用户名: 密码: 验证码:
先驱体转化法制备Si-Al-Zr-O及Ti-Si-O-C系先进复相陶瓷研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了通过受控转化预制的陶瓷先驱体,合成Si-Al-Zr-O及Ti-Si-O-C先进复相陶瓷材料的工艺过程。对制得陶瓷材料微观结构以及性能做了深入探讨,揭示了先驱体转化制备的复相陶瓷材料结构与特性的相关关系,突显使用该方法制备先进结构陶瓷及功能陶瓷优势。研究工作主要包括:使用受控晶化深冷制备得到的Si-Al-Zr-O系非晶先驱体,合成了高性能的纳米复相增韧陶瓷;使用溶胶-凝胶工艺制备Ti-Si-O-C系陶瓷先驱体,在不同条件下转化制备出具有高比表面积的介孔氧化物及碳化物复合材料。针对先驱体转化获得的先进纳米复相陶瓷的微观结构性能以及相关问题做了具体研究,得到如下几点重要结论:
     (1)通过受控晶化转化深冷制备得到的Si-Al-Zr-O系非晶先驱体可以制备出结构均匀,致密的氧化锆增韧莫来石微纳米复相陶瓷,且结构性能可以调整。先驱体转化中,四方氧化锆(t-ZrO2)的析出温度约为1000℃,形成尺寸比较完整的莫来石(3Al2O3·2SiO2)晶粒温度为1150℃。研究表明,经1150℃晶化处理后的的Z15样品(氧化锆含量为15wt%)机械性能最佳。
     (2)对不同温度热处理后Z15非晶先驱体的微观结构进行的透射电子显微分析研究发现:短棒状的氧化锆晶粒由于生长初期没有被莫来石包裹从而尺寸较大,长度在可以长大到100nm以上;而另一类氧化锆颗粒被其周围生长的莫来石包裹,导致长大受阻,从而尺寸较小(<60nnm)。四方氧化锆晶粒在55纳米以下时能够维持球形形貌,由于其<001>晶向生长速率高于<100>晶向生长速率,会逐渐形成短棒状颗粒,热处理温度从1150℃升高到1200℃以后只有少量堇青石(2MgO·2Al2O3-5SiO2)产生,而莫来石相继续生长,直到和第一类氧化锆形成晶界,非晶大幅度减少仅部分存在于两相晶界处。
     (3)研究了非晶先驱体添加到原料粉末中对普通烧结过程及其产物的结构性能的影响。使用原料粉末烧结制备Si-Al-Zr-O系复相陶瓷,到1580℃以上才能形成氧化锆-莫来石相,相比之下通过控制非晶析晶能在相对较低的温度获得。非晶的添加能够明显的促进烧结陶瓷致密化,提高断裂韧性,添加量小于10wt%范围内最为明显。
     (4)通过热处理转化溶胶-凝胶法制备Ti-Si-O-C系先驱体,得到介孔-微孔组织的氧化钛-氧化硅-碳复合材料。由于聚合的糠醇(PFA)为憎水性,与水解后的金属氧化物(亲水性)不相容,导致其在混合的三元体系中分离团聚,形成球形分相。通过调整金属氧化物(TTIP和TEOS).碳源(FA)和表面活性剂(P123)的添加量,可以达到控制分相以及其微观孔结构的目的,如比表面积(23-397m2/g),孔尺寸(2.6-7nm),孔体积以及介孔和微孔的面积等。在空气中煅烧TSC凝胶先驱体除掉碳后可以制备出高表面积(95m2/g-700m2/g)的氧化钛-氧化硅复合材料,并形成具有大孔-介孔复合材料。
     (5)研究了先驱体溶胶陈化时间、溶胶干燥工艺、溶胶超声分散等工艺条件,对煅烧后的氧化钛-氧化硅-碳复合材料孔隙结构,显微组织以及化学成分的变化影响。研究表明:长的陈化时间增加糠醇聚合度,更易在复合材料中形成大的富碳分相;提高干燥的速度能有效的控制分相的产生及其尺寸;超声分散促进了PFA团聚,促进了析出物长大。样品的表面积及孔结构主要受干燥条件控制,陈化时间的改变对其没有明显的影响。氧化硅-氧化钛-碳复合材料中的残余碳含量随陈化时间增加降低。通过对溶胶-凝胶处理工艺条件的控制和调整,可制备出一系列具有不同比表面积(1m2/g-288m2/g)和显微结构(富碳析出物尺寸:0μm-10μm)氧化硅-氧化钛-碳复合材料。
     (6)以Ti-Si-O-C先驱体为原料,在不同温度下进行热处理制备得到了具有3-4nm孔径的介孔组织、比表面积达272m2/g、晶化程度高的纳米碳化钛-碳化硅-碳复合材料。在碳热还原反应时,高度分相的先驱体会导致基体由于缺碳而形成氧化物-碳化物-碳的介孔复合材料。在碳化物-碳中出现的多级介孔分布,小孔(3-5nnm)主要分布在基体中的残留碳网络,而大孔(10-20nm)是纳米颗粒之间不规则堆积所产生的间隙。提高氧化物-碳先驱体的均一度有利制备具有高比表面积的介孔碳化物复合材料。
     (7)探讨了一种制备大块介孔C-TiC/SiC纳米复合陶瓷的材料的新工艺,即通过直接碳热还原受控溶胶-凝胶制备得到大块Ti-Si-O-C先驱体,从而获得高晶化程度的碳化物复合材料。研究发现石墨烯在TiC晶粒(111)面上生长,并通过“桥接”、“缠绕”等机制连接其他晶粒,而这个现象没有在β-SiC上观察到。残留的碳纳米晶网络支撑了碳化物晶粒,组成了一个具有一定机械强度的介孔复合材料块体,其折减弹性模量(Er)和硬度(H)的平均值分别为13.78±0.71GPa(Er)和0.85±0.072GPa(H)。材料的弹性回复能力与组织中碳含量增加而增高。
     (8)使用受控喷雾干燥以及先驱体转化法制备得到的TiC微球,种具体有介孔组织的纳米晶微球。微球尺寸均一度可以通过调整先驱体溶胶陈化时间以及喷雾干燥气流温度来控制。在陈化3.5天,干燥温度为150℃条件下获得较佳形貌的先驱体凝胶微球。通过两步热处理凝胶微球先驱体成功转化成介孔碳化钛陶瓷微球,直径约为45μm。介孔碳化钛微球具有很高的比表面积,达到267m2/g。材料的介孔组织是碳热还原反应中自发形成。介孔碳化钛微球的平均纳米晶粒尺寸在50nm左右,通过石墨烯包裹以后,在残余碳网络的支撑下形成完整的碳化钛微球。
Advanced ceramic materials were synthesized through a controlled transformation of pre-ceramic precursors. Two major parts of work were included:I, Synthesizing Si-Al-Zr-O amorphous pre-ceramic bulk by deep cooling the melted oxides, then heat-treat as-made precursor to ob-tain crystalline ceramics; Ⅱ, Fabricating Ti-Si-O-C monolithic gel pre-cursor through controlled sol-gel routes and transform it into mesoporous TiO2/SiO2/C and C-TiC/SiC nanocomoposites. The unique nano struc-tures and outstanding properties were achieved for both ceramic systems. And the detail research results are shown as following.
     (1) Dense zirconia-mullite ceramics with uniform dispersed nano grains can be synthesized by a controlled crystallization of Si-Al-Zr-O amorphous bulk. Teragonal ZrO2was first crystallized at~1000℃and mullite was formed at relatively higher temperature,1150℃. The me-chanical properties were adjustable by chemical composition and heat treatment temperatures. The sample with15wt%zirconia (Z15) and heat treated at1150℃showed the highest flexural strength and fracture toughness,520MPa and5.13MPa-m1/2, respectively.
     (2) Z15sample heated at1150℃showed two kinds of zirconia grains, rod like and spherical nano grains. The size of rod like zirconia grains reached over100nm, the other type of zirconia grains which were embedded in mullite grains showed the size within60nnm. The ZrO2grains maintain as spherical shapes when it is smaller then55nm. The growth rate of ZrO2grains along<001> direction is higher than that along <100> direction, which result in rod-like ZrO2with time. Cordierite crystallized after1200℃, and higher temperature promoted the grain growth of ZrO2and mullite, and the amount of amorphous phase reduced drmatically and only existed between grains boundary.
     (3) Comparing to amorphous bulk precursor, the sintering of starting oxides powder requires higher heating temperature to form zirco-nia-mullite phase. Adding amorphous Si-Al-Zr-O precursor powder to starting oxides can promote the mechanical properties and the density of sintered ceramics. The most effective amount of amorphous precursor added for sintering is10w%.
     (4) The extent of the ploy(furfuryl alcohol) PFA phase separation can be controlled by adjusting the ratio of silica and titania precursors (TEOS and TTIP), the amounts of FA and surfactant P123. The BET surface area (23-397m2/g), pore size (2.6-7nm), pore volume and the me-so/micropore ratio of the composites are all tunable in varied degrees by changing the chemical composition. Increase of silica to titania ratio gives higher porosity of the composite but results in an intense separation of carbon rich domains from the matrix and a high microporosity. Calci-nation of the as-synthesized monolithic gel at550℃in air could produce mesoporous titania/silica composites containing different amounts of ma-cropores. The demonstrated research here shows a facile approach to synthesize macro/meso/microporous titania/silica/carbon and titania/silica composites. Moreover, it also provides a feasible route to control the phase separation of PFA through composition changes, which can be widely used as hybrid precursors for synthesis of porous carbon, oxides, oxide/carbon and carbide/carbon nanocomposites.
     (5) The BET surface area (1m2/g-288m2/g) and separated carbon size (sphere size0μm-10μm) on silica/titania/carbon nanocomposite can be tunled through controlment of the ageing time, drying process and ultrasonic treatment in the sol-gel process. Increasing the ageing time will promote polymerization of furfuryl alcohol, causing more carbon phase separation. High drying rate will decrease the agglomerate rate of PFA which also control the phase separation. The pore structure is determined by the dry process, and ageing time has no obvious effect on it. But the residual carbon content in the silica/titania/carbon nanocomposite de-crease with ageing time.
     (6) We have demonstrated the synthesis of nanostructured (pore size3-4nm) bulk mesoporous C-TiC/SiC ceramics with high crystallinity by direct carbothermal reduction of pre-fabricated Ti-Si-O-C precursors. Benefiting from the homogenously dispersed components and intercon-nected channels, the carbothermal reduction takes place very efficiently at a relatively low temperature (starting at1100℃and completing at1450℃). The high mesoporosity (272m2/g) is obtained by in situ reaction of metal oxide with the surrounding carbon. The small pores (~3nm) were generated by removing of the surfactant (P123) during gel calcination, and they partially remained in the residual carbon for TSC-1450. Large pores (~10nm) were formed by the packing of nanoparticles. The high homogeneity is benefitial to the synthesis of highly mesoporous carbide ceramics.
     (7) The nano sized carbide grains are bonded into bulk materials by ploy(furfuryl alcohol)(PFA) derived nanocrystalline carbon framework because of its "bridge","entanglement" and "adhesive" effects. The gra-phenes are found to bond on the (111) plane of TiC grains, while no simi-lar coating is found for SiC grains. The bonding of graphitic carbon lay-ers on carbide grains support the nanostructure and also result in the de-sired combination of functional and mechanical properties. The average values of reduced elastic modulus, Er, and hardness, H, of the mesopor-ous carbides sample (TSC-1450) obtained from the nanoindentation tests were13.78±0.71GPa (Er) and0.85±0.072GPa (H), respectively. The coating and bridging of graphene sheets on TiC grains maintained the nanostructure and also resulted in a desired bulk material. Moreover, the process described here also provides an alternative concept for fabrication of bulk carbide composites through bonding of a carbon framework, avoiding granular sintering.
     (8) We demnostrate a feasible route to bulk synthesis mesoporous TiC microspheres (BET267m2/g) through in situ carbothermal reduction of precursor beads derived from a modified spray drying process. The uniform beads can be obtained from the sol aged for3.5days and spray dried at150℃. The average diameter of the as-made precursor and car-bide microsphere are75μm and45μm, respectively. No template is ap-plied to build the pore structure of the microspheres and the diameter and uniformity of spheres can be tuned by changing the ageing time and dry-ing temperature. The nano sized TiC crystal (~50nm) are connected by nanocrytalline carbon network by the mechanism discussed above and reasonable strength is obtained to maintain the spherical morphology, which could provide potential application in energy related areas.
引文
[1]Levine S R, Opila E J, Halbig M C, Kiser J D, Singh M, Salem J A, Evaluation of ultra-high temperature ceramics for aeropropulsion use. Journal of the European Ceramic Society,2002,22 (14-15):2757-2767.
    [2]Gasch M, Ellerby D, Irby E, Beckman S, Gusman M, Johnson S, Processing, properties and arc jet oxidation of hafnium diboride/silicon carbide ultra high temperature ceramics. Journal of Materials Science,2004,39 (19):5925-5937.
    [3]Wuchina E, Opeka M, Causey S, Buesking K, Spain J, Cull A, Routbort J, Guitierrez-Mora F, Designing for ultrahigh-temperature applications:The mechanical and thermal properties of HfB2, HfCx, HfNx, and alpha Hf(N). Journal of Materials Science,2004,39 (19):5939-5949.
    [4]Fahrenholtz W G, Thermodynamic analysis of ZrB(2)-SiC oxidation:Formation of a SiC-depleted region. Journal of the American Ceramic Society,2007,90 (1): 143-148.
    [5]Raj R, Riedel R, Soraru G D, Introduction to the special topical issue on ultrahigh-temperature polymer-derived ceramics. Journal of the American Ceramic Society,2001,84 (10):2158-2159.
    [6]Monteverde F, Bellosi A, Microstructure and properties of an HfB(2)-SiC composite for ultra high temperature applications. Advanced Engineering Materials, 2004,6 (5):331-336.
    [7]Bellosi A, Monteverde F D, Sciti D, Fast densification of ultra-high-temperature ceramics by spark plasma sintering. International Journal of Applied Ceramic Technology,2006,3 (1):32-40.
    [8]Miner J R, Grace W A, Valori R, Demonstration of High-speed gas Turbine bearings using siUcon nitride rolling elements. Preprints-Tribology Conference, 1980.
    [9]Yamakiri H Y H, Sasaki S, Kurita T, Kasashima N, Effects of laser surface texturing on friction behavior of silicon nitride under lubrication with water. Tribology International,2011,44 (5):579-584.
    [10]Kang J, Hadfield M, The influence of heterogeneous porosity on silicon nitride/steel wear in lubricated rolling contact. Ceramics International,2000,26 (3): 315-324.
    [11]Wang L, Snidle R W, Gu L, Rolling contact silicon nitride bearing technology: a review of recent research. Wear,2000,246 (1-2):159-173.
    [12]Hebert N, Beck A, Lennox R B, Just G, A New Reagent for the Removal of the 4-Methoxybenzyl Ether-Application to the Synthesis of Unusual Macrocyclic and Bolaform Phosphatidylcholines. Journal of Organic Chemistry,1992,57 (6): 1777-1783.
    [13]Hsieh H P, Inorganic membranes for separation and reaction.1996.
    [14]Li Z Y, Kusakabe K, Morooka S, Preparation of thermostable amorphous Si-C-0 membrane and its application to gas separation at elevated temperature. Journal of Membrane Science,1996,118 (2):159-168.
    [15]Rao G V R, Krug M E, Balamurugan S, Xu H F, Xu Q, Lopez G P, Synthesis and characterization of silica-poly(N-isopropylacrylamide) hybrid membranes: Switchable molecular filters. Chemistry of Materials,2002,14 (12):5075-5080.
    [16]Nagano T, Sato K, Saitoh T, Iwamoto Y, Gas permeation properties of amorphous SiC membranes synthesized from polycarbosilane without oxygen-curing process. Journal of the Ceramic Society of Japan,2006,114 (1330):533-538.
    [17]Vendamme R, Onoue S Y, Nakao A, Kunitake T, Robust free-standing nanomembranes of organic/inorganic interpenetrating networks. Nature Materials, 2006,5 (6):494-501.
    [18]Jindal P C, Santhanam A T, Schleinkofer U, Shuster A F, Performance of PVD TiN, TiCN, and TiAIN coated cemented carbide tools in turning. International Journal of Refractory Metals & Hard Materials,1999,17 (1-3):163-170.
    [19]Ezugwu E O, Bonney J, Yamane Y, An overview of the machinability of aeroengine alloys. Journal of Materials Processing Technology,2003,134 (2): 233-253.
    [20]Sheikh-Ahmad J Y, Bailey J A, The wear characteristics of some cemented tungsten carbides in machining particleboard. Wear,1999,225:256-266.
    [21]Dolinsek S, Sustarsic B, Kopac J, Wear mechanisms of cutting tools in high-speed cutting processes. Wear,2001,250:349-356.
    [22]Pidria M, Merlone E, Rostagno M, Tabone L, Bechis F, Vallauri D, Deorsola F A, Amato I, Rodriguez M A, SHS production, processing and evaluation of advanced materials for wear-resistant cutting tools. In Thermec'2003, Pts 1-5, Chandra T,Torralba J M,Sakai T, Eds.2003; Vol.426-4, pp 4373-4378.
    [23]Bewilogua K, Keunecke M, Weigel K, Wiemann E, Growth and characterization of thick cBN coatings on silicon and tool substrates. Thin Solid Films, 2004,469:86-91.
    [24]Shigeyuki Somiya, Fritz Aldinger, Nils Claussen, Richard M. Spriggs, Kenji Uchino, Kunihito Koumoto, Kaneno M, Handbook of Advanced Ceramics. Elsevier Ltd.,2003.
    [25]Bittner A, Seidel H, Schmid U, High-Frequency Characterization of Porous Low-Temperature Cofired Ceramics Substrates. Journal of the American Ceramic Society,2010,93 (11):3778-3781.
    [26]Hsi C S, Chen Y R, Hsiang H I, Diffusivity of silver ions in the low temperature co-fired ceramic (LTCC) substrates. Journal of Materials Science,2011, 46 (13):4695-4700.
    [27]Dougami N, Takada T, Modification of metal oxide semiconductor gas sensor by electrophoretic deposition. Sensors and Actuators B-Chemical,2003,93 (1-3): 316-320.
    [28]Hudgins J L, Wide and narrow bandgap semiconductors for power electronics: Anew valuation. Journal of Electronic Materials,2003,32 (6):471-477.
    [29]Setter N, Waser R, Electroceramic materials. Acta Materialia,2000,48 (1): 151-178.
    [30]Tritt T M, Subramanian M A, Thermoelectric materials, phenomena, and applications:A bird's eye view. Mrs Bulletin,2006,31 (3):188-194.
    [31]Fitzgerald C B, Venkatesan M, Douvalis A P, Huber S, Coey J M D, Bakas T, SnO2 doped with Mn, Fe or Co:Room temperature dilute magnetic semiconductors. Journal of Applied Physics,2004,95 (11):7390-7392.
    [32]Bueno P R, Varela J A, Longo E, SnO2, ZnO and related polycrystalline compound semiconductors:An overview and review on the voltage-dependent resistance (non-ohmic) feature. Journal of the European Ceramic Society,2008,28 (3): 505-529.
    [33]Will J, Mitterdorfer A, Kleinlogel C, Perednis D, Gauckler L J, Fabrication of thin electrolytes for second-generation solid oxide fuel cells. Solid State Ionics,2000, 131 (1-2):79-96.
    [34]Atkinson A, Barnett S, Gorte R J, Irvine J T S, McEvoy A J, Mogensen M, Singhal S C, Vohs J, Advanced anodes for high-temperature fuel cells. Nature Materials,2004,3 (1):17-27.
    [35]Kharton V V, Figueiredo F M, Navarro L, Naumovich E N, Kovalevsky A V, Yaremchenko A A, Viskup A P, Carneiro A, Marques F M B, Frade J R, Ceria-based materials for solid oxide fuel cells. Journal of Materials Science,2001,36 (5): 1105-1117.
    [36]Ralph J M, Schoeler A C, Krumpelt M, Materials for lower temperature solid oxide fuel cells. Journal of Materials Science,2001,36 (5):1161-1172.
    [37]Brandon N P, Skinner S, Steele B C H, Recent advances in materials for fuel cells. Annual Review of Materials Research,2003,33:183-213.
    [38]Bednorz J G, Mu□ller K A, Possible high Tc superconductivity in the Ba-La-Cu-O system. Zeitschrift fu□r Physik B Condensed Matter,1986,64 (2): 189-193.
    [39]Uchida S-i, Takagi H, Kitazawa K, Tanaka S, HIGH T//c SUPERCONDUCTIVITY OF La-Ba-Cu OXIDES. Japanese Journal of Applied Physics, Part 2:Letters,1987,26 (1):1-2.
    [40]Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W, Superconductivity at 93 K in a new mixed-phase Yb-Ba-Cu-O compound system at ambient pressure. Physical Review Letters,1987,58 (9): 908-910.
    [41]Sheng Z Z, Hermann A M, Bulk superconductivity at 120 K in the Tl-Ca/Ba-Cu-O system. Nature,1988,332 (6160):138-139.
    [42]Schilling A, Cantoni M, Guo J D, Ott H R, Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system. Nature,1993,363 (6424):56-58.
    [43]Maeda H, Tanaka Y, Fukutomi M, Asano T, NEW HIGH-T//c OXIDE SUPERCONDUCTOR WITHOUT A RARE EARTH ELEMENT. Japanese Journal of Applied Physics, Part 2:Letters,1988,27 (2):209-210.
    [44]Chen I W, Wang X H, Sintering dense nanocrystalline ceramics without final-stage grain growth. Nature,2000,404 (6774):168-171.
    [45]Wang Y P, Zhou L, Zhang M F, Chen X Y, Liu J M, Liu Z G, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phase sintering. Applied Physics Letters,2004,84 (10): 1731-1733.
    [46]Shen Z J, Johnsson M, Zhao Z, Nygren M, Spark plasma sintering of alumina. Journal of the American Ceramic Society,2002,85 (8):1921-1927.
    [47]Li J G, Sun X D, Synthesis and sintering behavior of a nanocrystalline alpha-alumina powder. Acta Materialia,2000,48 (12):3103-3112.
    [48]Muralithran G, Ramesh S, The effects of sintering temperature on the properties of hydroxyapatite. Ceramics International,2000,26 (2):221-230.
    [49]Singh M, Advances in Polymer Derived Ceramics and Composites Introduction. Advances in Polymer Derived Ceramics and Composites,2010,213:Ⅸ-Ⅺ.
    [50]Greil P, Polymer derived engineering ceramics. Advanced Engineering Materials,2000,2 (6):339-348.
    [51]Zeschky J, Goetz-Neunhoeffer F, Neubauer J, Lo S H J, Kummer B, Scheffler M, Greil P, Preceramic polymer derived cellular ceramics. Composites Science and Technology,2003,63 (16):2361-2370.
    [52]Riedel R, Mera G, Hauser R, Klonczynski A, Silicon-based polymer-derived ceramics:Synthesis properties and applications-A review. Journal of the Ceramic Society of Japan,2006,114 (1330):425-444.
    [53]Lewis J A, Colloidal processing of ceramics. Journal of the American Ceramic Society,2000,83 (10):2341-2359.
    [54]Colombo P, Mera G, Riedel R, Soraru G D, Polymer-derived ceramics:40 Years of research and innovation in advanced ceramics. Journal of the American Ceramic Society,2010,93 (7):1805-1837.
    [55]Zhang Z, Zeng F, Han J, Luo Y, Xu C, Synthesis and characterization of a new liquid polymer precursor for Si-B-C-N ceramics. Journal of Materials Science,2011, 46 (18):5940-5947.
    [56]Pivin J C, Colombo P, Soraru G D, Comparison of ion irradiation effects in silicon-based preceramic thin films. Journal of the American Ceramic Society,2000, 83 (4):713-720.
    [57]Bill J, Kamphowe T W, Muller A, Wichmann T, Zern A, Jalowieki A, Mayer J, Weinmann M, Schuhmacher J, Muller K, Peng J Q, Seifert H J, Aldinger F, Precursor-derived Si-(B-)C-N ceramics:thermolysis, amorphous state and crystallization. Applied Organometallic Chemistry,2001,15 (10):777-793.
    [58]Jansen M, Jaschke B, Jaschke T, Amorphous multinary ceramics in the Si-B-N-C system. High Performance Non-Oxide Ceramics I,2002,101:137-191.
    [59]Kim H, Choi W, Surface and bulk crystallization in Nd2O3-A12O3-SiO2-TiO2 glasses. Journal of the European Ceramic Society,2004,24 (7):2103-2111.
    [60]El-Shennawi A W A, Hamzawy E M A, Khater G A, Omar A A, Crystallization of some aluminosilicate glasses. Ceramics International,2001,27 (7):725-730.
    [61]Weinberg M C, Glass-formation and crystallization kinetics. Thermochimica Acta,1996,280-281 (SPEC. ISS.):63-71.
    [62]Rezvani M, Eftekhari-Yekta B, Solati-Hashjin M, Marghussian V K, Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO 2-Al2O3-CaO-MgO(R2O) glass-ceramics. Ceramics International,2005,31 (1):75-80.
    [63]Demirkesen E, Maytalman E, Effect of Al2O3 additions on the crystallization behaviour and bending strength of a Li2O-ZnO-SiO2 glass-ceramic. Ceramics International,2001,27 (1):99-104.
    [64]Toya T, Tamura Y, Kameshima Y, Okada K, Preparation and properties of CaO-MgO-Al2O3-SiO2 glass-ceramics from kaolin clay refining waste (Kira) and dolomite. Ceramics International,2004,30 (6):983-989.
    [65]赵运才,肖汉宁,谭伟,耐磨铝硅酸盐微晶玻璃核化及晶化制度的优化.硅酸盐学报,2003,31(1):103-107.
    [66]赵运才,肖汉宁,谭伟,热处理条件对耐磨微晶玻璃晶化及性能的影响.煤炭学报,2002,27(6):653-657.
    [67]谭小平,非晶晶化法制备SAZ系纳米复相陶瓷及其结构、性能研究:[博士学位论文].长沙:中南大学:2002.
    [68]Liang S Q, Zhong J, Tan X P, Tang Y, Zhang Y, Pan A Q, Preparation of Nano-Composite ZTM Ceramics of High Mechanical Properties by In-Situ Crystallization of Amorphous Bodies. Rare Metal Materials and Engineering,2008, 37:10-13.
    [69]梁叔全,李少强,谭小平,唐艳,张勇,高锆Si-Al-Zr-O系非晶晶化过程.中国有色金属学报,2005,15(8):1189-1193.
    [70]谭小平,梁叔全,李少强,唐艳,氧化锆-莫来石纳米复相陶瓷的制备.中南大学学报(自然科学版),2005,36(5):790-794.
    [71]谭小平,梁叔全,李少强,唐艳,非晶晶化法制备Si-Al-Zr-O系超微细晶复相陶瓷.无机材料学报,2006,21(4):906-912.
    [72]谭小平,梁叔全,张勇,唐艳,钟杰,Si-Al-Zr-O系非晶晶化过程研究.无机材料学报,2007,22(6):1233-1238.
    [73]Guo Q, Thomann R, Gronski W, Synthesis and fractionated crystallization of organic-inorganic hybrid composite materials from an amphiphilic polyethyleneblock-poly(ethylene oxide) diblock copolymer. Polymer,2007,48 (14): 3925-3929.
    [74]Yokoi T, Seo S, Chino N, Shimojima A, Okubo T, Preparation of silica/carbon composites with uniform and well-ordered mesopores by esterification method. Microporous and Mesoporous Materials,2009,124 (1-3):123-130.
    [75]Kar P, Raja K S, Misra M, Agasanapur B N, Formation and stability of anatase phase of phosphate incorporated and carbon doped titania nanotubes. Materials Research Bulletin,2009,44 (Compendex):398-402.
    [76]Kato N, Ishii T, Koumoto S, Synthesis of Monodisperse Mesoporous Silica Hollow Microcapsules and Their Release of Loaded Materials. Langmuir,2010,26 (17):14334-14344.
    [77]Li Y Z, Kim S J, Synthesis and characterization of nano titania particles embedded in mesoporous silica with both high photocatalytic activity and adsorption capability. Journal of Physical Chemistry B,2005,109 (25):12309-12315.
    [78]Lee J-W, Kong S, Kim W-S, Kim J, Preparation and characterization of SiO2/TiO2 core-shell particles with controlled shell thickness. Materials Chemistry and Physics,2007,106 (Compendex):39-44.
    [79]Yang H C, Lin H Y, Chien Y S, Wu J C S, Wu H H, Mesoporous TiO2/SBA-15, and Cu/TiO2/SBA-15 Composite Photocatalysts for Photoreduction of CO2 to Methanol. Catalysis Letters,2009,131 (3-4):381-387.
    [80]Wu Z W, Lu Y F, Aerosol-assisted synthesis of mesoporous titania nanoparticles with high surface area and controllable phase composition. Journal of Sol-Gel Science and Technology,2010,53 (2):287-292.
    [81]Sun Z H, Wang L F, Liu P P, Wang S C, Sun B, Jiang D Z, Xiao F S, Magnetically motive porous sphere composite and its excellent properties for the removal of pollutants in water by adsorption and desorption cycles. Advanced Materials,2006,18(15):1968.
    [82]Zhang Y, Shi E-W, Chen Z-Z, Li X-B, Xiao B, Large-scale fabrication of silicon carbide hollow spheres. Journal of Materials Chemistry,2006,16 (Compendex):4141-4145.
    [83]Ruili L, Yingjie R, Yifeng S, Fan Z, Lijuan Z, Bo T, Dongyuan Z, Controlled synthesis of ordered mesoporous C-TiO2 nanocomposites with crystalline titania frameworks from organic-inorganic-amphiphilic coassembly. Chemistry of Materials, 2008,20 (Copyright 2008, The Institution of Engineering and Technology):1140-6.
    [84]Glover T G, LeVan M D, Carbon-silica composite adsorbent:Sensitivity to synthesis conditions. Microporous and Mesoporous Materials,2009,118 (1-3):21-27.
    [85]Drisko G L, Zelcer A, Luca V, Caruso R A, Soler-Illia G, One-Pot Synthesis of Hierarchically Structured Ceramic Monoliths with Adjustable Porosity. Chemistry of Materials,2010,22 (15):4379-4385.
    [86]Kelly T L, Yano K, Wolf M O, Nanoscale Control over Phase Separation in Conjugated Polymer Blends Using Mesoporous Silica Spheres. Langmuir,2010,26 (1):421-431.
    [87]赵鹏,张良莹,姚喜,复相功能玻璃陶瓷及其溶胶-凝胶法制备.功能材料,2000,31(1):15-17.
    [88]王昕,孙康宁,尹衍升,纳米复合陶瓷研究进展.复合材料学报,1999,1(16):105-110.
    [89]Garvie R C, Hannink R H, Pascoe R T, Ceramic steel? Nature,1975,258 (5537):703-704.
    [90]Lathabai S, Hay D G, Wagner F, Claussen N, Reaction-bonded mullite/zirconia composites. Journal of the American Ceramic Society,1996,79 (1):248-256.
    [91]Moya J S, Osendi M I, Effect of ZrO2 (ss) in mullite on the sintering and mechanical properties of mullite/ZrO2 composites. Journal of Materials Science Letters,1983,2 (10):599-601.
    [92]Shin D-W, Orr K K, Schubert H, Microstructure-mechanical property relationships in hot isostatically pressed alumina and zirconia-toughened alumina. Journal of the American Ceramic Society,1990,73 (5):1181-1188.
    [93]Yuan Q-M, Tan J-Q, Jin Z-G, Preparation and properties of zirconia-toughened mullite ceramics. Journal of the American Ceramic Society,1986,69 (3):265-267.
    [94]Alexander K B, Becher P F, Wang X-L, Hsueh C-H, Internal stresses and the martensite start temperature in alumina-zirconia composites:effects of composition and microstructure. Journal of the American Ceramic Society,1995,78 (2):291-296.
    [95]刘茜,陈玉茹,袁启明等,莫来石-氧化锆复合材料中氧化锆的强韧化机理.硅酸盐学报,1992,20(4):353-357.
    [96]Yokoi T, Seo S, Chino N, Shimojima A, Okubo T, Preparation of silica/carbon composites with uniform and well-ordered mesopores by esterification method. Microporous and Mesoporous Materials,124 (1-3):123-130.
    [97]陈伟民,陈楷,Zr02在微晶玻璃中的增韧作用.材料科学与工程,1998,16(3):73-77.
    [98]Lertherman C L, Mechanical properties of a transformation-toughened glass-ceramics. Journal of Materials Science,1990,25 (10):4488-4452.
    [99]谢志鹏,高立春,李文超,晶种诱导长柱状晶生长规律与高韧性氧化铝陶瓷材料.中国科学(E辑),2003,33(1):11-18.
    [100]穆柏春,陶瓷材料的强韧化.北京:冶金工业出版社,2002:93-122.
    [101]夏傲,苗鸿雁,李永强,氧化锆微晶玻璃的研究进展.中国玻璃,2003,(1):25-29.
    [102]Sarno R D, Tomozawa M, Toughening mechanisms for a zirconia-lithium aluminosilicate glass-ceramic. Journal of Materials Science,1995,30 (17): 4380-4388.
    [103]Lin M H, Wang M C, Phase transformation and characterization of TiO2 and ZrO2 addition in the Li2O-Al2Oa-SiO2 gels. Journal of Materials Research,1996,11 (10):2611-2615.
    [104]梁波,阚艳梅,靳喜海,纳米/纳米型和晶间型ZTM/Al2O3复相陶瓷抗热震性能的研究.中国陶瓷,2001,37(4):22-25.
    [105]贺振富,郭瑞松,杨正方等,溶胶凝胶法、液相包裹法制备超细ZTM复合粉末.硅酸盐通报,1996,(5):28-30.
    [106]赵世柯,黄校先,郭景坤,ZrSiO4/Al2O3制备氧化锆-莫来石复相陶瓷反应烧结机制.无机材料学报,2000,15(6):1102-1106.
    [107]Orange G, Fantozzi G, Cambier F, High tenperture mechanical properties of reaction-sintered mullite/zirconia and mullite/aluminia/zirconia composites. Journal of Materials Science,1985,20:2533-2540.
    [108]唐绍裘,李国军,谢志鹏,莫来石-氧化锆复相陶瓷材料原位反应烧结机理的研究.材料科学与工艺,2000,8(3):21-25.
    [109]Sing K S W, Everett D H, Haul R A W, Moscou L, Pierotti R A, Rouquerol J, Siemieniewska T, Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure and Applied Chemistry,1985,57 (4):603-619.
    [110]Huang C H, Gu D, Zhao D Y, Doong R A, Direct Synthesis of Controllable Microstructures of Thermally Stable and Ordered Mesoporous Crystalline Titanium Oxides and Carbide/Carbon Composites. Chemistry of Materials,2010,22 (5): 1760-1767.
    [111]Yao N, Cao S L, Yeung K L, Mesoporous TiO2-SiO2 aerogels with hierarchal pore structures. Microporous and Mesoporous Materials,2009,117 (3):570-579.
    [112]Shi Y F, Meng Y, Chen D H, Cheng S J, Chen P, Yang T F, Wan Y, Zhao D Y, Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability. Advanced Functional Materials,2006,16 (4):561-567.
    [113]Chen D H, Cao L, Huang F Z, Imperia P, Cheng Y B, Caruso R A, Synthesis of Monodisperse Mesoporous Titania Beads with Controllable Diameter, High Surface Areas, and Variable Pore Diameters (14-23 nm). Journal of the American Chemical Society,2010,132 (12):4438-4444.
    [114]Yu T, Deng Y H, Wang L, Liu R L, Zhang L J, Tu B, Zhao D Y, Ordered mesoporous nanocrystalline titanium-carbide/carbon composites from in situ carbothermal reduction. Advanced Materials,2007,19 (17):2301.
    [115]Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society,1998,120 (24):6024-6036.
    [116]Zhao D Y, Yang P D, Margolese D I, Chmelka B F, Stucky G D, Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures. Chemical Communications,1998, (22):2499-2500.
    [117]Vartuli J C, Schmitt K D, Kresge C T, Roth W J, Leonowicz M E, McCullen S B, Hellring S D, Beck J S, Schlenker J L, Olson D H, Sheppard E W, Effect of surfactant silica morlar ratios on the formation of mesoporous molecular-sieves Inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications. Chemistry of Materials,1994,6 (12):2317-2326.
    [118]Lu Y F, Ganguli R, Drewien C A, Anderson M T, Brinker C J, Gong W L, Guo Y X, Soyez H, Dunn B, Huang M H, Zink J I, Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating. Nature,1997,389 (6649):364-368.
    [119]Tolbert S H, Schaffer T E, Feng J L, Hansma P K, Stucky G D, A new phase of oriented mesoporous silicate thin films. Chemistry of Materials,1997,9 (9): 1962-1967.
    [120]Ogawa M, Ishikawa H, Kikuchi T, Preparation of transparent mesoporous silica films by a rapid solvent evaporation method. Journal of Materials Chemistry, 1998,8(8):1783-1786.
    [121]Grosso D, Balkenende A R, Albouy P A, Ayral A, Amenitsch H, Babonneau F, Two-dimensional hexagonal mesoporous silica thin films prepared from black copolymers:Detailed characterization amd formation mechanism. Chemistry of Materials,2001,13 (5):1848-1856.
    [122]Sakintuna B, Yurum Y, Templated porous carbons:A review article. Industrial & Engineering Chemistry Research,2005,44 (9):2893-2902.
    [123]Xu D P, Yoon S H, Mochida I, Qiao W M, Wang Y G, Ling L C, Synthesis of mesoporous carbon and its adsorption property to biomolecules. Microporous and Mesoporous Materials,2008,115 (3):461-468.
    [124]Lee J, Yoon S, Hyeon T, Oh S M, Kim K B, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors. Chemical Communications,1999, (21):2177-2178.
    [125]Ryoo R, Joo S H, Jun S, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. Journal of Physical Chemistry B, 1999,103 (37):7743-7746.
    [126]Matsumoto A, Tsutsumi K, Kaneko K, Titania coating of a microporous carbon surface by molecular adsorption-deposition. Langmuir,1992,8 (Compendex): 2515-2515.
    [127]Maldonado-Hodar F J, Moreno-Castilla C, Rivera-Utrilla J, Synthesis, pore texture and surface acid-base character of TiO2/carbon composite xerogels and aerogels and their carbonized derivatives. Applied Catalysis a-General,2000,203 (1): 151-159.
    [128]Koh J H, Park J T, Roh D K, Seo J A, Kim J H, Synthesis of TiO2 nanoparticles using amphiphilic POEM-b-PS-b-POEM triblock copolymer template film. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,329 (1-2):51-57.
    [129]Calleja G, Serrano D P, Sanz R, Pizarro P, Mesostructured SiO2-doped TiO2 with enhanced thermal stability prepared by a soft-templating sol-gel route. Microporous and Mesoporous Materials,2008,111 (1-3):429-440.
    [130]Yang J, Zhang J, Zhu L W, Chen S Y, Zhang Y M, Tang Y, Zhu Y L, Li Y W, Synthesis of nano titania particles embedded in mesoporous SBA-15: Characterization and photocatalytic activity. Journal of Hazardous Materials,2006, 137 (2):952-958.
    [131]Kuo C S, Tseng Y H, Huang C H, Li Y Y, Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity. Journal of Molecular Catalysis a-Chemical,2007,270 (1-2):93-100.
    [132]Sheng-Yi L, Chiung-Wen T, Yu-Hsien L, Hsin-Fu K, Yao-Cheng L, Meng-Yen T, Hao O, Wen-Kuang H, TiO2-coated carbon nanotubes:A redshift enhanced photocatalysis at visible light. Applied Physics Letters,2010,96 (Copyright 2010, The Institution of Engineering and Technology):231915 (3 pp.).
    [133]Dong H Y, Lu K, Attaching Titania Nanoparticles onto Shortened Carbon Nanotubes by Electrostatic Attraction. International Journal of Applied Ceramic Technology,2009,6 (2):216-222.
    [134]Liu B, Zeng H C, Carbon nanotubes supported mesoporous mesocrystals of anatase TiO2. Chemistry of Materials,2008,20 (8):2711-2718.
    [135]Hwu H H, Chen J G G, Surface chemistry of transition metal carbides. Chemical Reviews,2005,105 (1):185-212.
    [136]Araki M, Sasaki M, Kim S, Suzuki S, Nakamura K, Akiba M, Thermal Response Experiments of Sic/C and Tic/C Functionally Gradient Materials as Plasma-Facing Materials for Fusion Application. Journal of Nuclear Materials,1994, 215:1329-1334.
    [137]Dong Z J, Li X K, Yuan G M, Cong Y, Li N, Jiang Z Y, Hu Z J, Fabrication and oxidation resistance of titanium carbide-coated carbon fibres by reacting titanium hydride with carbon fibres in molten salts. Thin Solid Films,2009,517 (11): 3248-3252.
    [138]Leroy W P, Detavernier C, Van Meirhaeghe R L, Kellock A J, Lavoie C, Solid-state formation of titanium carbide and molybdenum carbide as contacts for carbon-containing semiconductors. Journal of Applied Physics,2006,99 (6).
    [139]Song M S, Huang B, Huo Y Q, Zhang S G, Zhang M X, Hu Q D, Li J G, Growth of TiC octahedron obtained by self-propagating reaction. Journal of Crystal Growth,2009,311 (2):378-382.
    [140]Zhu J, Xiong X, Chen H T, Wu X L, Zhang W C, Chu P K, Syntheses and Growth Mechanisms of 3C-SiC Nanostructures from Carbon and Silicon Powders. Journal of Nanoscience and Nanotechnology,2009,9 (11):6648-6654.
    [141]Adelhelm C, Balden M, Sikora M, EXAFS investigation of the thermally induced structuring of titanium-doped amorphous carbon films. Materials Science & Engineering C-Biomimetic and Supramolecular Systems,2007,27 (5-8):1423-1427.
    [142]Li Y L, Fan H, Su D, Fasel C, Riedel R, Synthesis, Structures, and Properties of Bulk Si(O)C Ceramics from Polycarbosilane. Journal of the American Ceramic Society,2009,92 (10):2175-2181.
    [143]Yao R Q, Feng Z D, Yu Y X, Li S W, Chen L F, Zhang Y, Synthesis and characterization of continuous freestanding silicon carbide films with polycarbosilane (PCS). Journal of the European Ceramic Society,2009,29 (10):2079-2085.
    [144]Li G Y, Li X D, Wang H, Liu L, Ultra long SiC nanowires with fluctuating diameters synthesized in a polymer pyrolysis CVD route. Solid State Sciences,2009, 11 (12):2167-2172.
    [145]Koc R, Folmer J S, Carbothermal synthesis of titanium carbide using ultrafine titania powders. Journal of Materials Science,1997,32 (12):3101-3111.
    [146]Koc R, Cattamanchi S V, Synthesis of beta silicon carbide powders using carbon coated fumed silica. Journal of Materials Science,1998,33 (10):2537-2549.
    [147]Rambo C R, Cao J, Rusina O, Sieber H, Manufacturing of biomorphic (Si, Ti, Zr)-carbide ceramics by sol-gel processing. Carbon,2005,43 (6):1174-1183.
    [148]Wang K, Wang H T, Cheng Y B, Synthesis of nanostructured silicon carbide spheres from mesoporous C-Sio2 nanocomposites. Chemical Communications,2010, 46 (2):303-305.
    [149]Shin Y S, Li X H S, Wang C M, Coleman J R, Exarhos G J, Synthesis of hierarchical titanium carbide from titania-coated cellulose paper. Advanced Materials, 2004,16(14):1212.
    [150]Shi L M, Zhao H S, Yan Y H, Li Z Q, Tang C H, Porous titanium carbide ceramics fabricated by coat-mix process. Scripta Materialia,2006,55 (9):763-765.
    [151]Shimada S, Onuma A, Reaction of TiC with SiC14 vapor with formation of SiC-TiC composites. Journal of the European Ceramic Society,2009,29 (11): 2403-2409.
    [152]Lee D W, Alexandrovskii S, Kim B K, Mg-thermal reduction of TiCl4+CxCl4 solution for producing ultrafine titanium carbide. Materials Chemistry and Physics, 2004,88 (1):23-26.
    [153]Tristant P, Lefort P, Kinetic approach to carbothermic reduction of titania. Journal of Alloys and Compounds,1993,196 (1-2):137-144.
    [154]Shi Y, Zhang F, Hu Y-S, Sun X, Zhang Y, Lee H I, Chen L, Stucky G D, Low-temperature pseudomorphic transformation of ordered hierarchical macro-mesoporous SiO2/C nanocomposite to SiC via magnesiothermic reduction. Journal of the American Chemical Society,2010,132 (Compendex):5552-5553.
    [155]Nelson J A, Wagner M J, High surface area nanoparticulate transition metal carbides prepared by alkalide reduction. Chemistry of Materials,2002,14 (10): 4460-4463.
    [156]Sung I K, Christian, Mitchell M, Kim D P, Kenis P J A, Tailored macroporous SiCN and SiC structures for high-temperature fuel reforming. Advanced Functional Materials,2005,15 (8):1336-1342.
    [157]Wingbrant H, Svenningstorp H, Salomonsson P, Kubinski D, Visser J H, Lofdahl M, Spetz A L, Using a MISiC-FET sensor for detecting NH3 in SCR systems. Ieee Sensors Journal,2005,5 (5):1099-1105.
    [158]Fuertes A B, Centeno T A, Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. Journal of Materials Chemistry,2005,15 (10):1079-1083.
    [159]Yu D S, Nagelli E, Du F, Dai L M, Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. Journal of Physical Chemistry Letters,2010,1 (14):2165-2173.
    [160]Liu Y-J, Wang Z-M, Aizawa M, Peng W-Q, Hirotsu T, Nanoporous composite of carbon nanosheets and functional titania nanoparticles formed by reassembling of exfoliated graphite oxides with colloidal titania. Materials Letters,2009,63 (Compendex):260-262.
    [161]Ao Y H, Xu J J, Fu D G, Shen X W, Yuan C W, A novel magnetically separable composite photocatalyst:Titania-coated magnetic activated carbon. Separation and Purification Technology,2008,61 (3):436-441.
    [162]Moreno-Castilla C, Maldonado-Hodar F J, Carrasco-Marin F, Rodriguez-Castellon E, Surface characteristics of titania/carbon composite aerogels. Langmuir,2002,18 (Compendex):2295-2299.
    [163]Wang Z, Ergang N S, Al-Daous M A, Stein A, Synthesis and characterization of three-dimensionally ordered macroporous carbon/titania nanoparticle composites. Chemistry of Materials,2005,17 (Compendex):6805-6813.
    [164]Lin L, Lin W, Zhu Y X, Zhao B Y, Xie Y C, He Y, Zhu Y F, Uniform carbon-covered titania and its photocatalytic property. Journal of Molecular Catalysis a-Chemical,2005,236 (1-2):46-53.
    [165]Choura M, Belgacem N M, Gandini A, Acid-catalyzed polycondensation of furfuryl alcohol:Mechanisms of chromophore formation and cross-linking. Macromolecules,1996,29 (11):3839-3850.
    [166]Wang H T, Yao J F, Use of poly(furfuryl alcohol) in the fabrication of nanostructured carbons and nanocomposites. Industrial & Engineering Chemistry Research,2006,45 (19):6393-6404.
    [167]Yao J F, Wang H T, Liu J, Chan K Y, Zhang L X, Xu N P, Preparation of colloidal microporous carbon spheres from furfuryl alcohol. Carbon,2005,43 (8): 1709-1715.
    [168]Lu A H, Schmidt W, Spliethoff B, Schuth F, Synthesis of ordered mesoporous carbon with bimodal pore system and high pore volume. Advanced Materials,2003, 15 (19):1602.
    [169]Bertarione S, Bonino F, Cesano F, Jain S, Zanetti M, Scarano D, Zecchina A, Micro-FTIR and Micro-Raman Studies of a Carbon Film Prepared from Furfuryl Alcohol Polymerization. Journal of Physical Chemistry B,2009,113 (31): 10571-10574.
    [170]Wang X Q, Bozhilov K N, Feng P Y, Facile preparation of hierarchically porous carbon monoliths with well-ordered mesostructures. Chemistry of Materials, 2006,18 (26):6373-6381.
    [171]Yao J, Wang H, Liu J, Chan K Y, Zhang L, Xu N, Preparation of colloidal microporous carbon spheres from furfuryl alcohol. Carbon,2005,43 (8):1709-1715.
    [172]Zhai Y P, Tu B, Zhao D Y, Organosilane-assisted synthesis of ordered mesoporous poly(furfuryl alcohol) composites. Journal of Materials Chemistry,2009, 19(1):131-140.
    [173]梁叔全,钟杰,谭小平,唐艳,张勇,潘安强,非晶晶化法制备高性能ZTM微纳米复相陶瓷.稀有金属材料与工程,2008,37(z1):10-13.
    [174]谭小平,梁叔全,李少强,唐艳,Si-Al-Zr-O系超微细晶复相陶瓷研究.材料科学与工艺,2008,16(1):94-98.
    [175]谭小平,梁叔全,张勇,钟杰,热处理温度对非晶晶化法制备ZrO2-Mullite纳米复相陶瓷结构与力学性能的影响.稀有金属材料与工程,2010,39(6):1094-1098.
    [176]Parmentier J, Patarin J, Dentzer J, Vix-Guterl C, Formation of SiC via carbothermal reduction of a carbon-containing mesoporous MCM-48 silica phase:a new route to produce high surface area SiC. Ceramics International,2002,28 (1):1-7.
    [177]Chandra N, Sharma M, Singh D K, Amritphale S S, Synthesis of nano-TiC powder using titanium gel precursor and carbon particles. Materials Letters,2009,63 (12):1051-1053.
    [178]Ju Z C, Fan N, Ma X C, Li J, Ma X J, Xu L Q, Qian Y T, Synthesis of uniform TiC hollow spheres by a co-reduction route at low temperature. Journal of Physical Chemistry C,2007,111 (44):16202-16206.
    [179]Krawiec P, Geiger D, Kaskel S, Ordered mesoporous silicon carbide (OM-SiC) via polymer precursor nanocasting. Chemical Communications,2006, (23): 2469-2470.
    [180]Chou P W, Wang Y S, Lin C C, Chen Y J, Cheng C L, Wong M S, Effect of carbon and oxygen on phase transformation of titania films during annealing. Surface & Coatings Technology,2009,204 (6-7):834-839.
    [181]Oliver W C, Pharr G M, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS. Journal of Materials Research,1992,7 (6):1564-1583.
    [182]Huang Y, Xie G, Xiao H, The influence of CeO2 in ZTM ceramics prepared by in-situ sintering. Ceramics,2006, (6):9-11.
    [183]Toraya H, Yoshimura M, Somiya S, Calibration curve for quantitative analysis of the monoclinic-tertragonal ZrO2 system by X-ray diffraction. Journal of the American Ceramic Society,1984,6 (2):112-119.
    [184]Miranzo P, Pena P, De Aza S, Moya J S, Ma Rincon J, Thomas G, TEM study of reaction-sinitered zirconia-mullite composites with CaO and MgO additions. Journal of Materials Science,1987,22:2987-2992.
    [185]Zhao Y, Xu L, Wang Y, Gao C, Liu D, Preparation of Ti---Si mixed oxides by sol-gel one step hydrolysis. Catalysis Today,2004,93-95:583-588.
    [186]Yao J, Wang H, Chan K Y, Zhang L, Xu N, Incorporating organic polymer into silica walls:A novel strategy for synthesis of templated mesoporous silica with tunable pore structure. Microporous and Mesoporous Materials,2005,82 (1-2): 183-189.
    [187]Uota M, Yada M, Kuroki M, Machida M, Kijima T, Carbons from furan-polymers prepared in the presence of a double-chain amphiphile. Carbon,2004, 42 (11):2207-2213.
    [188]Bertarione S, Bonino F, Cesano F, Damin A, Scarano D, Zecchina A, Furfuryl alcohol polymerization in H-Y confined spaces:Reaction mechanism and structure of carbocationic intermediates. Journal of Physical Chemistry B,2008,112 (9): 2580-2589.
    [189]Koc R, Kinetics and phase evolution during carbothermal synthesis of titanium carbide from carbon-coated titania powder. Journal of the European Ceramic Society,1997,17(11):1309-1315.
    [190]Koc R, Kinetics and phase evolution during carbothermal synthesis of titanium carbide from ultrafine titania/carbon mixture. Journal of Materials Science, 1998,33 (4):1049-1055.
    [191]Swift G A, Koc R, Formation studies of TiC from carbon coated TiO2. Journal of Materials Science,1999,34 (13):3083-3093.
    [192]Koc R, Meng C, Swift G A, Sintering properties of submicron TiC powders from carbon coated titania precursor. Journal of Materials Science,2000,35 (12): 3131-3141.
    [193]Wang K, Yao J F, Wang H T, Cheng Y B, Effect of seeding on formation of silicon carbide nanostructures from mesoporous silica-carbon nanocomposites. Nanotechnology,2008,19 (17):175605.
    [194]Yao J F, Wang H T, Zhang X Y, Zhu W, Wei J P, Cheng Y B, Role of pores in the carbothermal reduction of carbon-silica nanocomposites into silicon carbide nanostructures. Journal of Physical Chemistry C,2007,111 (2):636-641.
    [195]Itoh H, Ichinose T, Oshima C, Ichinokawa T, Aizawa T, Scanning tunneling microscopy of monolayer graphite expitaxially grown on TiC(111) surface. Surface Science,1991,254 (1-3):L437-L442.
    [196]Nagashima A, Nuka K, Satoh K, Itoh H, Ichinokawa T, Oshima C, Otani S, Electronic-structure of monolayer graphiter on some transition-metal carbide surfaces. Surface Science,1993,287:609-613.
    [197]Podkovyrkin M I, Kartashov V V, Retardation of recrystallization in the TiC-SiCsystem. Refractories and Industrial Ceramics,2004,45 (1):16-18.
    [198]Tuinstra F, Koenig J L, Raman spectrum of graphite. Journal of Chemical Physics,1970,53 (3):1126.
    [199]Nakamizo M, RAMAN-SPECTRA OF IRON-CONTAINING GLASSY CARBONS. Carbon,1991,29 (6):757-761.
    [200]Elias D C, Nair R R, Mohiuddin T M G, Morozov S V, Blake P, Halsall M P, Ferrari A C, Boukhvalov D W, Katsnelson M I, Geim A K, Novoselov K S, Control of Graphene's Properties by Reversible Hydrogenation:Evidence for Graphane. Science, 2009,323 (5914):610-613.
    [201]Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K, Raman spectrum of graphene and graphene layers. Physical Review Letters,2006,97 (18):187401.
    [202]Wang Y Y, Ni Z H, Yu T, Shen Z X, Wang HM,Wu Y H, Chen W, Wee ATS, Raman studies of monolayer graphene:The substrate effect. Journal of Physical Chemistry C,2008,112 (Compendex):10637-10640.
    [203]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A, Graphene:The New Two-Dimensional Nanomaterial. Angewandte Chemie-International Edition, 2009,48 (42):7752-7777.
    [204]Mechanical Properties of Materials. In CRC Materials Science and Engineering Handbook, Third Edition, CRC Press:2000; Vol. null.
    [205]Diss P, Lamon J, Carpentier L, Loubet J L, Kapsa P, Sharp indentation behavior of carbon/carbon composites and varieties of carbon. Carbon,2002,40 (14): 2567-2579.
    [206]Miyahara K, Nagashima N, Matsuoka S, Development and application of a combined atomic force microscopy-nanoindentation system with a silicon tip and a diamond indenter. Philosophical Magazine a-Physics of Condensed Matter Structure Defects and Mechanical Properties,2002,82 (10):2149-2160.
    [207]Zhang Y, Li G, Wu Y, Luo Y, Zhang L, The formation of mesoporous TiO2 spheres via a facile chemical process. Journal of Physical Chemistry B,2005,109 (Compendex):5478-5481.
    [208]Jang D H, Kim Y W, Song I H, Kim H D, Park C B, Processing of highly porous, open-cell, microcellular silicon carbide ceramics by expansion method using expandable microspheres. Journal of the Ceramic Society of Japan,2006,114 (1330): 549-553.
    [209]Li J, Liu J, Wang D, Guo R, Li X, Qi W, Interfacially controlled synthesis of hollow mesoporous silica spheres with radially oriented pore structures. Langmuir, 2010,26 (Compendex):12267-12272.
    [210]Seo M-K, Yang S, Kim I-J, Park S-J, Preparation and electrochemical characteristics of mesoporous carbon spheres for supercapacitors. Materials Research Bulletin,2010,45 (Compendex):10-14.
    [211]Teng Z, Han Y, Li J, Yan F, Yang W, Preparation of hollow mesoporous silica spheres by a sol-gel/emulsion approach. Microporous and Mesoporous Materials, 2010,127 (Compendex):67-72.
    [212]Li G H, Chen D, Yao G X, Shi B B, Ma C A, Preparation of WC@TiO2 Core-shell Nanocomposite and Its Electrocatalytic Characteristics. Chinese Journal of Chemical Engineering,2011,19 (1):145-150.
    [213]Gu Y, Chen L, Li Z, Qian Y, Zhang W, A simple protocol for bulk synthesis of TiC hollow spheres from carbon nanotubes. Carbon,2004,42 (Compendex):235-238.
    [214]Zhou J, Liu J, Yang R, Lao C, Gao P, Tummala R, Xu N S, Wang Z L In SiC-shell nanostructures fabricated by replicating ZnO nano-objects:A technique for producing hollow nanostructures of desired shape, Wiley-VCH Verlag:2006; pp 1344-1347.
    [215]Ju Z, Fan N, Ma X, Li J, Ma X, Xu L, Qian Y, Synthesis of uniform TiC hollow spheres by a co-reduction route at low temperature. Journal of Physical Chemistry C,2007,111 (Compendex):16202-16206.
    [216]Ham D J, Ganesan R, Lee J S, Tungsten carbide microsphere as an electrode for cathodic hydrogen evolution from water. International Journal of Hydrogen Energy,2008,33 (23):6865-6872.
    [217]Wang Y, Song S Q, Maragou V, Shen P K, Tsiakaras P, High surface area tungsten carbide microspheres as effective Pt catalyst support for oxygen reduction reaction. Applied Catalysis B-Environmental,2009,89 (1-2):223-228.
    [218]Wu W D, Amelia R, Hao N, Selomulya C, Zhao D, Chiu Y-L, Chen X D, Assembly of uniform photoluminescent microcomposites using a novel micro-fluidic-jet-spray-dryer. AIChE Journal,2011:n/a-n/a.
    [219]Bae S-T, Shin H, Jung H S, Hong K S, Synthesis of titanium carbide nanoparticles with a high specific surface area from a TiO2 core-sucrose shell precursor. Journal of the American Ceramic Society,2009,92 (Compendex): 2512-2516.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700