用户名: 密码: 验证码:
超声激励纳米复相陶瓷非局部本构关系及延性域磨削机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声加工陶瓷材料的去除过程伴随着各种行为效应如力学效应、化学效应、电磁效应和热学效应等,使得问题的研究由单一领域转化为多学科、多领域、宏微观结构交织在一起。此时为了解释加工性能改善的现象,本文基于非局部理论,着重于探索超声波与ZTA纳米复相陶瓷材料的微观作用机理,从材料本构特性、宏观力学特性和磨削表面微观形貌等方面阐述了超声激励对纳米陶瓷加工特性的影响,揭示超声加工时所产生的延性高效现象的理论本质,为进一步完善超声加工的理论奠定基础。本文主要研究内容如下:
     基于脆性材料断裂的非局部力学理论,考虑超声激励参量的影响因素建立非局部弹性核参量和弹性核函数公式,推导含有超声激励影响因素的非局部本构模型。讨论了超声振动振幅和频率对核函数的影响,基本上呈现下开口抛物线性形状,在临界振幅和临界频率以前它们对核函数的影响呈递增趋势,在临界值附近时影响最为明显,非局部效应最强烈,此后振幅和频率对核函数的影响呈衰减现象。通过核函数建立宏-微观联系,建立了陶瓷材料超声激励裂纹尖端的非局部弹性解析应力场,发现发生在裂纹尖端的最大应力是有限的,理论上消除了物理上不现实的裂纹尖端应力奇异性,显示了裂纹尖端应力场的本来面目。为超声振动加工延性去除机理的研究提供理论保证和指导。
     通过超声激励轴向拉伸试验,考虑不同超声参数下非局部弹性核函数与长程作用域的关系,得出断裂应力随着振幅和频率的增加先减小后增加,呈上开口抛物线性形状,在临界振幅(30kHz,15.3218μm)和临界频率(75W,35kHz)附近时,衰减率最小,非局部效应也最强烈。通过拉伸强度试验结果,对非局部核参量的影响参数进行拟合,求出了频率的影响系数为1.2,从而获得了超声激励下的非局部弹性核函数和非局部本构模型。通过对试件拉伸断口物相分析,说明超声激励作用在很大程度上改善了陶瓷材料的力学性能,ZrO2在应力诱导下发生t→m相变从而吸收应变,有较好的塑性力学性能。对拉伸断口的电镜观察表明,超声拉伸下的断口有明显的晶粒断面,在大量的晶粒上有裂纹出现,说明ZTA陶瓷发生了穿晶/沿晶混合断裂。随着超声激励振幅和频率的增大,断口的空隙逐渐增多,平整度也得到很大的改善,在(30kHz,15.3218μm)和(75W,35kHz)附近时,断面最为齐整,在试验上验证了非局部衰减率的理论变化规律并对超声振动参数进行优化。
     基于非局部弹性理论和最大拉应力准则推得了裂纹平面应变断裂韧性的理论公式,从微观力学机理上反映陶瓷材料断裂的解理机制。通过超声激励下的显微硬度和断裂韧性测试试验,发现超声下的材料硬度值约为普通无超声下材料硬度值的70.4%~58.7%,而普通情况下的断裂韧性K IC值约为超声振动下断裂韧性KIC值的68.7%~85.1%。通过试验结果,分析了不同超声频率下临界切削深度的变化规律,研究了超声振动对材料去除性能的影响。并通过磨削力试验及表面微观形貌观察,发现在试验所用的精密平面磨床上,普通磨削ZTA纳米复相陶瓷的延性域磨削深度约为2μm,超声磨削塑性去除临界磨深在20kHz下约为4μm,30kHz下约为8μm,在35kHz下约为12μm,40kHz下的塑性去除临界磨深约为10μm,试验结果和理论推导一致。
     依据非局部能量平衡理论和内聚力理论,推导出了物理意义更加明确的超声激励断裂表面能和动态裂纹扩展速度公式。通过超声激励作用下裂纹尖端处的TEM和SEM照片,从“能量角度”和“微观测试”探讨了超声延性域加工的本质,分析了超声激励对裂纹扩展的微观作用机制:发现超声激励造成主裂纹周围产生位错云、微裂纹云、裂纹分叉或者偏转等现象,形成能量吸收机制,裂纹扩展速度降低,材料的表观断裂表面能增大。这种机制通过在裂纹尖端形成对外加超声载荷的屏蔽作用而对裂纹扩展驱动力产生显著影响,从而起到了扩大延性域的作用。并通过应力强度因子、机械能释放率和断裂表面能把非局部本构模型和超声激励裂纹屏蔽效应联系起来。
     研究表明非局部本构模型对于超声振动加工陶瓷硬脆材料力学特征的适用性,符合其显著增加延性域切削深度的现象。超声磨削对硬脆材料而言是一种有效的加工方法,扩大了材料塑性域去除的范围,提高了材料的韧性。
The machining process of ceramics materials is followed with various behavioraleffects under ultrasonic excitation such as the mechanical effects, chemical effects,electromagnetic effects and thermal effects, etc. And it turns the study of the problemfrom a single area to multi-areas which are multi-disciplinarians, multi-fields, andintertwined areas between the macro and micro structures. At this point, in order toexplain the ameliorative phenomenon of processing performance, the research which isbased on nonlocal theory pays more attention to the microcosmic acting mechanismbetween ultrasonic and ZTA ceramics, and illustrates the affects of ultrasonic excitationon grinding characteristics of ZTA nano-composite ceramics from aspects of materialconstitutive properties, microscopic mechanical properties and SEM of grinding surfaceetc. The theory essence of the high efficiency and ductility phenomenon is disclosedunder ultrasonic machining, and it lays the foundation for improving the theory ofultrasonic machining. The main work and the achievements of this paper are list asfollows:
     Based on nonlocal mechanics theory of brittle material fracture and throughconsidering the influence factors of ultrasonic excitation parameters, nonlocal elastickernel parameters and the formula of elastic kernel function are established andnonlocal constitutive model which contains the influence parameters of ultrasonicexcitation is deduced. The influence of ultrasonic vibration frequencies and amplitudesto kernel function is discussed which mainly presents parabolic shape with open sidedown. The kernel function shows increasing trend before the critical amplitude andfrequency. It is the most obvious near the critical amplitude and frequency and thenonlocal effects are also the strongest. Since then the influences of frequencies andamplitudes to the kernel function present decay phenomenon. The connection betweenmacro and micro is built through the kernel function, and the nonlocal elastic analysisstress field which is near the crack tip of ceramics materials under ultrasonic excitationis established. The maximum stress that occurs near the crack tip is limited. The stresssingularity of crack tip which is unrealistic in physics is eliminated theoretically and thetrue features of stress field near the crack tip are revealed. It provides theoretical guarantee and guidance to the ductile removal mechanism under the ultrasonic vibrationmachining.
     Through axial tensile experiments of ultrasonic excitation and considering therelationship between nonlocal elastic kernel function and long-range scope, it can beobtained that fracture stress decreases at first and then increases which presentsparabolic shape with open side up when amplitudes and frequencies increase. When theamplitudes are near the critical value (30kHz,15.3218μm) and the frequencies are nearthe critical value (75W,35kHz), the decay rate is the minimum and the nonlocal effectsare strongest. The influence parameter of nonlocal kernel parameters is fitted throughthe results of tensile test. The influence coefficient of frequency is given to equal to1.2,and the nonlocal elastic kernel function and the nonlocal constitutive model areobtained under ultrasonic excitation. Through the phase analysis of tensile fracture, itsays that the mechanical properties of ceramic materials are improved significantlyunder ultrasonic excitation. The ceramic materials present phase transition t→m whichis induced by stress and it shows better plastic mechanical properties. From the SEMobservation of tensile fracture, it can be seen that there are obvious grain cross-sectionin tensile fracture under ultrasonic excitation and cracks are emerged in a lot of grains.And it says that ZTA ceramics present transgranula and intergranular mixed fracture.Along with the increase of frequencies and amplitudes under ultrasonic excitation, thegap of fracture increases gradually, and the roughness also gets a lot of improvement.Near the amplitude (30kHz,15.3218μm) and frequency (75W,35kHz), the section is thetrimmest. The theoretical change rule of nonlocal decay rate is verified in theexperiment and ultrasonic vibration parameters are optimized.
     Based on the nonlocal elastic theory and the maximum tensile stress criterion, thetheoretical formula of the strain fracture toughness in crack plane is deduced, and thecleavage mechanism of fracture in ceramics materials is reflected from the micromechanical mechanism. Through testing experiments of hardness and fracturetoughness under ultrasonic excitation, it can be found that the hardness value underultrasonic excitation is as low as70.4%~58.7%of that in ordinary situation. And thefracture toughness value in ordinary situation is68.7%~85.1%of that under ultrasonicexcitation. Through the test results, the change rule of critical depths in different ultrasonic frequencies is analyzed and the influences of ultrasonic vibration on materialremoval performance are studied. Through the tests of grinding force and theobservation of the surface morphology, it can be found that, the ductile grinding depthof ZTA is about2μm in ordinary grinding, it is4μm in the frequency of20kHz, it is8μm in30kHz, it is12μm in35kHz and it is10μm in40kHz. The results are consistentwith the theory.
     According to cohesion theory and nonlocal energy balance theory, the fracturesurface energy formula and the velocity formula of dynamic crack propagation arederived whose physical significance is more definite. Through the photos of TEM andSEM at the crack tip under ultrasonic excitation, the essence of ultrasonic machining inductile domain is discussed from the angle of energy and microscopical testing. Themicroscopic mechanism of crack propagation under ultrasonic excitation is analyzed. Itcan be found that ultrasonic excitation causes many phenomena around the main cracksuch as dislocation clouds, micro cracks clouds and crack bifurcation or deflection, andthe mechanism that can absorb energy is formed. Crack propagation rate decreases andthe fracture surface energy of materials increases. This mechanism makes significanteffects on the diving force of crack propagation by forming shield effect on outerultrasonic load at crack tip, thereby it plays a role of expanding the ductile domain. Andthe nonlocal constitutive model is connected with the shield effect of cracks underultrasonic excitation through the stress intensity factor, mechanical energy release rateand fracture surface energy.
     The applicability of the nonlocal constitutive model which has been established tomechanics characteristic of ceramics materials under ultrasonic vibration machiningcorrespond with the phenomenon that the cutting depths are increased significantly inductile domain. Ultrasonic grinding is an effective processing method to hard and brittlematerials which can expand ductile removal domain and improve the toughness of thematerials.
引文
[1]李伯民,赵波.现代磨削技术[M].北京:机械工业出版社,2003.
    [2]张玉龙,马建平.实用陶瓷材料手册[M].北京:化学工业出版社,2006.
    [3]杜则裕.工程材料简明手册[M].北京:电子工业出版社,1996:412-427.
    [4]杜建华,刘永红,李小朋,等.工程陶瓷材料磨削加工技术[J].机械工程材料,2005,29(3):1-3.
    [5] David J.Green著,龚江宏译.陶瓷材料力学性能导论[M].北京:清华大学出版社,2003.
    [6]王瑞刚,潘伟,蒋蒙宁,等.可加工陶瓷及工程陶瓷加工技术现状及发展[J].硅酸盐通报,2001,(03):27-35.
    [7] ChangW, SkandanG, DanforthSC, etal. Nanostruc-tured [J]. Materials,1994,4(5):5-9.
    [8] El-Shall M and Baraton M I. Astracts of Second International Conference on Nano-structuredMaterials [J]. Stuttgart: Germany,1994:7601-7611.
    [9] Izaki.K, Hakkei.K. Ultrastructure Processing for Advanced Ceramics[J], New York. JohnWilley&Sons,1988:891-896.
    [10]张希华,张建华.氧化铝基陶瓷材料增韧研究现状及其发展方向[J].山东大学学报(工学版),2004(5):14-17.
    [11]王昕,孙康宁.纳米复合陶瓷材料的研究进展[J].复合材料学报,1999,16(1):105-109.
    [12]邓建国,刘东亮,陈建.纳米技术在陶瓷领域的应用及发展趋势[J].四川理工学院学报,2007,20(6):86-90.
    [13]单妍,王听,尹衍升,等. ZTA纳米复相陶瓷的研究[J].硅酸盐通报,2002,21(2):43-46.
    [14]李晓贺,王平.纳米复相陶瓷处理的烧结技术[J],中国陶瓷,2007.43(7):43-46.
    [15]陈国清.Al2O3-ZrO2纳米复相陶瓷制备与超塑性成形研究[D].哈尔滨:哈尔滨工业大学,2004.
    [16]靳喜海,高濂.纳米复相陶瓷[J].化工进展,2003,22(6):553-558.
    [17]邹东利,郭亚昆,路学成.纳米陶瓷及其纳米复相陶瓷的研究现状[J],陶瓷,2007,(10):11-15.
    [18]谭小平,梁叔全,李少强,等.氧化锆-莫来石纳米复相陶瓷的制备[J].中南大学学报,2005,36(5):790-794.
    [19]陈国清,王旭东,张凯锋. Al2O3-ZrO2纳米复相陶瓷的超塑性变形行为[J].稀有金属材料与工程,2005,34(21):295-297.
    [20]田春艳,刘宁. Si3N4-TiC纳米复相陶瓷的组织与力学性能研究[J].矿冶工程,2007,27(6):72-75.
    [21]王宏志,高镰,郭景坤. SiC颗粒尺寸对A12O3-SiC纳米复合陶瓷的影响[J].无机材料学报,1999:45-49.
    [22] T.Rounxel, F.Wakai, K.Izaki. Tensile Ductility of Superplastic A12O3-Y2O3-Si3O4/SiCComposites [J]. J. Am. Ceram. Soc,1992,75(9):2363-2372.
    [23]傅正义,李建保.先进陶瓷及无机非金属材料[M].北京:科学出版社,2007.
    [24]尹衍升,陈守刚,李嘉.先进结构陶瓷及其复合材料[M].北京:化学工业出版社,2006.
    [25]李刚,林彬.优质陶瓷零件的超精密加工技术研究[J].科学通报,1991,36(15):1188-1190.
    [26]龚江宏.陶瓷材料断裂力学[M].北京:清华大学出版社,2001.
    [27] Lawn B R, Evans A G. A Model for Crack Initiation in Elastic/Plastic Indentation Fields[J].Mater. Sci,1972,12:2195-2199.
    [28]张璧,孟鉴.工程陶瓷磨削加工损伤的探讨[J].纳米技术与精密工程,2003(1):48-56.
    [29]林滨.工程陶瓷超精密磨削技术研究[D].天津:天津大学机械工程学院,1998.
    [30] B. Bhushan and Li X. Mircomechanical and Tribological Characterization of DopedSingle-crystal Silicon and Poly-Silicon Film for Microelectromechanical Systems[J]. Mater.Res,1997(12):54-63.
    [31] Ueda K, Hirano T, Fu H. and Manabe K. Atomic-level Material Removal Mechanism ofGrap-hite Studied by STM and MD[J]. JSPE,1998,64(11):1653-1657.
    [32] Lucca D A. and Seo Y W, Effect of Edge Geomety on Energy Dissipation in UltraprecisionMachining [J]. Annals of the CIRP,1993,42(1):83-85.
    [33] Brinksmeier E, Hoper R, and Riemer O. Characterization of Micromachined Surfaces byAtomic Force Microscopy[J]. Ind. Diam. Rev,1996(2):59-63.
    [34] Ichida Y and kishi K. Nanotopography of Ultra-precise Ground Surface of Fine Ceramics UsingAtomic Force Microscopy[J]. Annals of the CIRP,1993,42(1):647-650.
    [35] Fang F Z. Nano-turning of Single Crystal Silicon.Journal of Materials Processing Technology[J].1998,(82):95-101.
    [36] Eringen A C. Nonlocal polar elastic continua[J]. International Journal of Engineering Science,1972,10(1):1-16.
    [37] Eringen A C, Edelen D. G. B. On Nonlocal Elasticity[J]. International Journal of EngineeringScience.1972,10(3):233-248.
    [38] Eringen A C. Linear theory of nonlocal elasticity and dispersion of plane waves[J]. InternationalJournal of Engineering Science,1972,10(5):425-435.
    [39] Eringen A C. Nonlocal micropolar field theory[M]. Continuum Physics (vol.4),1976, AcadamicPress, New York.
    [40] D.G.B. Edelen, Norman Laws. On the Thermodynamics of System withNonlocality[J]. Arch. Rat. Mech. Ana1,1971,43(1):24-35.
    [41]马辉,赵波,谢萍.纳米复相陶瓷超声磨削频率与表面质量关系的实验研究[J].上海交通大学学报,2010,44(12):1763-1766.
    [42] Zhao Bo, ChengXL. Research on cutting temperature of PRMMCS with ultrasonic assistance[J],Progress of Machining Technology, Proceedings2006,125-128.
    [43] Zhao B, WuY. The study on ductile removal mechanisms of ultrasonic vibration grindingnano-ZrO2ceramics[J]. Key Engineering Materials,2006,304-305:171-175.
    [44] Zhao Bo, Gao Guofu. Research on micro characteristics of surface and subsurface layer intwo-dimensional ultrasonic grinding nano-composite ceramics[J]. Key Engineering Materials,2008,375-376:395-400.
    [45] ZhaoBo,WuYan. Research on micro-mechanism of nano-composite ceramic in two-dimensionalultrasound grinding[J]. Key Engineering Materials,2008,359-360:344-348.
    [46] Feng Jiao, Bo Zhao. Influences of Ultrasonic Assistance in High Speed Lapping of Nano ZTAEngineering Ceramic on the Surface Machining Quality[J]. Key Engineering Materials,2008,359-360:355-359.
    [47] P.Y.Bian, B.Zhao, and Y.Li. Study on the Edge Quality Control in Grinding EngineeringCeramics[J]. Key Engineering Materials,2011,(455):682-685.
    [48]肖长江,邓相荣,栗正新.纳米陶瓷的特性和烧结[J].佛山陶瓷,2010,20(8):38-41.
    [49] Newnham.R.E, Skinner.D.P and Cross.L.E. Connectivity and Piezoelectric-pyroelectriccomposites[J]. Materials Research Bulletin,1978,13:525-536.
    [50] Niihara.K. New design concept of structural ceramics-ceramic nanocomposites[J]. Journal ofthe ceramic Society of Japan,1991,99(10):974-982.
    [51] Gleiter H. Nanocrystalline Materials[J]. Prog. Mater. Sci,1989,33:223-231.
    [52] Izaki K, Hakkei K. Ultrastructure Processing for Advanced Ceramics [M]. New York.JohnWilley&Sons,1988:891-896.
    [53] Zhao J, Sterns L C, Harmer M P. Mechanical behavior of alumina-silicon carbide nanocomposites [J]. J Am Ceram Soc,1993,76(2):503-510.
    [54]焦绥隆, Borsa C E.氧化铝/碳化硅纳米复相陶瓷的力学性能和增韧机理[J].材料导报,1996,10(增刊):89-93.
    [55]高家化,沈志坚,丁之上.陶瓷基纳米复合材料[J].复合材料学报,1994,11(1):1-7.
    [56] Tatsuki.D, Atsushi.N. Tensile creep behavior of alumina/silicon carbide nanocomposite[J].Journal of the American Ceramic Society,1994(12):3259-3262.
    [57] Hirano.T. Niihara.K. Microstructure and mechanical properties of Si3N4/SiC composites[J],Materials Letters,1995,22:249-254.
    [58]马来鹏,尹衍升.纳米复相陶瓷(续)[J].山东陶瓷,2005,28(1):44-47.
    [59]新原皓一,伊崎宽正,中平蹲,等.高温超强度Si3N4-SiC复合材料[J].粉体粉末冶金,1990,37(2):348-351.
    [60] Chou.I.A, Chan.H.M and Harmer.M.P. Machining-incluced surface residual stress behaviorinAl2O3-SiC Nanocomposites[J], Am Ceram Soc,1996,79(9):2403-2409.
    [61]黄征仁,江东亮,谭寿洪. SiC-Al2O3基复相陶瓷的N2-HIP研究[J].硅酸盐学报,1997,25(1):30-34.
    [62] Hori Saburo, Ryuichi Kurita, Suppressed grain growth in final-stage sintering of Al2O3withdispersed ZrO2particles[J]. Mater Sci Letters,1985(4):1067-1070.
    [63]李爱民.制备技术与合金化对Fe-Al/Al2O3CMC性能和组织的影响[D].山东:山东大学.2000:12-14.
    [64] Garvie R C, Hannink A H, Pooscoe R T. Ceramic steel [J]. Nature,1975,258:703-704.
    [65] Dimilia RA, Reed J S. Dependence of Compaction on the Glass Transition Temperature of theBinder Phase[J]. Am.Ceram.Soc.Bull,1983,62(4):484-488.
    [66] Wu H Z, C. W.Lawrence, S.G. Roberts, etal. Acta Materialia[J].1998,46:3839-3848.
    [67] Wu H Z, S. G. Roberts, etal. RESIDUAL STRESS AND SUBAURFACE DAMAGE INMACHINED ALUMINA AND ALUMINA/SILISON CARBIDE NANOCOMPOSITECERAMICS[J]. Acta Materialia,2001,49:507-517.
    [68] WuHZ,S.G..Roberts.RESIDUAL STRESS DETRESS DETERMINATION AND SUBSURFACE MICROSTRUCTURE IN GROUND AND POLISHED ALUMINA/SILISONCARBIDE NANOCOMPOSITE AND MONLITHIC ALUMINA CERAMICS [J].Mat.Res.Soc.Wymp.Proc,2002,581:303-308.
    [69] Wu, H.Z, Titchmarsh, J.M., etal. Crack healing in alumina/silicon carbide nanocomposite aftergrinding and annealing [J]. Materials Research Society Symposium-Proceeding,2000,581:327-332.
    [70] Tanner B.K, Wu H Z, Roberts S.G., etal. Subsurface damage in alumina and alumina-siliconcarbide nanocomposites[J]. Philosophical Magazine,2004,84(12):1219-1232.
    [71] Inkson, B. J, Wu H Z, etal.3D mapping of subsurface cracks in alumina using FIB MaterialsResearch Society[J]. Symposisophical Magazine,2001,649:771-776.
    [72] Irene A, Chou Helen, and Chan M, etal. Machining-Induced Surface Residual Stress Behaviorin Al2O3-SiC Nnocomposites[J]. Am.Ceram.Soc,1996,79(9):2403-2409.
    [73] Hudai Kara, Steve G Roberts. Plishing.Behavior and Quality of Alumina and Alumina/SiliconCarbide Nanocompositea[J]. Am.Ceram.Soc.2000,83(5):1219-1225.
    [74] Winn A J, Todd R I. Microstructural repuirements for alumina-siC nanocomposites.BritishCeramic Transaction[J].1999,98(5):219-224.
    [75]吴雁.微-纳米复合陶瓷二维超声振动磨削机理试验研究[D].上海:上海交通大学,2007.
    [76]闫艳燕.纳米复相陶瓷二维超声辅助磨削机理及其表面质量研究[D].上海:上海交通大学,2009.
    [77]徐芝纶.弹性力学简明教程[M].北京:高等教育出版社,2002.
    [78]广义连续介质力学-百度百科: http://baike.baidu.com/view/570712.htm.
    [79] D.G.B.Edelen. Nonlocal Field Theorices[J]. In:Continuum Physics(IV)(ed. By A.C.Eringen)Academic Press, New York,1976:75-78.
    [80] J.A.Krumhansl.Generalized Continuum Field Representations for Lattice Vibrations[J]. In:Lattice Dynamics(ed.by R.F.Wallis). Pergmon Press.1964:627-630.
    [81] E.Kroner. Elasticilv Theory of Materials with Long-range Cohesive Forces[J]. Int.J SolidStructures,1967,3(5):731-742.
    [82] J.A.Kunin. The Theory Elastic Media with Microstructure and the Theory of Dislocations[J].Mechanics of Generalized Centinua (ed. By E.Kroner), Springer Verlag,1967, P321.
    [83] D.G.B.Edelen, Pretoelastic Bodies with Large Deformation[J]. Arch.Rat.Mech.Anal.1969,34(4):283-300.
    [84] A.C.Eringen. Memory Dependent Nonlocal Elastic Solids[J]. Engineering Science,1974, Vol.2:145-159.
    [85] A.C.Eringen. Theory of Nonlocal Thermoelasticity[J]. Int. J. Eng Sci.1974, Vol.l2: l063-1077.
    [86] A.C.Eringen. Line Crack Subject to Shear[J]. Int. J. Fracture,1978,14(4):367-379.
    [87] A.C.Eringen. Line Crack Subject to Antiplane Shear[J]. Eng. Fract. Mech,1979,12(2):211-219.
    [88] A.C.Eringen. On Differential Equations of Nonlocal Elasticity and Solutions of ScrewDislocation and Surface Waves[J]. Journal of Applied Physics,1983,54(9):4703-4710.
    [89] A.C.Eringen. Theory of Nonlocal Elasticity and some Applications [J]. Res Mechanica,1987,27(4):313-342.
    [90] A.C.Eringen, B.S.Kim. Stress Concentration at the Tip of Crack[J]. Mech. Res. Comm,1974,1(4):233-237.
    [91] A.C.Eringen, C.G.Spezial.B, and S.Kim. Crack-tip Problem in Nonlocal Elasticity[J]. JMechPhys Solids,1977,25(5):339-355.
    [92] J.R. Rice. Thermodynamics of the quasi-static growth of Griffith cracks[J]. Mech. Phys. Solids.1978,26(2):61-78.
    [93] Gurtin, M.E., Thermodynamics and the Griffith criterion for brittle fracture[J]. Int.J. SolidsStruct.1979,15(7):553-560.
    [94] D.G.B.Edelen. Global Thermodynamics Exterior Banch Forms and Gateaux DifferentialEquations[J]. Trends in Applications of Pure Mathematics to Mechanics (ed. by G.Fichera).Piton Publishing.1976, P1.
    [95] A.C.Eringen. On Rayleigh Surface Waves with Small Wave Length[J]. Lett. Appl. Eng. Sci.,1973, Vol.1, P11.
    [96] C.Atkinson. On Some Recent Crack Tip Stress in Nonlocal Elasticity[J]. Arch. Mech.1980,32(22):317-328.
    [97] C.Atkinson. Crack Problems in Nonlocal Elasticity[J]. Arch.Mech.,1980,l32:597.
    [98] N.Ari and A.C.Eringen. Nonlocal Stress Field at Griffith Crack[J]. Crst. Lattice Defect Amorph.Mat.1983,10:33.
    [99] A.C.Eringen, A.Suresh. Nonlocal Effects of Crack Curving[J]. Proc. of the second Int.Sym and7thCanadian Fracture Conf. on Defects Fracture and Fatigue(ed. By G.C.Sih and J.W.Provan).Martinus Nijhoff Publishers,1983, P233.
    [100] A.C.Eringen. Nonlocal Stress Field of Dislocations and Crack[J]. Modelling Problems inCrack Tip Mechanics (ed. By Jeray T. Pindera). Martinus Nijhoff Publishers.1984:113-130.
    [101]程品三.脆性断裂的非局部力学理论[J].力学学报,1992,24(3):329-338.
    [102]王锐.非局部弹性体中的裂纹问题[J].中国科学(A),1989,34:1056-1089.
    [103] Artan.R, Yelkenci.T. Rectangular rigid stamp on nolocal elastic half plane[J]. Int.J.SolidsStruct,1996,33:3577-3586.
    [104] Castrenze Polizzotto. Thermodynamics and continuum fracture mechanics for nonlocal-elasticplastic materials[J]. European Journal of Mechanics A/Solids,2002,21(1):85–103.
    [105] H. Demiray, A.C.Eringen. A Nonlocal Model for Plug Formation in Plates[J]. Int. J. Eng. Sci.,1978,16(5):287-297.
    [106] H.Demiray, A.C.Eringen. Impact of Nonlocal Thin Elastic Plates by a Cylindrical Projectile[J].Int. J. Eng. Sci.,1978,16(11):905-916.
    [107] Z.P.Bazant. Why Continuum Damage is Nonlocal: Justification by Quasiperiodic MicrocrackArray[J]. Mech Res Communications,1987,14(5-6):407-419.
    [108] Z.P.Bazant. Why Continuum Damage is Nonlocal: Micromechanics Arguments[J]. J. Eng.Mech.1991,117(5):1070-1087.
    [109] Z.P.Bazant. Nonlocal Damage Theory Based on Micromechanics of Crack Interactions[J]. JEng. Mech.,1994,120(3):593-617.
    [110] Iicewicz, Larry Bert. A Relationship Between Wave Dispersion And Fracture Strength For AComposite Material(Nonlocal Theory, Nondestructive Testing)[D]. Oregon State University,Ph.D,1984.
    [111] Chou Cang-Leh. Wave effects of ultrasonic vibration on machining[D]. The PennsylvaniaStateUniversity, Ph.D,1994.
    [112] Christian.F, Niordson and Viggo. Tvergaard. Nonlocal plasticity effects on fibre debonding ina whisker-reinforced metal[J]. European Journal of Mechanics A/Solids2002,21(2):239-248.
    [113] J.J. Gracio, F. Barlat, E. Rauch, J.W. Yoon, R.C. Picu. A Review of the Relationship BetweenMicrostructural Features and the Stress-Strain Behavior of Metals[J]. Matwiss.u Werkstofftech.2005,36(10):572-577.
    [114] R.Desmorat, F.Gatuingt and F.Ragueneau. Nonlocal anisotropic damage model and relatedcomputational aspects for quasi-brittle materials[J]. Engineering Fracture Mechanics,2007,74(10):1539-1560.
    [115] S.Narendar, S.Gopalakrishnan. Nonlocal scale effects on ultrasonic wavecharacterstics of nanorods[J]. Physica E.2010,42:1601-1604.
    [116] S.Narendar, D.Roy Mahapatra, S.Gopalakrishnan. Investigation of the effect ofnonlocal scale on ultrasonic wave dispersion characteristics of a monolayergraphene[J].2010,49:734-742.
    [117]戴天民.广义连续统场论的简略综述评论[J].力学进展,1983,13:432-436.
    [118]虞吉林.考虑微结构的固体力学的进展和若干应用[J].力学进展,1985,15(1):82-87.
    [119]苗天德.非局部弹性理论与Griffith裂纹问题[J],兰州大学学报(自然科学版).1983,19(3):36-43
    [120]虞吉林,郑哲敏.一种非局部弹塑性连续体模型与裂纹尖端附近的应力分布[J].力学学报,1984,16(5):485-494.
    [121]王锐.非局部弹性理论中的混合边界值问题[J].科学通报,1989,34(6):412-414.
    [122]高健,戴天民.具有非局部体力矩的非局部弹性理论[J].力学学报,1990,22(4):446-456.
    [123]程品三,袁文伯. Griffith裂纹的非局部弹性解析应力场[J].科学通报,1988,(18):1430-1433.
    [124]高飞,何蕊.非局部场中位错与空洞的相互作用[J],兰州大学学报,1993,28(3):61-67.
    [125]姚玲,王铎.圆盘状I型裂纹的非局部理论解[J].工程力学,1994,11(2):20-29.
    [126]刘振国,王铎.关于弹性圆筒中扭转传播的非局部弹性理论[J].科学出版社,1995, P148.
    [127]刘振国,诸德培,周振功.圆孔周边应力集中的非局部度量[J].航空学报,1995,16:173-179.
    [128]宋显辉,江冰.陶瓷材料断裂韧度的非局部理论研究[J].机械强度,1996,18(4):47-50.
    [129]宋显辉,江冰.陶瓷材料裂纹扩展非局部理论[J].硅酸盐通报,1997(2):13-15.
    [130]罗冬梅,郑昭明,吴莹.非局部损伤对裂纹尖端应力分布的影响[J].贵州工业大学学报,1997,26(1):61-65.
    [131]胡益平,王铎. I型裂纹受突加载荷时裂尖应力场的非局部理论解[J].四川联合大学学报,1999,3(2):26-33.
    [132]胡益平,王铎. Ⅲ型裂纹受突加载荷作用时裂尖应力场的非局部理论解[J].四川联合大学学报,1999,3(4):86-91.
    [133]赵明,程昌钧,刘国宁,等.裂纹问题的非局部弹性力学分析[J].应用数学和力学,1999,20(2):135-143.
    [134]黄再兴.本构关系对连续介质损伤力学基本方程适定性的影响—一维弹性损伤情况[J].航空学报,2000,21(2):124-127.
    [135]陈盛伟,王文强,伍登学,等.粘性超弹性材料中动态裂纹的振荡传播[J].四川大学学报(自然科学版),2006,43(1):143-150.
    [136]刘振国.非局部理论-微极理论在弹性波断裂问题中的应用研究[D].哈尔滨:哈尔滨工业大学,1992.
    [137]郭懋林,宋兆滨,王铎.非局部理论的实验研究[J].哈尔滨工业大学学报,1994,26(4):136-138.
    [138]王晓林,程靳.铜在超高频振动下的力学行为[J].锻压技术,1995(4):38-41.
    [139]王锋会,朱海临.氧化铝陶瓷缺口件循环疲劳及断裂机理[J].兵器材料科学与工程,1996,Vo1.19:45-49.
    [140]郑金鑫,胡浩,程靳.超高频振动下材料本构关系探析[J].哈尔滨工业大学学报,1997,29(1):6-9.
    [141]王建荣,张振中,王峻,等.振动频率对原状黄土动本构关系的影响[J].西北地震学报,1999,21(3):310-314.
    [142]郑长良.非局部弹性直杆振动特征及Eringen常数的一个上限[J].力学学报,2005,37(11):796-798.
    [143]孙飞飞,沈祖炎.混凝土单轴受拉的非局部本构模型[J].力学季刊,2006,27(1):1-6.
    [144]雷勇军,赵雪川,唐国金.非局部弹性杆固有频率的Ritz法求解[J].国防科技大学学报,2006,28(5):1-5.
    [145]雷勇军,赵雪川,周建平.非局部弹性杆固有频率求解的传递函数法[J].振动与冲击,2006,25(6):104-107.
    [146]赵纪生,陶夏新,欧进萍,等.弹塑性介质内的波速变化[J].岩土力学,2008,29(1):149-154.
    [147] C·W·林.基于非局部弹性应力场理论的纳米尺度效应研究:纳米梁的平衡条件、控制方程以及静态挠度[J].应用数学和力学,2010,31(1):35-50.
    [148]刘伟平,扶名福,罗小艳.非局部摩擦模型的核函数研究及其在锚杆中应用[J].北京工业大学学报,2011,37(7):1000-1004.
    [149]Zhao B, Ma H. Study on the Ceramic grinding Crack Propagation Mechanism Under theUltrasonic Action by Using Nonlocal Theory[J]. Advanced Materials Research,2009,69-70:64-68.(EI:20094512423231).
    [150] Zhao Bo, Xie Ping, Zhao Chongyang. Ultrasonic vibration grinding test of composite ceramicsbased on the nonlocal theory[J]. Advanced Materials Research,2010,126-128:139-142.(EI:20110213565610).
    [151]Hui Ma, Bo Zhao, Xuyang Wang. Fatigue Properties of Al2O3-ZrO2Nano-CompositeCeramics Under Ultrasonic Vibration[J]. Advanced Science Letter,2011,4:1-5.(SCI:800LX).
    [152]黄再兴,朱金福,黄维扬.非局部场论的发展历史、研究现状及前景[J].跨世纪工程力学,1996,12:27-33.
    [153]范天佑.断裂力学基础[M].江苏科学技术出版社出版,1978.
    [154]田欣利.工程陶瓷加工的理论与技术[M].北京:国防工业出版社,2006:120-130.
    [155]郑金鑫,程靳,杜星文.超声波对材料力学性能影响实验研究[J].力学与实践,1998,20(6):49-50.
    [156]王忠昶,栾茂田,杨庆.基于不同权函数的非局部理论对比分析[J].西安交通大学学报.2006,40(11):1348-1356.
    [157] Castrenze Polizzotto. Nonlocal elasticity and related variational principles[J]. InternationalJournal of Solids and Structures.2001,(38):7359-7380.
    [158]赵雪川.非局部弹性和粘弹性结构元件的力学分析[D].北京:国防科学技术大学,2006.11.
    [159] Markus Lazar, Gerard A. Maugin, Elias C.Aifantis. On a theory of nonlocal elasticity of bi-Helmholtz type and some applications[J]. International Journal of Solids and Structures.2006,43(6):1404-1421.
    [160]谢萍.基于非局部理论的纳米复相陶瓷材料超声磨削机理研究[D].焦作:河南理工大学,2010.6.
    [161]马辉,基于非局部理论的ZTA纳米复相陶瓷超声加工延性高效本质特征研究[D],上海交通大学,2011.12.
    [162]频散_百度百科,http://baike.baidu.com/view/3422246.htm.
    [163] Cao, G., Namba, Y. Straightness error compensation for ultra-precision machining based on astraightness gauge[J]. Key Engineering Materials,2008,381-382:105-108.
    [164] Xiaobo Wang, Huiqin Gao and Guofu Gao. Study on the Stress Field in Ultrasonic GrindingEngineering Ceramics[J]. Applied Mechanics and Materials,2011,42:421-425.
    [165]姚建国.纳米复相陶瓷在超声振动作用下的蠕变特性研究[D].焦作:河南理工大学,2011.6.
    [166]秦军,刘传绍,赵波.超声波振动下脆性材料单轴拉伸试验装置的设计[J].机械制造.2007(2):54-57.
    [167]陈扬,曹丽云.机械工程材料[M].沈阳:东北大学出版社,2008.6.
    [168]张云电.超声加工及其应用[M].北京:国防工业出版社,1995.
    [169]赵明利.多频率超声辅助磨削纳米氧化锆陶瓷表面/亚表面损伤机理研究[D].焦作:河南理工大学,2010.12.
    [170]谢萍,赵波.基于非局部理论的超声作用下纳米复相陶瓷材料疲劳试验研究[J],机械科学与技术,2010,29(5):612-615.
    [171]马辉,赵波,谢萍等.基于非局部理论的超声振动下陶瓷裂纹扩展机理研究[J],中国机械工程,2009,20(12):1498-1502.
    [172]文九巴,杨蕴林,杨永顺等.超塑性应用技术[M].北京:机械工业出版社,2005.
    [173]张凤莲.磨料水射流切割工程陶瓷机理及关键技术的研究[D].大连:大连交通大学,2009.
    [174]樊蔚勋.论复合型脆断的周向应变因子准则[J].应用数学和力学.1982,3(2):211-224.
    [175]宋显辉.用压痕法测陶瓷材料K IC的研究[J].武汉工业大学学报,1993(4):8-11.
    [176]赵廷仕等,复合型断裂准则的实验研究[J],华中工学院学报,1985,13(1):47-50.
    [177] George J. Microindentation analysis of di-ammonium hydrogen cirate single crystals[J]. MaterSci.,1985,20:3150~3156.
    [178] T. G. Bifano, T. A. Dow and R. O. Scattergood, Ductile Regime Grinding:A New Technologyfor Machining Brittle Materials[J]. ASME J. of Eng. for Ind.,1991,113:184-189.
    [179]李继荣.导纳圆图在压电式超声波换能器中的研究[J].仪表技术,2007,(11):62-64.
    [180]马雪花,蒋鑫元.压电换能器导纳圆的测定[J].天津科技大学学报,2004,19(2):66-68.
    [181]蒋日鹏,李晓谦,刘荣光,等.超声振动系统f s和Qm的实验测定及对比研究[J].压电与声光,2008,30(6):779-782.
    [182]王捷,高洁.变幅杆共振频率与力抗负载关系数值分析[J].陕西师范大学学报(自然科学版),2005,33(4):33-35.
    [183]尹邦跃,王零森. ZrO2基陶瓷压痕断裂韧性的测定[J].粉末冶金材料科学与工程,2001,6(1):78-82.
    [184]龚江宏,关振铎.陶瓷材料压痕韧性的统计性质[J].无机材料学报,2002,17(1):96-104.
    [185]马勤,杨延清,康沫狂.压痕法测定热压MoSi2基复合材料KIC值的研究[J].稀有金属材料与工程.1996,25(2):30-32.
    [186] Griffith A A. Phil. Trans. Roy Soc.(London),Seriers A,1920,221:163.
    [187] H.Z.Wu, S.G.Roberts. Residual stress determination and subsurface microstructure in groundand polished alumina/silicon carbide nanocomposite and monolithic alumina ceramics[J].Mat.Res.Soc.Symp.Proc.,2002,581:303-308.
    [188]闫艳燕,栗成杰,赵波等.二维超声磨削纳米氧化锆陶瓷的磨削力特性研究[J].中国机械工程,2008,19(11):1270-1274.
    [189]李伯奎,刘远伟.表面粗糙度理论发展研究[J].工具技术,2004,38:163-166.
    [190]王锐.非局部弹性体中的裂纹问题[J].中国科学.1989(10):1056-1089.
    [191] N F Mott., Brittle fracture in mild steel plates[J]. Engineering,1948,165:16.
    [192]刘彩平,左建平.考虑非局部效应的裂纹速度理论研究[J].中国科技论文在线,http://www.paper.edu.cn:1-8.
    [193] M. W. Hawman, P. H. Cohen, J. C. Conway and R. N. Paangborn, The Effect of Grinding onthe Flesural Strength of a Sialon Ceramic[J]. Mater,Sci.1985,20:482-490.
    [194]龚江宏译, Brian Lawn著.脆性固体断裂力学[M].北京:高等教育出版社,2010.
    [195]王自强,陈少华.高等断裂力学[M].北京:科学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700