用户名: 密码: 验证码:
面向精密仪器设备的主动隔振关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本学位论文结合浙江省自然科学基金项目“精密设备系统主动隔振基础理论研究”(No.599085)进行精密仪器设备隔振平台振动主动控制理论与实验研究。针对项目的研究任务和国内外研究现状,采用理论研究、计算机仿真与实验研究相结合的研究方法,完成了精密仪器设备主动隔振系统的动力学分析,研制了用于该隔振系统的超磁致伸缩驱动器,对该隔振系统中的功率流传递特性进行了研究分析,然后采用免疫控制方法完成了精密仪器主动隔振系统的隔振器设计,搭建了主动隔振系统的模拟实验台,并进行了相关实验研究。
     第一章,阐述了本学位论文的研究背景与意义,分析了国内外主动隔振技术在隔振方案设计、驱动器与传感器、功率流传递特性和控制策略等方面的研究现状,提出了本论文的主要研究内容。
     第二章,以电镜类光学仪器为研究对象,建立了平台隔振形式的多自由度隔振系统的动力学模型。在研究典型一级主动、被动隔振系统的振动位移传递率的基础上,针对常用的二级主动隔振模型,考虑以不同参数作为反馈控制变量时,分析隔振系统在单坐标方向上的振动加速度传递率。
     第三章,在分析超磁致伸缩材料工作特性的基础上,研制了用于精密仪器主动隔振系统的超磁致伸缩驱动器,对超磁致伸缩驱动器的力和位移输出的静态特性和动态特性进行实验测试与分析,并建立了基于磁机耦合原理的驱动器磁滞非线性模型。
     第四章,建立了精密仪器主被动隔振平台系统的功率流传递模型,对于采用超磁致伸缩驱动器的隔振平台-基础主动隔振系统,采用四端参数法推导出隔振系统的功率流传递函数,对该函数进行数值仿真计算,详细分析了各控制器反馈参量对系统功率流传递特性的影响。
     第五章,根据人工免疫系统的思想设计出免疫反馈控制器,并将该控制器用于精密仪器的主动隔振系统中。针对精密仪器隔振平台的控制模型,在MATLAB环境中进行了对所设计的主动隔振系统的控制系统的抗干扰能力和时域性能等方面进行了研究。
     第六章,研制了以工业PC机为核心的精密仪器模拟隔振平台实验系统,完成了相应的软硬件系统开发,并对隔振实验台分别进行被动隔振、主被动复合隔振的实验研究。
     第七章,对论文的主要研究工作和创新点作了总结,并对未来的研究工作进行了展望。
This dissertation reports a theoretical and experimental study on the active vibration control of a precision vibration-isolation platform. It is supported by a project funded by the Natural Science Foundation of Zhejiang Province, China, titled "Research on Supporting Technology of Active Vibration Isolation for Precision Equipment Systems" (Grant No. 599085). Based on the state-of-the-art research both in China and abroad, the dissertation adopts the approach of applying theoretical analysis, computer simulation and actual experiments; With such an appoach, an active vibration-isolation strategy for precision instruments was proposed, a giant magnetostrictive actuator for the vibration-isolation system was developed, the transmission characteristics of the power flow in the system was analyzed, and finally, the active vibration-isolation comtrol system for precision instruments was established by adopting an immune control method, A test rig of the vibration-isolation system was developed, which was used to carry out some relevant experimental studies.
     In Chapter One, the background and significance of the research are introduced, and the state-of-the-art research of active vibration isolation both in China and abroad is expounded, including the vibration-isolation strategy, actuators and sensors, transmission characteristics of power flow, control strategy, etc. The aspects of research covered by this dissertation are also elaborated.
     Chapter Two takes the electronic microscopes (a kind of optical instruments) as the study cases. The dynamic model of the multi-DOF vibration-isolation system in the form of platform vibration isolation is created. The vibration displacement transmissibility of typical one-stage active vibration isolation system and passive vibration isolation system are analyzed. Then the vibration acceleration transmissibility of the vibration isolation system in one direction is discussed for the commonly used two-stage active vibration isolation model, by assigning different parameters to the feedback control variables.
     Chapter Three first analyzes the characteristics of giant magnetostrictive material. After that, a giant magnetostritive actuator used in the active vibration control for precision instruments is developed. The static state and dynamic output characteristics of force and displacement of the giant magnetostrictive actuator are measured and analyzed, and the nonlinear hysteresis model of the giant magnetostrictive actuator is also established.
     In Chapter Four, a vibration-isolation model of active and passive vibration-isolation system for the precision instruments are established. For the active vibration-isolation system that adopts magnetostrictive actuators, the power flow transmission function is derived using a four-port parameter method. Numerical simulation and analysis is carried out based on the transmission function, and the influences of different controller feedback parameters on power flow transmission characteristics of the system are discussed in details.
     Chapter Five combines the two-stage vibration-isolation model and the idea of artificial immune system to develop an immune feedback controller for the active vibration isolation of precision instruments. Extensive simulation study is done in the MATLAB environment, and the anti-disturbing capabilities and time-domain performances of the developed controller are studied.
     In Chapter Six, a test rig of vibration-isolation experimental system for precision instruments, based on an industrial personal computer, is developed, including both its hardware and software system. By utilizing this test rig, some experiments on passive isolation, and those on the combined active and passive isolation are carried out.
     Chapter Seven concludes the dissertation by summarizing the main findings of the research as well as the further research prospects.
引文
[1]Patrick J.French.Integration of MEMS Devices.Conference on Device and Process Technologies for MEMS and Microelectronic.Royal Pines Resort,Queensland,Australia.1999,10
    [2]J.J.Sniegowski and M.P.de Boer.IC-Compatible Polysilion Surface Micromaching.Annu.Rev.Mater,Sci.2000.30:299-333
    [3]李艳秋.光刻机的演变及今后发展趋势.微细加工技术,2003,2:1-5
    [4]邱熹程.扫描探针显微镜主动隔振研究(硕学位论文).广州:广东工业大学,2008
    [5]俄罗斯门捷列夫计量研究院内部资料,1996
    [6]QJ1-79-86.陀螺仪主要精度指标和测试方法,1988
    [7]毛剑琴,卜庆忠,张杰,范国滨.结构振动控制的新进展.控制理论与应用,2001,18(5):647-652
    [8]李海斌,毕世华等.振动主动控制技术现状和发展.振动与冲击,1998,17(3):38-42
    [9]王加春,李旦,董申.机械振动主动控制技术的研究现状和发展综述.机械强度,2001,23(2):156-160
    [10]丁文镜.振动主动控制当前的主要研究课题.力学进展.1994,24(2):173-180
    [11]王存堂,唐建中.柔性结构的模糊主动振动控制研究.振动工程学报,1998,11(3):265-272
    [12]Rao S S,Pan T S.Modeling control and design of flexible structures:A survey.Applied Mechanics Review,1990,43(5):99-117
    [13]李新国,陈士橹.挠性卫星太阳帆板的变结构主动控制.西北工业大学学报,1997,15(1):84-87
    [14]毛剑琴,卜庆忠,张杰,范国滨.结构振动控制的新进展.控制理论与应用,2001,18(5):647-652
    [15]Ghaboussi J,Joghataie A.Active control of structures using neural networks.J.Engng.Mech.,ASCE,1995,12(4):555-567
    [16]盖玉先,董申,李旦.亚微米超精密车床的振动模糊振动控制.振动工程学报,2000,3(1):156-158
    [17]J.L.Jang,Y.S.Tarng.A study of the active vibration control of a cutting tool.Journal of Materials Processing Technology 95(1999) 78-82
    [18]王加春,董申,李旦.超精密机床的主动隔振系统研究.振动与冲击,2000,19(3):54-58
    [19]Pietro Croce,Pietro Orsini,Walter Salvatore.Vibration isolation and design of automotive test benches.Engineering Structures 23(2001) 945-956
    [20]Takagami T,Jimbo Y.Study of active vibration isolation system.Precision Engineering,1988,10(1):3-7
    [21]Nakamura Y,Nakayama M,Masuda K,Tanka K,Yasuda M,Fujita T.Development of active 6-DOF microvibration control system using giant magnetostrictive actuator.Proceedings of the SPIE Conference on Smart Systems for Bridges,Structures and Highways,Newport Beach,California,March 1999:229-240
    [22]梅德庆,陈子辰.微制造平台的精密隔振系统研究.光学精密工程,2001,9(6):506-509
    [23]Karnopp D.Active and semi-active vibration isolation.Journal of Vibration and Acoustics,1995(117):177-184
    [24]张春红,汤炳新.主动隔振技术的回顾与展望.河海大学常州分校学报,2002,16(2):1-5
    [25]Schubert.U.S.Patent No.5,660,255,1997
    [26]张洪田,刘志刚等.电磁式主动隔振装置性能实验研究.噪声与振动控制,1996,2(1):15-18
    [27]欧阳光耀,施引,黄映云.用磁致伸缩材料作动器进行主动隔振的研究.噪声与振动控制,1997,8(4):2-5
    [28]孟光,鲁宏权,任兴民.电流变液夹层板结构动态特性及振动控制的实验研究.航空学报,1998,19(4):456-461
    [29]朱荣,莫有声等.基于神经网络的主动隔振器.上海交通大学学报,1999,33(4):28-31
    [30]Fujita T,Tagawa Y,kajiwara K,Yoshioka H,Takeshita A,and yasuda M.Active 6-DOF microvibration control system using piezoelectric actuator.Proceedings of the Third Conference on Adaptive Structures,San Diego,California,November,1992:514-528
    [31]Nakamura Y,Nakayama M,Masuda K,Tanka K,Yasuda M,Fujita T.Development of active 6-DOF microvibration control system using giant magnetostrictive actuator.Proceedings of the SPIE Conference on Smart Systems for Bridges,Structures and Highways,Newport Beach,California,March 1999:229-240
    [32]Kajiwara K,Hayatu M,Imaoka S,et al.Large scale active micro-vibration control system using piezoelectric actuators applied to semiconductor manufacturing equipment.JSME,1997,63:3735-3742
    [33]Z.Jason Geng,Leonard S Haynes.Six degree-of-freedom active vibration control using the Stewart platforms.IEEE Transactions on Control System Technology,1994,2(1):45-53
    [34]Z.Jason Geng,Leonard S Haynes.Six-degree-of-freedom active vibration isolation using a stewart platforms mechanism.Journal of Robotic System,1993,10(5):725-744
    [35]Geng Z J,Leonard S H.Six degree-of-freedom active vibration control using the Stewart platform,IEEE Transaction on Control System Technology,1994;2(1):45-53
    [36]晏巨,何晓军,唐岚.电磁悬浮隔振系统控制方法.光电工程,1999,26(4):18-22
    [37]刘志刚.柴油机振动自适应有源隔离技术研究.哈尔滨工程大学博士学位论文,2000
    [38]张洪田,刘志刚等.电磁式主动隔振装置性能实验研究.噪声与振动控制,1996,2(1):15-18
    [39]盖玉先,董申,李旦,张明明.超精密机床的振动混合控制.中国机械工程,2000,11(3):289-291
    [40]盖玉先,李旦,董申.超精密机床的压电作动器隔振系统研究.压电与声光,2000,22(3):160-162
    [41]胡强,程耀东,齐津.主动控制的高精度隔振平台的仿真.浙江大学学报,1999,33(2):209-213
    [42]张春良.微制造平台振动主动控制研究(博士学位论文).杭州:浙江大学,2004
    [43]龙志强,郝阿明,陈革等.磁悬浮控制的主动式隔振平台研究.宇航学报,2003,24(5):510-514
    [44]杨东利.超磁致伸缩执行器及其在主动振动控制中的应用研究(硕士学位论文).杭州:浙江大学,2001
    [45]盖玉先,董申.振动主动控制中的作动器技术.航天工艺,1999,(6):45-48
    [46]Austin S A.The vibration damping effect of an electrorheological fluid.Journal of Vibration and Acoustics,1993,(115):136-140
    [47]盖玉先,李旦,董申.振动主动控制中电磁作动器动态特性的研究.高技术通讯,2001,(6):76-78
    [48]路小波,陶云刚,何延伟.基于压电元件的振动主动控制.振动、测试与诊断,1999,6(2):92-94
    [49]袁树清,赵玉成,许庆余等.采用压电材料的振动主动控制.西安交通大学学报,1999,8(8):61-64
    [50]Damjanovic D,et al.Electrostrictive and piezoelectric materialsfor actuator applications.Journal of Intelligent Materials Systems and Structures,1992,3(2):190-208
    [51]Goodfriend M J,et al.Adaptive characteristics of the magnetostrictive alloy,Terfenol-D,for active vibration control.Journal of Intelligent Materials Systems and Structures,1992,3(2):245-254
    [52]贾振元,杨兴,郭东明.超磁致伸缩材料控制模型的研究.压电与声光,2001,4(2):164-166
    [53]欧阳光耀,施引,黄映云.用磁致伸缩材料作动器进行主动隔振的研究.噪声与振动控制,1997,8(4):2-5
    [54]夏春林,丁凡,路甬祥.超磁致伸缩材料驱动驱动器实验研究.电工技术学报,1999,14(4):14-16,34
    [55]贾宇辉,谭久彬.超磁致伸缩微位移驱动系统的研究.仪器仪表学报,2000,21(1):38-41
    [56]夏春林,丁凡.超磁致伸缩材料的特性参数测量及其应用研究.仪器仪表学报,1999,(8):368-370
    [57]Dunphy J R,et al.Distributed strain sensing with a twin-corefiber optic sensor.Instrument Society of America Transactions,1987,26:7-11
    [58]Sirkis J S,et al.Strain component separation in surface-mountedinterferometric optical fiber strain sensors.In:Proc of the SPIE Conference,1989:117-122
    [59]盖玉先,腾燕,董申.用于振动主动控制的传感器.工具技术,2000,34(4):33-35
    [60]江国和,吴广明,沈荣瀛.振动控制中的功率流方法研究现状.华东船舶工业学院学报(自然科学版),2003,17(4):17-22
    [61]周保国.复杂隔振系统的功率流研究(博士学位论文).上海交通大学,1994
    [62]熊冶平.机器-基础柔性系统的功率流传递特性及控制研究(博士学位论文).山东工业大学,1996
    [63]Goyder H G D,Whiter G.Vibration power flow from machines into built-up structures.Part 2:Power flow through isolation systems.Journal of sound and vibration,1980,68(1):97-117
    [64]盛美萍,王庆敏,邢文华等.单层隔振系统中弹性基座的振动与声辐射特性.机械科学技术,2000增刊:94-96
    [65]盛美萍,王敏庆,邢文华等.多支承弹性非保守耦合系统导纳功率流.机械科学与技术,2001,20(2):249-250
    [66]孙玲玲,宋孔杰.柴油机多支承隔振系统的功率流特性.内燃机学报,2003,21(4):249-252
    [67]孙玉国,霍睿,高洪芬等.柔性板基础隔振系统功率流传递特性.山东工业大学学报,1999,29(2):101-106.
    [68]李天匀,梁一梁.浮筏隔振的功率流分析.振动与冲击,1997,16(1):30-34
    [69]熊冶平,宋孔杰,韩玉长.复杂柔性耦合系统功率流传递谱.声学学报,1996,21(4):368-374
    [70]毛映红,牛军川,宋孔杰.连续隔振浮筏系统功率流研究.声学学报,2001,26(3):272-276
    [71]吴广明,彭旭,沈荣瀛.多层隔振系统功率流研究.噪声与振动控制,2004,(3):1-4
    [72]Kon Y.K.,White R G.Analysis and control of vibration of power transmission to machinery supporting structures subjected of a multi-excitation system,Pant Ⅰ:Vibrational power analysis and control schemes[J].Journal of Sound and Vibration,1996,196(4):495-508
    [73]Kon Y K,White R G.Analysis and control of vibration of power transmission to machinery supporting structures subjected of a multi-excitation system,Pant Ⅱ:Vibrational power cancellation and control experiments.Journal of Sound and Vibration,1996,196(4):509-522
    [74]牛军川,毛映红,宋孔杰等.一类复杂系统的功率流传递特性及其主动控制.噪声与振动控制,2001(6):6-9
    [75]牛军川,宋孔杰,霍睿等.柔性耦合系统主动隔振策略研究.机械工程学报,2001,37(12):27-29
    [76]牛军川,田国会,宋孔杰.主动隔振系统中控制力对结构参数的影响.噪声与振动控制,2001,8:37-39
    [77]牛军川,田国会,宋孔杰.旋转机械主动隔振研究Ⅰ:功率流传递特性.山东工业大学学报,2001,31(4):301-305
    [78]牛军川,田国会,宋孔杰.旋转机械主动隔振研究Ⅱ:功率流传递特性.山东工业大学学报,2001,31(4):336-341
    [79]牛军川,刘玉友,毛映红等.主动隔振系统中功率流的最优化控制策略.噪声与振动控制.2000,(5):2-5
    [80]霍睿,宋孔杰,孙玉国.柔性基础主动隔振系统的功率流传递性.噪声与振动控制,1999,(4):9-11
    [81]孙玉国,宋孔杰.柔性基础上马达周期振动的主动隔离.噪声与振动控制,2000,(8):18-20
    [82]孙玉国.机器-基础动力耦合系统功率流传递主动控制.同济大学学报,2004,32(3):378-381
    [83]朱宏平,徐荣光.基于功率流的结构主动控制方法.噪声与振动控制,1998,(10):21-28
    [84]李国平,魏燕定,陈子辰.振动主动控制技术的应用与研究.东南大学学报,2002,(5A):56-59
    [85]王加春,李旦,董申.机械振动主动控制技术的研究现状和发展综述.机械强度,2001,23(2):156-160
    [86]吕鑫.振动主动控制技术的研究及发展.振动、测试与诊断,96,16(3):1-7
    [87]Wang D A,Huang Y M.Modal space vibration control of a beam by using the feedforward and feedback control loops.International Journal of Mechanical Sciences,2002,(44):1-19
    [88]Hirokazu Y,Nobuyoshi Murai.Active microvibration control system by pole assignment method using genetic algorithm.SPIE1999 Vol.3688:980-986
    [89]陈大跃,胡宗武,范祖尧.振动控制的特征结构配置.振动工程学报,1991,2(2):75-81
    [90]Tanaka N,Kikushima Y.Optimal design on active vibration isolation system.Transaction of the ASME,1988,110:42-48
    [91]吴广玉.系统辨识与自适应控制(下册).哈尔滨:哈尔滨工业大学出版社,1987
    [92]Kwaku O PA,Kevin C C.The application of multi-channel design methods for vibration control of an active structure.Smart Material Structure,1994,(3):329-343
    [93]Scott D S,Nobuo T.Modification to overall system response when using narrowband adaptive feedforward control system.Journal of dynatic systems,measurement and control,1993,115:612-626
    [94]Teng T L,Peng C P,Chuang C.A study on the application of fuzzy theory to structural active control.Computer Methods in Applied Mechanics And Engineering.189(2000):439-448
    [95]Yamada M.Active vibration control using fuzzy theory-Part 2:optimal membership function.Proc.First World Conf.Struct.Control,Los Angeles,1994,WPJ:13-20
    [96]Furuta H.Application of genetic algorithms to self-tuning of fuzzy active control for structural vibration.Proc.First World Conf.Struct.Control,Los Angeles,1994,WPJ:31-40
    [97]Joghataie A Neural networks and fuzzy logic in structural control.Proc.First World Conf.Struct.Control,Los Angeles,1994,FA2:63-72
    [98]张庙康,胡海岩.车辆悬架模糊神经网络半主动振动控制系统的研究.振动、测试与诊断,1996,16(2):18-24
    [99]AMICK H,SENNEWALD B.Analytical experimental study of vibration of a room-sized air spring-supported slab[J].Noise Control Engineering Journal,1998,46(2):39-47.
    [100]刘彦,谭久彬,王雷.差动电磁作动器的超大型光学仪器隔振基础的主动控制机理.光学精密工 程,2007,15(10):1602-1608
    [101]中国船舶工业总公司第九设计研究院等编.隔振设计手册.中国建筑工业出版社,1986
    [102]栗润德,张鸿儒,刘维宁.地铁引起的地面振动及其对精密仪器的影响.岩石力学与工程学报,2008,27(1):206-214
    [103]顾仲权,马扣根,陈卫东.振动主动控制.北京:国防工业出版社,1997
    [104]程耀东.机械振动学.浙江大学出版社.1988
    [105]丁文镜.减振理论.清华大学出版社.1988
    [106]张春良.动力设备两级有源积极隔振系统的研究.动力工程,2005,60(3):30-34
    [107]贾振元,杨兴,郭东明.超磁致伸缩材料控制模型的研究.压电与声光,2001,4(2):164-166
    [108]Anthony E A,Chen L,Craig A R.Dynamic transduction characterization of magnetostrictive actuators,Smart Mater.Struct.1999,5:115-120
    [109]夏春林,丁凡.超磁致伸缩材料的特性参数测量及其应用研究.仪器仪表学报,1999,(8):368-370
    [110]傅龙珠.稀土超磁致伸缩致动器的设计与实验研究(硕士学位论文).杭州:浙江大学,2003
    [111]林其壬,赵佑民.磁路设计原理。北京:机械工业出版社,1987
    [112]贾宇辉,谭久彬.超磁致伸缩微驱动器在纳米测量中应用的研究.压电与声光.2000.4(2):127-130
    [113]Yoshio Yamamoto,Hiroshi Eda,Jun Shimizu.Application of giant magnetostrictive materials to positioning actuators.Proceeding of the 1999 IEEE/ASME,International Conference on Advanced Intelligent Mechatronic:215-220
    [114]吕福在.用于柴油机电喷系统的GMM高速强力电磁阀和电控系统的研究(博士学位论文).杭州:浙江大学,2000
    [115]Szabo Z,Tugyi I,Kadar G,et al.Identification procedures for scalar Preisach model.Physica B,2004,343:142-147
    [116]Alessandro S.Generalization of the static Preisach model for dynamic hysteresis by a genetic approach.IEEE Transactions on Magentics,2003,39(3):1353-1356
    [117]D.C.Jiles and D.L.Atherton,"Theory of ferromagnetic hysteresis," J.Magn.Magn.Mater.,1986,(61):48-60
    [118]D.C.Jiles,J.B.Thoelke,and M.K.Devine,Numerical determination of hysteresis parameters for the modeling of magnetic properties using the theory of ferromagnetic hysteresis.IEEE Trans.Magn.,1992,28(1):27-35
    [119]李欣欣,王文,陈子辰等.基于Jiles-Atherton模型的超磁致伸缩驱动器磁致补偿控制.光学精密工程,2007,15(10),1559-1563
    [120]L.A.L.Almeida,G.S.Deep.Modeling a magnetostrictive transducer using genetic algorithm.Journal of Magnetism and Magnetic Materials,226-230(2001) 1262-1264
    [121]Yongping Wan,Daining Fang,Keh-Chih Hwang.Non-linear constitutive relations for magnetostrictive materials.International Journal of Non-Linear Mechanics,2003(38):1053-1065
    [122]孙玉国.机器-基础动力藕合系统功率流传递主动控制,同济大学学报,2004,(3):33-36
    [123]王全娟,夏松波,黄文虎.基于功率流方法的连续参数系统动力吸振器的优化设计.声学学报,2003,28(3):267-271
    [124]崔艳.复杂隔振系统的频率平均功率流分析与效果评估研究(硕士学位论文).济南:山东大学,2007
    [125]Y.G.Sun,K.J.Song,etal.Analysis of an active flexible suspension system.Joumal of Sound and Vibattion,2002,249(3):606-610
    [126]宋孔杰,张蔚波,牛军川.功率流理论在柔性振动控制技术中的应用与发展.机械工程学报,2003,(09).
    [127]霍睿.复杂隔振系统的功率流传递特性与控制策略研究(博士学位论文),济南:山东工业大学,1998
    [128]Wohlever J L,Bernhard R J.Mechanical energy flow models of rods and beams.Journal of Sound and Vi-bration.1992,153(1):1-19
    [129]仲翟燕.复杂隔振系统的功率流传递特性与振动噪声控制技术研究(硕士学位论文),济南:山东科技大学,2005
    [130]XIONG Y P,XING J T,PRICE W G.Power flow analysis of complex coupled systems by progressive approaches.Journal of Sound and Vibration,2001,239(2):275-295
    [131]S.K.Lee.Application of vibration power flow to a passenger carfor reduction of interior noise.Journal of Shock and Vibration,2000,7(5):277-285
    [132]ZJ系列隔振平台说明书.上海理工大学附属工厂
    [133]Varela F J,Stewart J.Dynamics of a Class of Immune Network.Global Stability of Idiotype Interactions.Theoretical Biology,1990,144(1):93-101
    [134]T Morrison,U Aickelin.An artificial immune system as a recommender system for web sites.Proc of the First Int Conf On Artificial immune Systems(ICARIS-2002).Berlin Hei-dberg:Springer-Verlag,2002
    [135]Stepney,S,Smith,RE,Timmis,J,Tyrrell,AM,Neal,MJ,Hone,ANW.Conceptual frameworks for artificial immune systems.Int J Unconventional Comput,2005,1(3):315-338
    [136]Kim J,Bentley.Towards an artificial immune system for network intrusion detection:an investigation of dynamic clonal selection.Proceeding of the Congress on Evolutionary Computation.2002,1015-1020
    [137]Dasgupta D.Artifucial immune systems and their applications.Berlin:Springer-Verlag,1999.3-23
    [138]李坚,牟永敏.一种基于阴性选择的免疫检测器生成算法.北京机械工业学院学报,2008,(02):22-24
    [139]冯文晖,胡昌华,张琪,扈晓翔.采用人工免疫算法的加速寿命试验分析方法.电光与控制,2008,(10):35-38
    [140]林君焕.超磁致伸缩执行器在车削振动控制中的应用研究(硕士学位论文).宁波:宁波大学,2006
    [141]张毅,杨秀霞.基于遗传算法的模糊免疫控制器设计.系统仿真学报,2004,16(7):1548-1551
    [142]SINGHC T,NAIR S B.An artificial immune system for amultiagent robotics system.Transactions on Engineering,Computing and Technology,2005,(6):308-311
    [143]谈英姿,沈炯,吕震中.免疫PID控制器在气温控制系统中的应用研究.中国电机工程学报,2002,22(10):148-152
    [144]陈定中.舷侧阵声纳安装平台隔振系统振动控制技术研究(博士学位论文).杭州:浙江大学,2005.
    [145]周英玉,丁淑华,郭晨.利用Matlab的S-function实现非线性PID控制.自动化与仪器仪表,2001.2:24-26
    [146]杨兴,贾振元.基于功率MOSFET的超磁致伸缩执行器驱动电源.压电与声光,2002,23(1):33-36

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700