1982, 4(1): 3542.
    [110]苏东风,续志军.基于反射式三光栅光学系统的金属光栅编码器[J].红外与激光工程, 2008, S1.
    [111] K. Patorski, Handbook of the Moire Fringe Technique[M]. Elsevier, Amsterdam, The Netherlands, 1993, Chap. 5, pp. 99–139.
    [112] K. Patorski. Moire Metrology. Pergamon[M], New York, 1998
    [113] G. N. Rassudova. Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating,(Part I)[J]. Opt. Spectrosc. 22, 1967, 73-78
    [114] G. N. Rassudova. Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating( Part II) [J]. Opt. Spectrosc. 22, 1967, 255-258
    [115] G. N. Rassudova. Moire interference fringes in a system consisting of a transmission and a reflection diffraction grating(Part III) [J]. Opt. Spectrosc. 22, 1967, 335-340
    [116] A. Olszak and L. Wronkowski. Analysis of the Fresnel field of a double diffraction system in the case of two amplitude diffraction gratings under partially coherent illumination[J]. Opt. Eng.36, 1997, 2149-2157
    [117] E. Keren and O. Kafri. Diffraction effects in moire deflectometry[J]. J. Opt. Soc. Am. A 2, 1985, 111-120
    [118] L. Wronkowski. Diffraction model of an optoelectronic displacement measuring transducer[J]. Opt. Laser Technol. 27, 1995, 81-88
    [119] P. Tigre′at and L. Berger. Use of a crossed holographic grating as a reference for micropositioning the x-y stage of a wafer stepper. in Proc. Int. Conf. on Microlithology, Switzerland, 1981
    [120] A. Spies. Linear and angular encoders for the high-resolution range. in Progress in Precision Engineering and Nanotechnology, Proc. 9th Int. Precision Engineering Seminar, Braunschweig, Germany, 1997, pp. 54-57
    [121] G. Voirin, U. Benner, F. Clube,et al.. Performance of interferometric rotation encoder using diffraction gratings. Proc. SPIE 3099, 1997, 166-175
    [122] A. V. Tishchenko. Generalised source method; new possibilities for waveguide and grating problems. in Proc. Int. Workshop on Optical Waveguide Theory and Numerical Modelling, SaintEtienne, France, 1999, pp. 571–580
    [123]费业泰.误差理论与数据处理[M].北京:机械工业出版社, 1987
    [124]毛英泰.误差理论与精度分析[M].北京:国防工业出版社, 1982
    [125]张兴敢,朱兆达.正交采样系统误差估计[J].数据采集与处理, 2000, 15(1): 48-50.
    [126]胡清.论长度计量仪器示值误差和准确度的表达式及其回归分析方法[J].光学仪器, 1992, 14(6): 20-25.
    [127]孟超.高精度光栅测量系统的误差修正理论与技术研究[D].天津大学, 1996.
    [128]廖兆曙,陶景光,杨坤涛.光栅计量装置中离焦误差的控制[J].应用光学, 1994,15(1): 60-62.
    [129]陈西圆.光栅信号非正弦性引起的细分误差[J].计量技术, 1994, 10: 4-6.
    [130]林鹏,陈小强,袁祥辉.粗光栅位移测量系统细分误差的来源与消除分析[J].现代计量测试, 1996, (1): 42-50.
    [131]吴遵高.关于计量光栅中的一个基本问题—如何消除周期误差的探讨[J].科技与情报, 1980(1): 28-39.
    [132]李江国,宣明,王一凡.莫尔条纹细分中相位误差的软件补偿办法[J].光学精密工程, 1995, 3(1): 69-73.
    [133]黄宗升,秦石乔,王省书等.光栅角编码器误差分析及用激光陀螺标校的研究[J].仪器仪表学报, 2007, 28(10) : 1866-1869.
    [134]熊文卓,孔智勇,张炜.光电轴角编码器光电信号正交性偏差的相量校正方法[J].光学精密工程, 2007, 15(11) : 1745-1748.
    [135]洪喜,续志军,杨宁.基于径向基函数网络的光电编码器误差补偿法[J].光学精密工程, 2008, 16(4) : 598-604.
    [136]孔智勇.提高绝对式光电轴角编码器精度和分辨率方法的研究[D].中国科学院长春光学精密机械与物理研究所, 2003.
    [137]朱灿焰.抗光电编码器抖动技术[J].华东交通大学学报, 1995, 12(4): 46-51
    [138]张锦春,黄树槐.增量式光电编码器在自动测试系统中的应用[J].自动化仪表, 1996, 17(2): 23-24
    [139]朱灿焰.增量式光电编码器克服抖动干扰的方法[J].华东交通大学学报, 1997, 14(1): 3-7.
    [140]张九才,王文祥等.增量式编码器抖动性研究[J].自动化仪表, 2005, 26(10): 41-42.
    [141]刘松强.数字信号处理系统及其应用[M].北京:清化大学出版社, 1996
    [142]许树声.信号检测与估计[M].北京:国防工业出版社, 1985
    [143]黄俊钦.随机信号处理[M].北京:北京航空航天大学出版社, 1990
    [144] OVASKA S J. Improving the velocity sensing resolution of pulse encoders by FIR prediction[J]. IEEE Transactions on Instrumentation and Measurement, 1991, 40(3): 657-658.
    [145]张志涌.精通MATLAB6.5版[M].北京:北京航空航天大学出版社, 2003.
    [146] Brian, R., A guide to MATLAB : for beginners and experienced users, second edition, Cambridge university Press, 2006.
    [147] Yang Y G, Rees N, Chuter T. Reduction of Encoder Measurement Errorsin UKIRT Telescope Control system Using a Kalman Filter[J]. IEEE Transactions on Control Systems Technology, 2002, 10(1) : 149-157.
    [148] KWEON T J, HYUN D S. High-Performance Speed Control of Electric Machine Using Low-Precision Shaft Encoder [J]. IEEE Transactions on Power Electronics, 1999, 14(5) : 838-849.
    [149]郑泽东,李永东,Maurice Fadel等.基于扩展Kalman滤波器的PMSM高性能控制系统[J].电工技术学报, 2007, 22(10): 18-23.
    [150] Kalman R E. A New Approach to Linear Filtering and Prediction Problems[J]. Transactions of the ASME - Journal of Basic Engineering, 1960, 82:35-45.
    [151] Kalman R E, Bucy R S. New Results in Linear Filtering and Prediction Theory [J]. Transactions of the ASME - Journal of Basic Engineering, 1961, 83:95-108.
    [152] Paul Zarchan, Howard Musoff. Fundamentals of Kalman Filtering : A Practical Approach(second edition)[M]. Virginia : American Institute of Aeronautics and Astronautics Press, 2005.
    [153] Mohinder S. Grewal, and Angus P. Andrews. Kalman Filtering: Theory and Practice Using MATLAB(second edition)[M]. NewYork: John Wiley & Sons Press, 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700