用户名: 密码: 验证码:
新型大行程柔顺并联机构理论与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着军事工程、光通信工程、生物工程、精密机械工程、精密光学工程等领域的科学技术不断发展,迫切需要各方面性能都更加出色的新型机构来适应越来越高的操作需求。合理构型的柔顺并联机构操作精度、响应速度、承载力、可控性、灵活性等方面都有比较出色的表现,但运动范围普遍较小,柔顺铰链的类型、材料的刚度和材料的弹性极限严格的限制了转动角度的大小。
     本文对大行程柔顺虎克铰设计及大行程柔顺并联机构设计问题作了以下研究:
     (1)设计了一种新型多簧片大变形柔顺虎克铰,通过伪刚体模型计算和非线性有限元仿真,验证了该铰链结构的合理性和模型的有效性,该设计基本符合虎克铰的转动特性。在虎克铰的初步设计基础上,又针对虎克铰的各项性能进行了多目标优化设计,增加运动行程、提高非功能方向的刚度、提高承载力、便于加工等,得到装配式柔顺虎克铰为最优结构。该柔顺虎克铰可实现高精度、大角度的二维转动运动,采用直线与曲线复合簧片对称分布柔度设计,提高了铰链的轴向刚度和径向刚度,当受到纯转矩作用时,基本没有轴心漂移,是一种性能优良的大行程柔顺虎克铰。
     (2)基于大变形柔性虎克铰设计了PUU运动链,将4条PUU运动链对称布置,构造了一种空间三自由度大行程柔顺并联机构。使用螺旋理论对PUU运动链和并联机构的自由度进行了分析,建立了三自由度柔顺并联机构的等效伪刚体模型,推导了机构的位置反解方程和速度雅克比矩阵,并利用非线性有限元软件进行了模拟仿真,结果表明机构的等效伪刚体模型是有效的。这种三自由度柔顺并联机构可达立方厘米级的工作空间。
     (3)基于大变形柔性虎克铰设计了PURU运动链和UC运动链,并使用4条PURU运动链和1条UC运动链,构造了一种空间四自由度大行程柔顺并联机构。使用螺旋理论对PURU运动链、UC运动链和并联机构的自由度进行了分析,建立了四自由度柔顺机构的等效伪刚体模型,推导了机构的位置反解和速度雅克比矩阵,根据柔性虎克铰的转角范围,分析了四自由度柔顺机构的工作空间。根据非线性有限元软件的比较结果,该柔顺机构可以输出高精度大位移的三维转动和一维平动。
     (4)根据前述章节的分析结果,对大行程三自由度和四自由度柔顺并联机构的输出行程做了实验研究。根据实验结果,对相对误差进行了讨论,并根据误差来源对柔顺机构的等效伪刚体模型进行修正。使用修正公式进行的实验结果表明,修正公式是有效的,显著减小了相对误差。
With the constantly developing technology in the military engineering, opticalcommunication engineering, biological engineering, precision mechanical engineering andprecision optical engineering, there is an urgent need for the new-type robots, which possessmuch better performances in all aspects, that can adapt to the increasingly higherrequirements of operation. A well-designed compliant parallel mechanism has relatively goodperformances with respect to the operation accuracy, response speed, load-bearing capacity,controllability and flexibility. However, its rotational angle is so strictly limited by the type ofthe compliant hinge, material stiffness and the material elastic limit that the workspacegenerally tends to be small.
     In this paper, we study the design of the large-deformation compliant hooke hinge andthe large-stroke compliant parallel mechanism. The study mainly consists of the followingthree parts:
     (1) A new-type multi-reed hooke joints with large deformability is designed. Based onthe pseudo-rigid-body model and the nonlinear finite-element simulation results, we verify theeffectiveness of the hinge structure and the validity of the hinge model. This design accordwith the rotation characteristics of the hooke hinge. On the basis of the preliminary design ofthe hooke hinge, the multi-objective optimization designwith respect to all the hinge'sperformance indexes is implemented. The optimization is aimed at increasing the strokedistanceand the stiffness of the hinge at the non-functional direction, improving theload-bearing capacity, and reducing the manufacturing difficulty etc.. The optimizationproduces an ultimate structure called the assembled Compliant Hooke Joint that can achievehigh-precision, wide-angle, two-dimension rotational motion. The symmetric layout of thecomposite straight-curving flexible reeds improves both the axial and radial stiffness of thehinge. When only the torque is applied, there is no substantial axial drift. Therefore, theCompliant Hooke Joint is an excellent compliant hooke joint with large deformability.
     (2) Based on the large-deformation compliant hooke joint, a PUU kinematic chain isdesigned. Arranging four PUU kinematic chain symmetrically, we build a large-stroke3-DOFs spatial compliant parallel mechanism. The freedom of motion of the PUU kinematicchains and the parallel mechanism are analyzed by using the spiral theory. And the equivalentpseudo-rigid-body model of the3-DOFs compliant parallel mechanism is established. Therobot’s inverse solution of the position and the Jacobi matrix of the speed are derived. Results from the non-linear finite-element simulation show that the equivalent pseudo-rigid bodymodel of the robot is effective. According to angle range of the compliant hooke hinge, the3-DOFs compliant parallel mechanism can reach a workspace of cubic centimeters.
     (3) Based on the large-deformation compliant hooke joint, a PURU and a UC kinematicchain are designed. Arranging four PUU kinematic chains and one UC kinematic chain, webuild a large-stroke4-DOFs spatial compliant parallel mechanism. The DOFs of the PUUkinematic chains, the UC kinematic chain and the parallel mechanism are analyzed by usingthe spiral theory. And the equivalent pseudo-rigid-body model of4-DOFs compliant parallelmechanism is established. The robot’s inverse solution of the position and the Jacobi matrix ofthe speed are derived. With respect to angle range of the compliant hooke hinge, theworkspace of the4-DOFs compliant parallel mechanism is analyzed. According to thecomparison results of the nonlinear finite-element, this compliant robot can produce ahigh-precision large output of three-dimension rotation and one-dimension translation.
     (4) Based on the above-mentioned studies, we conducted the experiments of3-DOFs and4-DOFs large-stroke compliant parallel mechanisms. Afterwards, the experiment errors werediscussed. And we then corrected the equivalent pseudo-rigid body model of the compliantparallel mechanisms according to the source of the errors. The experiment results of themodified formula shows that the modified formula is valid and can significantly reduce theexperiment errors.
引文
[1]姚健,尤政.21世纪的科技前沿—纳米技术[J].中国机械工程,1995,6(3):14-16
    [2]钧生.纳米技术的发展及趋势[J].航空精密制造技术,1995,31(6):1-7
    [3]孙晓刚,王建华,曾效舒.纳米技术对其他学科及人类的影响[J].华东交通大学学报,2001,18(1):32-34
    [4]李红民,张洪刚,付敬业等.超大型光学镜面面形的纳米定位技术[J].宇航计测技术,1999,19(3):1-5
    [5]李圣怡,黄长征,王贵林.微位移机构研究[J].航空精密制造技术,2000,36(4):5-9
    [6]徐峰,文贵林.纳米定位技术的进展[J].机电工程,2001,18(3):1-3
    [7]王建林,胡小唐.纳米定位技术研究现状[J].机械设计与研究,2000,1:43-46
    [8]陈心中,徐润君.纳米技术的广阔应用前景[J].物理与工程,2001,11(6):39-45
    [9]袁俊.纳米技术及其对科技产业革命的影响[J].中国工程科学,2001,3(10):82-85
    [10] Erdman A G, Sandor G N. Mechanism Design:Analysis and Synthesis [M].3rd Edition.NJ: Prentice Hall, Upper Saddle River,1997.
    [11] Shigley J E, Uicker J.J. Theory of Machines and Mechanisms [M].2nd Edition. NewYork: McGraw-Hill,1995.
    [12] Howell L L. Compliant Mechanisms [M]. New York: John Wiley&Sons,2001.
    [13] Lobontiu N. Compliant Mechanisms: Design of Flexure Hinges [M]. Boca Raton: CRCPress,2002.
    [14] Howell L L.柔顺机构学[M].余跃庆译.北京:高等教育出版社,2007.
    [15] Burns R H, Crossley F R E. Kinetostatic synthesis of flexible link mechanisms [A].ASME [C].1968: No.68-MECH-36.
    [16] Her L L. Methodology for compliant mechanism design [D]. Indiana:Purdue University,1986
    [17] Howell L L, Midha A. A method for the design of compliant mechanisms withsmall-length flexural pivots [J]. ASME Journal of Mechanical Design,1994,116(l):280-290
    [18] Howell L L. The design and analysis of large-deflection members in compliantmechanisms [D]. Indiana:Purdue University,1991
    [19] Saxena A, Ananthasuresh G K. Topology synthesis of compliant mechanisms fornonlinear force-deflection and curved path specifications. ASME Journal of MechanicalDesign,2001,123:33-42
    [20] Hetrick J A, Kota S. Size and shape optimization of compliant mechanisms: Anefficiency formulation [A]. Proceedings of the1998ASME Design EngineeringTechnical Conferences [C].1998: DETC98/MECH-5943
    [21]张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51
    [22] Kota S. Design of compliant mechanisms:Applications to MEMS [A]. The SPIEConference on Smart Electroncs and MEMS [C]. Newport Beach, CA:1999,3673:45-54
    [23] Lobontiu N, Paine J S N, O’Malley E, et al. Parabolic and hyperbolic flexure hinges:flexibility, motion precision and stress characterization based on complianceclosed-form equations [J]. Precision Engineering,2002,26(2):183-192.
    [24] Lobontiu N, Paine J S N, Garcia E, et al. Design of symmetric conic-section flexurehinges based on closed form compliance equations [J]. Mechanism and Machine Theory,2002,37(5):477-498.
    [25] Lobontiu N, Paine J S N, Garcia E, et al. Corner-filleted flexure hinges [J]. Journal ofMechanical Design,2001,123(3):346-352.
    [26] Paros J M, Weisbord L. How to design flexure hinges [J]. Machine Design,1965,37(27):151-156.
    [27]薛实福,李庆祥.精密仪器设计[M].北京:清华大学出版社,1991.
    [28] Lobontiu N, Garcia E. Two-axis flexure hinges with axially-collocated and symmetricnotches [J]. Computers&Structures,2003,81(13):1329-1341.
    [29]曹锋,焦宗夏.双轴椭圆柔性铰链的设计计算[J].工程力学,2007,24(4):178-182.
    [30] Lobontiu N, Paine J S N. Design of circular cross-section corner-filleted flexure hingesfor three-dimensional compliant mechanisms [J]. Journal of Mechanical Desige,2002,124(3):479-484.
    [31] Dong W, Sun L N, Du Z J. Stiffness research on a high-precision, large-workspaceparallel mechanism with compliant joints [J]. Precision Engineering,2008,32(3):222-231.
    [32] Tian Y, Shirinzadeh B, Zhang D, et al. Three flexure hinges for compliant mechanismdesigns based on dimensionless graph analysis [J]. Precision Engineering,2010,34(1):92–100
    [33] Tian Y, Shirinzadeh B, Zhang D. Closed-form compliance equations of filletedV-shaped flexure hinges for compliant mechanism design [J]. Precision Engineering,2010,34(3):408–418
    [34] Bona F. De, Munteanu M. Gg. Optimized Flexural Hinges for CompliantMicromechanisms [J]. Analog Integrated Circuits and Signal Processing,2005,44(2):163-174
    [35] Musa Jouaneh, Renyi Yang. Modeling of flexure-hinge type lever mechanisms [J].Precision Engineering,2003,27(4):407–418
    [36] Yuen Kuan Yong, Tien-Fu Lu, Daniel C. Handley. Review of circular flexure hingedesign equations and derivation of empirical formulations [J]. Precision Engineering,2008,32(2):63–70
    [37] Paros J M, Weisbord L. How to design flexure hinges [J]. Machine Design,1965,37:151-156
    [38]吴鹰飞,周兆英,柔性铰链的设计计算[J].工程力学,2002,19(6):136-140
    [39]吴鹰飞,周兆英.柔性铰链的应用[J].中国机械工程,2002,18:1615-1618
    [40]吴鹰飞,周兆英.柔性铰链转动刚度计算公式的推导[J].仪器仪表学报,2004,01:125-128
    [41] Smith S T, Badami V G, Dale J S. Elliptical flexure hinge [J]. Review of ScientificInstruments,1997,68(3):1474-1483
    [42] Smith S D, Hetwynd C, Harb S. A simple two-axis ultraprecision actuator [J]. Reviewof Scientific Instruments,1994,65:910-917
    [43]王雯静,余跃庆.椭圆柔性铰链柔顺机构的动力学建模与分析[J].机械设计与研究,2007,23(6):54-57
    [44]曹锋,焦宗夏.双轴椭圆柔性铰链的设计计算[J].工程力学,2007,24(4):178-182
    [45] Lobontiu N, Paine J S N, Garcia E, et al. Design of symmetric conic-section flexurehinges based on closed form compliance equations [J]. Mechanism and Machine Theory,2002,37:477-498
    [46] Lobontiu N, Garcia E. Two-axis flexure hinges for compliant mechanisms design [J].Computers and Structures,2003,81(13):1329-1341
    [47] Gui-Min Chen, Jian-Yuan Jia, and Zhi-Wu Li. Right-circular Corner-filleted FlexureHinges [J]. International Conference on Automation Science and Engineering,Edmonton, Canada, August1&2,2005,249-253
    [48]于靖军,毕树生,宗光华.空间全柔性机构位置分析的刚度矩阵法[J].北京航空航天大学学报,2002,28(3):323-326
    [49] Nicolae Lobontiu, Ephrahim Garcia. Analytical model of displacement amplificationand stiffness optimization for a class of flexure-based compliant mechanisms [J].Computers&Structures,2003,81(32):2797–2810
    [50] Kyung J.H, Ko B.G, Ha Y.H, et al. Design of a microgripper for micromanipulation ofmicrocomponents using SMA wires and flexible hinges [J]. Sensors and Actuators A:Physical,2008,141(1):144–150
    [51]宗光华,裴旭,于靖军,毕树生.一种新型柔性直线导向机构及其运动精度分析[J].光学精密工程,2008.4, Vol.16, No.4:630-635
    [52]梁济民.基于柔顺机构的空间六自由度微位移精密定位平台研究[D].广州:华南理工大学,2012
    [53]张宪民,王华,贺珍真.一种整体式柔顺板精密定位平台[P].中国: CN1811993,2006
    [54] Hong-Wen Ma, Shao-Ming Yao, Li-Quan Wang, Zhi Zhong. Analysis of thedisplacement amplification ratio of bridge-type flexure hinge [J]. Sensors and ActuatorsA: Physical,2006,132(2):730–736
    [55]赵宏伟,博达,曹殿波,华顺明,程光明,杨志刚,曲兴田.直角柔性铰链的力学特性[J].纳米技术与精密工程,2007,06:143-147
    [56]宗光华,毕树生,于靖军,余志伟,裴旭.双曲杆型空心柔性铰链[P].中国:CN101025187A,2007
    [57] Kyoungchon Kim, Dahoon Ahn, Daegab Gweon. Optimal design of a1-rotational DOFflexure joint for a3-DOF H-type stage [J]. Mechatronics,2012,22(1):24–32.
    [58]赵山杉,毕树生,宗光华,于靖军.基于曲线柔性单元的新型大变形柔性铰链[J].机械工程学报,2009.4,45(4):8-12
    [59] Bi Shusheng, Zhao Shanshan, Zhu Xiaofeng. Dimensionless design graphs for threetypes of annulus-shaped flexure hinges [J]. Precision Engineering,2010,34(3):659–666
    [60]赵宏哲,毕树生,于靖军.三角形柔性铰链的建模与分析[J].机械工程学报,2009.8,Vo1.45, No.8:1-5
    [61]王华,张宪民.低成本柔顺板式精密定位平台的理论与实验研究[J].机械工程学报,2008,44(10):177-181.
    [62] Speich J E, Goldfarb M. Three degree-of-freedom flexure-based manipulator for highresolution spatial micromanipulation [A]. Part of the SPIE Conference on Microroboticsand Micromanipulation [C]. Boston, Massachusetts,1998:82-92.
    [63] Goldfarb M, Speich J. E. A Weil-Behaved Revolute Flexure Joint for CompliantMechanism Design [J]. Journal of Mechanical Design,1999,121(3):424-429
    [64] Wang Nianfeng, Liang Xiaohe, Zang Xianmin. Pseudo-rigid-body Model forCorrugated Cantilever Beam Used in Compliant Mechanisms [J]. Chinese Journal ofMechanical Engineering,2014,27(1):122-129
    [65]侯文峰.考虑温度效应的柔性和柔顺机构弹性动力学研究[D].中国:华南理工大学,2009.7
    [66]于靖军,裴旭,宗光华,毕树生.具有虚拟转动中心的人变形柔性虎克饺[P].中国:CN101025189A,2007
    [67] Brian P. Trease, Yong-Mo Moon, Sridhar Kota. Design of Large-DisplacementCompliant Joints [J]. Journal of Mechanical Design,2004,127(4):788-798
    [68] Yong-Mo Moon, Sridhar Kota. DESIGN OF COMPLIANT PARALLEL KINEMATICMACHINES [A]. ASME2002International Design Engineering Technical Conferencesand Computers and Information in Engineering Conference [C]. Montreal, Quebec,Canada,2002:35-41
    [69] Lu T F, Daniel C H, Yuen K Y, et al. A three-DOF compliant micromotion stage withflexure hinges [J]. Industrial Robot,2004,31(4):355-361
    [70] Wang Hua, Zhang Xianmin. Input coupling analysis and optimal design of a3-DOFcompliant micro-positioning stage [J]. Mechanism and Machine Theory,2008,43(4):400–410
    [71] Tia Y, Shirinzadeh B, Zhang D. Design and dynamics of a3-DOF flexure-based parallelmechanism for micro/nano manipulation [J]. Microelectronic Engineering,2010,87(2):230–241
    [72] Hwa Soo Kim, Young Man Cho. Design and modeling of a novel3-DOF precisionmicro-stage [J]. Mechatronics,2009,19(5):598–608
    [73] Yu Jingjun, Hu Yida, Bi Shusheng, Zong Guanghua, Zhao Wei. Kinematics featureanalysis of a3-DOF compliant mechanism for micro manipulation [J]. Chinese Journalof Mechanical Engineering,2004,17(1):127-131
    [74] Yi Yue, Feng Gao, Xianchao Zhao, Q. Jeffrey Ge. Relationship among input-force,payload, stiffness and displacement of a3-DOF perpendicular parallelmicro-manipulator [J]. Mechanism and Machine Theory,2010,45(5):756–771
    [75] Huy-Hoang Pham, I-Ming Chen. Stiffness modeling of flexure parallel mechanism [J].Precision Engineering,2005,29(4):467–478
    [76]王华,张宪民.整体式空间3自由度精密定位平台的优化设计与实验研究[J].机械工程学报,2007,43(3):66-71.
    [77] Qingsong Xu, Yangmin Li, Statics and Dynamics Performance Evaluation for a HighPrecision XYZ Compliant Parallel Micromanipulator [A]. Proceedings of the2007IEEE, International Conference on Robotics and Biomimetics [C]. Sanya,2007:65-70
    [78] Qingsong Xu, Yangmin Li, Design of a Partially Decoupled High Precision XYZCompliant Parallel Micromanipulator [A]. Proceedings of the3rd IEEE Int. Conf. onNano/Micro Engineered and Molecular Systems [C]. Sanya,,2008:13-18
    [79] Dan Zhang, Kayla Viegas, Zhen Gao, Yunjian Ge. Modeling and Analysis of anEnhanced Compliant Parallel Mechanism for High Accuracy Micro Motion [A].Proceedings of the7th World Congress on Intelligent Control and Automation [C].Chongqing, China:2008:2289-2294
    [80] Yuan Yun, Yangmin Li, Optimal design of a3-PUPU parallel robot with complianthinges for micromanipulation in a cubic workspace [J]. Robotics andComputer-Integrated Manufacturing,2011,27(6):977–985
    [81] Patric Pham, Yves-Julien Regamey, Maurice Fracheboud, Reymond Clavel. OrionMinangle: A Flexure-based, Double-tilting Prallel Kinematics for Ultra-high PrecisionApplications Requiring High Angles of Rotation. http://infoscience.epfl.ch,2005,1-7
    [82] Tang X, Chen I M. A large-displacement3-DOF flexure parallel mechanism withdecoupled kinematics structure [A]. IEEE/RSJ International Conference on IntelligentRobots and Systems [C]. Beijing. China: IEEE/RSJ(IROS),2006:1668-1673.
    [83] Ouyang P R. Hybrid intelligent machine systems: Design, modeling and control [D].Canada:University of Saskatchewan,2005
    [84] Hesselbach J, Raatz A, Wrege J, et al. Design and analysis of a macro parallel robotwith flexure hinges for micro assembly tasks [A]. Proceedings of35th InternationalSymposium on Robotics [C]. Paris. France:Nord Villepinte,2004:1-6
    [85] Zhenhua Wang, Liguo Chen and Lining Sun. An Integrated Parallel Micromanipulatorwith Flexure Hinges for Optical Fiber Alignment [A]. Proceedings of the2007IEEE,International Conference on Mechatronics and Automation [C]. Harbin, China:2007:2530-2534
    [86] Wu T L, Chen J H, Chang S H. A six-DOF prismatic-spherical-spherical parallelcompliant nanopositioner [J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2008,55(12):2544-2551.
    [87]张建军,高峰,李为民,金振林,新型6自由度并联微动机构微运动学及其运动解耦性分析[J].机械设计,2003,20(12):22-25
    [88] Ivano Beltrami, Cédric Joseph, Reymond Clavel, Jean-Philippe Bacher, StefanoBottinelli. Micro-and Nanoelectric-discharge Machining [J]. Journal of MaterialsProcessing Technology,2004,149:263–265
    [89] Jean-Philippe Bacher, Stefano Bottinelli, Jean-Marc Breguet, Reymond Clavel. Delta3:Design and Control of a Flexure Hinges Mechanism[J]. Proceedings of SPIE,2001,4568:135-142
    [90] Kartik M. Varadarajan, Martin L. Culpepper. A dual-purpose positioner-fixture forprecision six-axis positioning and precision fixturing Part II. Characterization andcalibration [J]. Precision Engineering,2007,31(3):287–292
    [91] S.R. Park, S.H. Yang. A mathematical approach for analyzing ultra precisionpositioning system with compliant mechanism [J]. Journal of Materials ProcessingTechnology,2005,164–165:1584–1589
    [92] Yuan Yun, Yangmin Li. Design and analysis of a novel6-DOF redundant actuatedparallel robot with compliant hinges for high precision positioning [J]. NonlinearDynamics,2010,61(4):829-845
    [93] D.M. Brouwer, B.R. de Jong, H.M.J.R. Soemers. Design and modeling of a six DOFsMEMS-based precision manipulator [J]. Precision Engineering,2010,34(2):307–319
    [94] Chao Daihong, Zong Guanghua, and Liu Rong. Design of a6-DOF CompliantManipulator Based on Serial-Parallel Architecture [A]. Advanced IntelligentMechatronics [C]. Monterey, CA,2005:765-770
    [95] Martin L. Culpepper, Gordon Anderson. Design of a low-cost nano-manipulator whichutilizes a monolithic, spatial compliant mechanism [J]. Precision Engineering,2004,28(4):469–482
    [96] Shih-Chi Chen, Martin L. Culpepper. Design of a six-axis micro-scalenanopositioner—μHexFlex [J]. Precision Engineering,2006,30(3):314-324
    [97] Qiaokang Liang, DanZhang, ZhongzheChi, QuanjunSong, YunjianGe, YuGe. Six-DOFmicro-manipulator based on compliant parallel mechanism with integrated force sensor[J]. Robotics and Computer-Integrated Manufacturing,2011,27(1):124–134
    [98] W. Dong, L.N. Sun, Z.J. Du, Design of a precision compliant parallel positioner drivenby dual piezoelectric actuators[J]. Sensors and Actuators,2007,135(1):250–256
    [99]孙立宁,董为,杜志江.基于大行程柔性铰链的并联机构刚度分析[J].机械工程学报,2005,8(41):90-95.
    [100]谭坤,宗光华,毕树生等.大变形柔性铰链的多簧片构型[J].军民两用技术与产品,2007,(3):38-42.
    [101] Choi Y J, Sreenivasan S V, Choi B J. Kinematic design of large displacement precisionXY positioning stage by using cross strip flexure joints and over-constrainedmechanism[J]. Mechanism and Machine Theory.2008,43(6):724-737.
    [102]王雯静,余跃庆.基于有限元法的柔顺机构动力学分析[J].机械工程学报.2010(9):79-86.
    [103]夏富杰.空间并联机构运动分析的有限元法[J].机械科学与技术.1998,17(1):60-62.
    [104]于晖,孙立宁,张秀峰等.虎克铰工作空间研究及其在6-HTRT并联机构中的应用[J].中国机械工程,2002,13(21):1830-1833.
    [105]孙立宁,于凌涛,杜志江等.并联机构胡克铰工作空间的研究与应用[J].机械工程学报,2006,42(8):120-124
    [106] Wei Sun, Xian Min Zhang, Nian Feng Wang, Liang Chen, Ji Min Liang. Design andAnalysis of a Distributed Multi-leaves and Large-deflection Flexible Hooke Hinge [A].Advanced Materials Research [C]. Guangzhou, China,2011:1603-1608
    [107]孙炜,张宪民,管贻生.一种分布式多簧片柔性虎克铰[P],中国:CN201866122U,2011.3
    [108]艾科夫,优化设计[M].刘宝成.北京:中国人民大学出版社,2009.
    [109]陈立周.机械优化设计方法第二版[M].北京:冶金工业出版社,1995
    [110]孙国正.优化设计及应用[M].北京:人民交通出版社,1992.
    [111]刘惟信.机械最优化设计[M].北京:清华大学出版社,1994.
    [112] Wei Sun. Simulation and Optimization of Flexible Hooke Hinge [A]. Advances inEngineering Design and Optimization [C]. Ningbo, China,2012:574-577
    [113]孙炜,张宪民,王念峰,管贻生.三种柔性虎克铰的比较与分析[J],华南理工大学学报(自然科学版),2011,11(39):59-64.
    [114] Chen G, Howell L L. Two general solutions of torsional compliance for variablerectangular cross-section hinges in compliant mechanisms. Precision Engineering[J],2009,33(3):268-274.
    [115]孙炜,张宪民,王念峰.新型大行程柔性虎克铰[P],中国:CN202360622U,2012.6
    [116]黄真,赵永生,赵铁石.高等空间机构学[M].北京,高等教育出版社,2006.
    [117]于靖军,刘辛军,丁希仑等.机构机构学的数学基础[M].机械工业出版社,2008.
    [118]黄真,刘婧芳,李艳文.论机构自由度:寻找了150年的自由度通用公式[M].科学出版社,2011.
    [119] Masory, J Wang. Workspace evaluation of Stewart platforms[J]. Advanced Robotics,1994,9(4):443-461
    [120] Kumar V. Characterization of workspaces of parallel manipulators[J]. Journal ofMechanical Design,1992,114(3):368-375.
    [121] Kumar V. Instantaneous Kinematics of Parallel Chain Robotic Mechanisms[J]. Journalof Mechanical Design,1992,114(3):349-358
    [122]王铁军,刘全凯.六自由度并联机构工作空间分析[J].沈阳工业学院学报,1999,18(3):21-25
    [123] Feng Gao, Weimin Li a, Xianchao Zhao, Zhenlin Jin, Hui Zhao. New kinematicstructures for2-,3-,4-, and5-DOF parallel manipulator designs[J]. Mechanism andMachine Theory.2002,37(11):1395–1411
    [124] Franqois Pierrot, Olivier Company. H4: a new family of4-dof parallel robots[A].Advanced Intelligent Mechatronics,1999IEEE/ASME International Conference [C].Atlanta, GA:1999:508–513
    [125] Jaime Gallardo-Alvaradoa, José María Rico-Martíneza, Gürsel Alicib. Kinematics andsingularity analyses of a4-dof parallel manipulator using screw theory[J]. Mechanismand Machine Theory.2006,41(9):1048–1061
    [126] Pierre-Luc Richard, Clément M. Gosselin, Xianwen Kong. Kinematic Analysis andPrototyping of a Partially Decoupled4-DOF3T1R Parallel Manipulator[J]. Journal ofMechanical Design.2006,129(6):611-616
    [127] D. Zhang, C.M. Gosselin. Kinetostatic modeling of parallel mechanisms with a passiveconstraining leg and revolute actuators[J]. Mechanism and Machine Theory.2002,37(6):599–617
    [128]孙炜,张宪民,王念峰.一种二维平动二维转动四自由度并联机构[P],中国:CN202357165U,2012.6
    [129]袁剑锋,张宪民.一种二维平动二维转动的四自由度并联机器人机构[P],中国:CN1772444A,2006.5
    [130]熊伟.4_RPUR柔性微动并联机构的性能分析与研究[D].江西:华东交通大学,2011
    [131]赵然,四自由度4_RRUR并联微动机构设计与基础性能研究[D].河北:燕山大学,2010
    [132] David G. Ullman. The Mechanical Design Process[M]. New York: McGraw Hill HigherEducation,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700