用户名: 密码: 验证码:
纳米制冷剂的热导率、稳定性及纳米流体电导率的实验与建模
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种新型换热流体,纳米流体得到了越来越多的关注。纳米制冷剂是纳米流体的一种,其特征是主流体为制冷剂。为了较好地利用纳米制冷剂增强制冷系统的性能,所以需要研究纳米制冷剂热导率;为了保证纳米制冷剂在系统中长期运行,同时需要研究其稳定性;由于纳米制冷剂的应用必然将纳米粉体扩散到整个制冷循环回路,导致制冷回路中的纳米流体的电导率上升,所以需要研究纳米流体电导率以确保制冷系统的绝缘性。围绕这个目标,本文对纳米制冷剂的热导率与稳定性以及制冷系统中纳米流体的电导率进行了实验与模型研究。主要研究内容包括:
     1)测量了含铜、铝、镍、氧化铜、氧化铝和碳纳米管的纳米制冷剂的热导率。实验表明纳米制冷剂的热导率随着纳米粉体体积分数的增加而显著增加。分析了纳米粉体种类与几何尺寸对纳米制冷剂热导率的影响。
     2)提出了含球形纳米颗粒的纳米制冷剂热导率模型,含纳米管的纳米制冷剂热导率模型和纳米流体热导率通用模型。用实验数据验证了模型,结果表明这三个模型的精度超过已有的纳米流体热导率模型,推荐用来预测纳米流体,尤其是纳米制冷剂的热导率。
     3)通过测量其透射比评估纳米制冷剂的稳定性。测量的纳米制冷剂为3种分散方式、9种纳米粉体和3种纳米粉体体积分数的组合。实验结果表明纳米粉体可以在纳米制冷剂内稳定分散。推荐Span 80可以作为纳米制冷剂的分散剂。
     4)提出纳米流体稳定性模型。模型在计算纳米粉体的速度后求得纳米流体的透射比。通过实验数据验证了模型,结果表明该模型可以定量预测部分纳米制冷剂的透射比,并定性预测其余纳米制冷剂的透射比。
     5)测量了含铜、铝、镍、氧化铝和碳纳米管的纳米制冷剂与纳米油的电导率。实验表明纳米制冷剂与纳米油的电导率随着纳米粉体体积分数的增加而增加,但是纳米制冷剂与纳米油的电导率依然在国标的规定范围之内,纳米粉体不会损害纳米制冷剂与纳米油的绝缘性能。分析了纳米粉体种类与几何尺寸对纳米制冷剂与纳米油电导率的影响。
     6)提出了含球形纳米颗粒的纳米制冷剂电导率模型,含纳米管的纳米制冷剂电导率模型和纳米流体电导率通用模型。用实验数据验证了模型。结果表明上述模型可以用来预测纳米制冷剂的电导率。
As a new type of heat-transfer fluid, nanofluid has gained increased interest. Nanorefrigerant is one kind of nanofluid and the host fluid of nanorefrigerant is refrigerant. The thermal conductivity of nanorefrigerant should be researched in order to improve the performance of refrigeration systems. The stability of nanorefrigerant should be known in order to keep the nanorefrigerant’s long-term operation in the system. The nanopowders would diffuse and enter the fluid in the system because of the application of nanorefrigerant. So the electrical conductivity of nanofluid in the system will increase because of the nanopowder’s high electrical conductivity. The nanofluid’s electrical conductivity should be researched to ensure the insulating properties of system. For this purpose, the experimental and model research is given to nanorefrigerant’s thermal conductivity, stability and nanofluids’electrical conductivity. The main contents include:
     1) Thermal conductivity of nanorefrigerants containing Cu, Al, Ni, CuO, Al_2O_3 and CNT are measured. Experimental results show that the nanorefrigerant’s thermal conductivity increases enormously with the increase of nanoparticle volume fraction. The influences of nanopowder’s material and physical dimension on nanorefrigerants’thermal conductivity are analyzed.
     2) The thermal conductivity model for nanorefrigerants containing nanoparticles, the thermal conductivity model for nanorefrigerants containing nanotubes and the general thermal conductivity model for nanofluids are proposed. Such three models are verified by experimental results. It shows that the three models are better than the other existing models and can be recommended for nanofluids, especially for nanorefrigerant.
     3) The stabilities of nanorefrigerants with three kinds of dispersion method, nine kinds of nanopowders and three kinds of nanopowders volume fraction are evaluated by measuring the nanorefrigerant’s transmissivity. It shows that nanopowders can be uniformly dispersed in the nanorefrigerants for long time. Span 80 is recommended as a dispersant for nanorefrigerants.
     4) The stability model for nanofluids is proposed. In the model the nanofluids’transmissivity can be yielded through the calculation of nanopowders’speed. The model is verified by experimental results. It shows that the model can predict the transmissivities of some nanorefrigerants quantificationally and predict the transmissivit-ies of other nanorefrigerants qualitatively.
     5) Electrical conductivity of nanofluid, i.e. nanorefrigerants and nano-oils containing Cu, Al, Ni, Al_2O_3 and CNT, are measured. Experimental results show that the nanofluids’electrical conductivity increases with the increase of nanopowder volume fraction. However, the nanorefrigerants’and nano-oils’electrical conductivity is still in line with the national standards and the nanorefrigerants and nano-oils have excellent insulating performance. The influences of nanopowder’s material and physical dimension on nanofluid’s electrical conductivity are analyzed.
     6) The electrical conductivity model for nanofluids containing nanoparticles, the electrical conductivity model for nanofluids containing nanotubes and the general electrical conductivity model for nanofluids are proposed. Such three models are verified by experimental results.
     At last, some deficiencies were pointed out in the paper and some further researches were planned.
引文
[1]潘秋生.新世纪中国制冷科学技术发展趋势.制冷学报. 2003, 3:31-37.
    [2]朱明善. 21世纪制冷空调行业绿色环保制冷剂的趋势与展望.暖通空调. 2000, 30(2):22-26.
    [3] Choi U. S. Enhancing thermal conductivity of fluids with nanoparticles. ASME FED. 1995, 231: 99-103.
    [4] Lee S., Choi U.S.,Li S. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer. 1999, 121: 280-289.
    [5] Wang X.W., Xu X.F., Choi U.S. Thermal conductivity of nanoparticle-fluid mixture. Journal of Thermophysics and Heat Transfer. 1999, 13:474-480.
    [6]雍翰林,毕胜山,史琳. R134a/TiO2纳米粒子工质体系应用于冰箱的实验研究.化工学报. 2006,57(S):141-145.
    [7] Wang K.J., Ding G.L., Jiang W.T. Development of nanorefrigerant and its rudiment property. 8th International Symposium on Fluid Control, Measurement and Visualization. 2005, Paper No. 13-13:1-6.
    [8] Wang K. J., Shiromoto K, Mizogami T. Experiment study on the effect of nano-scale particle on the condensation process. Proceeding of The 22nd International Congress of Refrigeration. 2007, Paper No. B1-1005:1-5.
    [9]邹德宝,王瑞祥,李淑芹,李小错.纳米粒子对矿物油/HFC体系制冷系统特性影响的研究.工程热物理学报. 2006, 27(S1): 37-40.
    [10]毕胜山.纳米颗粒在制冷系统中的应用基础研究[博士论文].北京:清华大学. 2008.
    [11] Maxwell J.C. A treatise on electricity and magnetism, Oxford: Clarendon Press. 1891.
    [12] Hamilton R.L., Crosser O.K. Thermal conductivity of heterogeneous two-component systems. I&EC Fundamentals. 1962, 1: 187-191.
    [13] Eastman J.A., Choi U.S., Li S., Yu W., Thompson L.J. Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Applied Physics Letter. 2001,78:718-20.
    [14] Liu M.S., Lin C.C., Tsai C.Y., Wang C.C., Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat . Mass Trans. 49(2005) 3028–3033.
    [15] Liu Z.H., Yang X.F., Guo G.L., Effect of nanoparticles in nanofluid on thermal performance in a miniature thermosyphon. Journal of Applied Physics. 2007, 102: 013526.1-013526.8.
    [16]廖亮.减阻型纳米流体的管内流动与换热特性实验研究[博士论文].上海:上海交通大学. 2009.
    [17] Lee S., Choi U.S., Li S. Measuring thermal conductivity of fluids containing oxide nanoparticles. Transaction of ASME Journal of Heat Transfer. 1999, 121:280-289.
    [18] Hanunerschmidt U., Sabuga W., Transient hot wire (THW) method: uncertainty assessment. International Journal of Thermophysics. 2000, 21:1255-1278.
    [19] Choi U.S., Zhang Z.G, Yu W. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters. 2001, 79: 2252-2254.
    [20] Xie H. Q., Wang J., Liu Y. Thermal conductivity enhancement of suspensions containing nanosized alumina particles. Journal of Applied Physics. 2002, 91(7): 4570-4572.
    [21]李宏.纳米颗粒悬浮液强化换热的实验研究与理论模拟[硕士论文].北京:清华大学,2003.
    [22] Xie H.Q., Lee H., Youn W. Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities. Journal of Applied Physics. 2003, 94: 4967-4971
    [23]李强,宣益民.纳米流体热导率的测量.化工学报. 2003, 54(1): 42-36.
    [24] Murshed S.M.S, Leong K.C., Yang C. Enhanced thermal conductivity of TiO2 -H2O based nanofluids. International Journal of Thermal Sciences. 2005, 44: 367-373.
    [25] Hong K.S., Hong T.K., Yang H.S. Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles. Applied Physics Letters. 2006, 88: 031901.1-3.
    [26]王照亮,唐大伟,布文峰.纳米流体导热系数测量及理论预测.中国工程热物理学会第十二届年会论文集(传热传质学).南京,2006: 1367-1372.
    [27]苏风民.双组分纳米流体的物性测量和NH3/H2O泡状吸收强化的研究[博士论文].大连:大连理工大学,2008.
    [28] Ding Y.L., Alias H., Wen D.S. Heat Transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids). International Journal of Heat and Mass Transfer. 2006, 49: 240-250.
    [29]王涛,骆仲泱,郭顺松.可控纳米流体的制备及热导率的研究.浙江大学学报(工学版). 2007, 41(3): 514-518.
    [30] Zhang X., Gu H., Fujii M. Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science. 2007, 31:593-5990.
    [31] Li C.H., Peterson G.P. The effect of particle size on the effective thermal conductivity of A12O3-H2O nanofluids. Journal of Applied Physics. 2007, 101: 044312.
    [32] Reozel W., Putra N., Das S.K. Experiment and analysis for non-Fourier conductivity in materials with non-homogeneous inner structure. International Journal of Thermal Science. 2003, 42: 541-552.
    [33] Vadasz J., Govender S., Vadasz P. Heat transfer enhancement in nanofluid suspensions: possible mechanisms and explanations. International Journal of Heat and Mass transfer. 2005, 48: 2673-2683.
    [34] Kabelac S, Kuhuke J F. Heat transfer Mechanism in nanofluids--experimental and theory. Proceedings of 13th International Heat Conference, Australia, 2006, KN-11.
    [35]王补宣,周乐平,彭晓峰.纳米颗粒悬浮液热物性及颗粒比热容尺寸效应.工程热物理学报. 2004, 25(2): 296-298.
    [36] Das S K, Putra N, Thiesen P et al. Temperature dependence of enhancement for nanofluids. Journal of Heat Transfer, 2003, 125: 567-574.
    [37] Masuda H, Ebata A., Teramae K. Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion ofγ-Al2O3, SiO2, and TiO2 ultra-fine particles), Netsu Bussei (Japan). 1993, 7(4): 227-233.
    [38] Eastman J.A., Choi U.S, Li S. Enhanced thermal conductivity through the development of nanofluids. Materials Research Society Symposium-Proceedings, Pittsburgh, PA, USA: Materials research society, 1997, 457: 3-11.
    [39]宣益民,李强.纳米流体强化传热研究.工程热物理学报. 2000, 1: 466-470.
    [40] Wang B.X., Zhou L.Z., Peng X.F. A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles. International Journal of Heat and Mass Transfer. 2003, 46: 2665–2672.
    [41]谢华清,王锦昌,奚同庾. SiC纳米粉体悬浮液导热系数研究.硅酸盐学报. 2001, 29(4):361-364.
    [42]谢华清,吴清仁,王锦昌.氧化铝纳米粉体悬浮液强化导热研究.硅酸盐学报. 2002,30(3): 272-276.
    [43] Berber S., Kwon Y.K., Tomanek D., Unusually High Thermal Conductivity of Carbon Nanotubes。Physics Review Letter. 2000, 84:4613-4616.
    [44] Wen D., Ding Y. Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). Journal of Thermophysics and Heat Transfer. 2004, 18 (4): 481-485.
    [45] Assael M.J., Chen C.F., Metaxa I.N. Thermal conductivity of suspensions of carbonnanotubes in water. International Journal of Thermophysics, 2004, 25 (4): 971-985.
    [46] Zhang X., Gu H., Fujii M., Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science, 2007, 31: 593-599.
    [47] Kelinski P., Phillpot S.R., Choi U.S. Mechanism of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer. 2002, 45: 855-863.
    [48] Ye L., Liu J., Sheng P. Sound propagation in colloidal system. Journal of Physique IV. 1993, 3: 183-196.
    [49] Yu W., Choi U.S. The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Maxwell model. Journal of Nanoparticle Research. 2003, 5: 167–171.
    [50] Prasher R., Phelana P.E., Bhattacharya P. Effect of aggregation kinetics on the thermal conductivity of nanoscale colloidal solutions (nanofluid). Nano Letters. 2006, 6: 1529-1534.
    [51] Jang S.P., Choi U.S. Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Applied Physics Letters. 2004, 84: 4316-4318.
    [52] Xuan Y.M., Li Q., Hu W.F. Aggregation structure and thermal conductivity of nanofluids. AIChE Journal. 2003, 49: 1038-1043.
    [53]徐洁.纳米流体有效热导率模型的研究[硕士论文].武汉:华中科技大学,2006.
    [54] Xie H., Fujii M., Zhang X. Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture. International Journal of Heat and Mass Transfer, 2005, 48 (14): 2926-2932.
    [55] Xue Q.Z, Model for effective thermal conductivity of nanofluids, Physics Letters A. 2003, 307(5-6): 313-317.
    [56] Xue Q., Xu W.M. A model of thermal conductivity of nanofluids with interfacial shells. Materials Chemistry and Physics. 2005, 90 (2-3): 298-301.
    [57] Kumar D.H., Patel H.E., Kumar V. Model for heat conduction in nanofluids. Physical Review Letters. 2004,93 (14): 1443011-1443014.
    [58] Bhattacharya P., Saha S.K., Yadav A. Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids. Journal of Applied Physics. 2004, 95(11): 6492-6494.
    [59] Koo J., Kleinstreuer C. A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research. 2004, 6 (6): 577-588.
    [60] Koo J., Kleinstreuer C. Laminar nanofluid flow in micro-heat sinks, International Journal of Heat and Mass Transfer. 2005, 48 (13): 2652-2661.
    [61] Xue Q.Z. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology. 2006, 17:1655-1670.
    [62] Wong V.K.F., Kurma T. Transport properties of alumina nanofluids. Nanotechnology. 2008, 19:345702.1-6
    [63] Lisunova M.O., Lebovka N.I., Melezhyk O.V., Boiko Y.P. Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. Journal of Colloid and Interface Science. 2006, 299:740–746.
    [64] Liu L.Y., Yang, Y.G., Zhang Y.F. A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution. Physica E. 2004, 24:343-348.
    [65] Glover B., Whites K.W., Hong H.P., Mukherjee A., Edward Billups W.E. Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synthetic Metals 158 (2008) 506–508.
    [66] Glory J., Bonetti M., Helezen M., Mayne-L'Hermite M, Reynaud C. Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. Journal of Applied Physics. 2008, 103: 094309.1-7
    [67] Lei Gao L., Zhou X.F., Ding Y.L. Effective thermal and electrical conductivity of carbon nanotube composites. Chemical Physics Letters. 2007, 434:297-300.
    [68] Ren J., Song S., Valdivieso A.L. Dispersion of silica fines in water-ethanol suspensions. Journal of Colloid and Interface Science, 2001, 238: 279 -284.
    [69] Horn R.G. Surface forces and their action in ceramic materials. Journal of the American Ceramic Society. 1990, 73 (5):1117-1135.
    [70] Lewis J.A. Colloidal processing of ceramics. Journal of the American Ceramic Society. 2000, 83: 2341-2359.
    [71] Liu D.L. Densification of zirconia from submicron-sized to nano-sized powder particles. Journal of Materials Science Letters. 1998, 17: 467-469.
    [72] Jiang L.Q., Gao L. Effect of tiron adsorption on the colloidal stability of nano-sized alumina suspension. Materials chemistry and Physics. 2003, 80:157-161.
    [73]张立德,牟季美.纳米材料和纳米结构.北京:科学出版社, 2001:141-144.
    [74]李泽梁,李俊明,胡海滔. CuO纳米颗粒悬浮液中各组分对悬浮液稳定性及黏度的影响.热科学与技术. 2005, 4(2):157-163.
    [75]饶坚,陈沙鸥,戚凭.分散剂(PMAA - NH4)质量分数和pH值对纳米氧化锆悬浮液分散效果的影响.青岛大学学报. 2003,16(3):37-39.
    [76]黄毅,彭兵,柴立元.聚合物分散剂对纳米TiO2水悬浮液分散稳定性的影响.中国粉体技术. 2006,2:24-28.
    [77]牛永效,王毅,王恩德.纳米SiO2在水性介质中的分散稳定性研究.中国粉体技术. 2006, 3:1-3.
    [78]王娟丽,李奠础,马建杰.纳米ZnO水悬浮液稳定性的研究.化工时刊. 2006,20(6):20-22.
    [79]李金平,吴疆,梁德青.纳米粒子悬浮液中分散剂选择的实验研究.兰州理工大学学报. 2006,32(3):63-66.
    [80]毕胜山,史琳,王磊.纳米颗粒在制冷剂中的分散特性研究.中国工程热物理学会工程热理学与能源利用学术会议.重庆, 2006:859-865.
    [81]郭小龙,陈沙鸥,潘秀宏. SiC和Si3N4纳米颗粒分散中的介质因素.陶瓷工程. 2001,2 : 6-9.
    [82]酒金婷,李春霞,王彩凤.纳米氧化锌在水中的分散行为及其应用.印染. 2002, 28 (1) : 1-4.
    [83]安康,孙德军,薛天锋.纳米SiO2悬浮体系中的流变、沉降与分维研究.功能材料. 2003,34(6):721-722.
    [84]汪瑾,许煜汾.超细粉体在液相中分散稳定性的研究.合肥工业大学学报. 2002, 25(1):123-126.
    [85]吴敏,程秀萍,葛明桥.纳米SiO2的分散研究.纺织学报. 2006, 27(4):80-82.
    [86]邓斌,李强国,胡正水.不同稳定机制对SiC颗粒分散稳定性的影响.湖州师范学院学报. 2003, 25(3): 55-58.
    [87]崔爱莉,王亭杰,何红.超细二氧化钛粉末在水溶液中的分散.过程工程学报, 2001, 1: 99-101.
    [88]宋晓岚,杨振华,邱冠周.纳米Al2O3颗粒的制备及其悬浮液的分散稳定.中南工业大学学报(自然科学版) , 2003, 34 (5) : 484-488.
    [89]孙秀果,魏雨,贾振斌.纳米二氧化钛粉体在水中的分散行为.电子元件与材料. 2003, 22 ( 5 ) :11-13.
    [90]韩爱军,李凤生,宋洪昌.超细黑索今在水中的分散性研究.火炸药学报, 2001, (2) : 25-27.
    [91]江万权,朱春玲,朱玉瑞.磁性粒子浓悬浮体系沉降稳定性的光学表征.化学物理学报, 2001,14(5):601-605.
    [92] Gustafsson S.E. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Review of Scientific Instruments. 1991, 62: 797–804.
    [93] Lemmon E.W., Huber M.L., McLinden M.O.,REFPROP, Version 8.0. National Institute of Standard and Technology, USA. 2007.
    [94] Yu W., Choi U.S., The role of interfacial layers in the enhanced thermal conductivity of nanofluids: A renovated Hamilton–Crosser model. Journal of Nanoparticle Research. 2004, 6:355-361.
    [95] Evans W., Fish J., Keblinski P., Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Applied Physics Letter. 2006, 88: 093116.1-093116.6.
    [96] Vladkov M., Barrat J.L. Modeling transient absorption and thermal conductivity in a simple nanofluid. Nano Letters. 2006, 6: 1224-1228.
    [97] Eastman J.A., Phillpot S.R., Choi U.S., Keblinski P. Thermal transport in nanofluids. Annual Review of Materials Research. 2004, 4: 219-246.
    [98] Zhu H.T., Zhang C.Y., Liu S.Q., Tang Y.M. Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids. Applied Physics Letter.2006, 89:023123-1- 023123-3.
    [99] Witten T.A., Sander L.M. Diffusion-limited aggregation, a kinetic critical phenomenon. Physical Review Letters. 1981, 47: 1400-1403.
    [100] Meakin, P. Diffusion-controlled cluster formation in 2-6 dimensional space. Physical Review A. 1983, 27: 1495-1507.
    [101] Yu C.J., Richter A.G., Datta A., Durbin M.K., Dutta P. Molecular layering in a liquid on a solid substrate. Physica B. 2000, 283: 27-31.
    [102] Jiang W.T., Ding G.L., Peng H. Experimental and model research on thermal conductivity of nanorefrigerant. HVAC&R Research.(In press).
    [103] Chon C.H., Kihm K., Lee S.P., Choi U.S. Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivityenhancement. Applied Physics Letters. 2005, 87:153107.1-153107.6.
    [104] Hamilton R.L., Crosser O.K., Thermal conductivity of heterogeneous two- component systems. I&EC Fundamentals. 1962, 1: 187–191.
    [105] Eastman J.A., Choi U.S., Li S.,. Thompson L.J, Lee S. Enhanced thermal conductivity through the development of nanofluids. Fall meeting of the Materials Research Society, Boston, USA.1996.
    [106] Hwang Y.J., Ahn Y.C., Shin H.S., Lee C.G., Kim G.T., Park H.S., Lee J.K. Investigation on characteristics of thermal conductivity enhancement of nanofluids. Current Applied Physics. 2006, 6:1068-1071.
    [107] Soumen J., Amin S.K., Zhong W.H. Enhancement of fluid thermal conductivity by the additionof single and hybrid nano-additives. Thermochimica Acta. 2007, 462: 45–55.
    [108] Hong T.K., Yang H.S., Choi C.J. Study of the enhanced thermal conductivity of Fe nanofluids. Journal of Applied Physics. 2005, 97: 064311-1- 064311-4.
    [109]李玲.表面活性剂与纳米技术.北京:化学工业出版社, 2004:37-39.
    [110] Hwang Y., Lee J.K., Lee C.H., Jung Y.M., Cheong S.I., Lee C.G., Ku B.C.. Jang S.P. Stability and thermal conductivity characteristics of nanofluids. Thermochimica Acta. 2007, 455, 70-74.
    [111] Li X.F., Zhu D.S., Wang X.J. Evaluation on dispersion behavior of the aqueous copper nano-suspensions. Journal of Colloid and Interface Science. 2007, 310, 456-463.
    [112] Choi C., Yoo H.S., Oh J.M. Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants. Current Applied Physics. 2008, 8,710-712.
    [113] Hutter M. Local structure evolution in particels network formation studied by Brownian dynamics simulation. Journal of Colloid and Interface Science. 2000, 231,337-350.
    [114] Dobias B., Qiu X., Rybinsky W.V., Solid-liquid dispersions. New York: Marcel Dekker Press,1992.
    [115] Li A., Ahmadi G. Deposition of aerosols on surfaces in a turbulent channel flow. International Journal of Engineering Science. 1993, 31,435-454.
    [116] Bhattacharya P. Thermal conductivity and colloidal stability of nanofluids [博士论文]. Phoenix: Arizona State University, 2005.
    [117] Lins F.F., Middea A., Adamian R. Hamaker constants of minerals, in: Second Swedish-Brazilian Workshop on Mineral Technology, Sala, Sweden, 1995.
    [118]孙静.纳米粉体的分散及表面改性.北京:化学工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700