用户名: 密码: 验证码:
新型Al_2O_3基陶瓷刀具的切削性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核电作为一种清洁、无污染的可持续发展的能源,受到世界各国的广泛重视。我国已把“核主泵制造的关键科学问题”被列为973计划课题。核主泵关键零部件的洁整化加工制造是核电装备制造领域亟待解决的难题之一。本文根据核设备关键部件的高洁整化表面的制造要求,制备出一种新型的A1203基陶瓷刀具,并从加工表面洁净度和耐蚀性分析试验、加工表面粗糙度分析试验、切削温度和切削力的在线测量试验、刀具的磨损特性和磨损机理等方面做了研究。
     首先,本文根据核设备的高洁整化表面的制造要求,通过选择合理的组分、烧结方法制备出成分纯净不含有害元素的A1203基陶瓷刀具,并对刀具组织致密性和材料的力学性能进行了研究。
     其次,选用传统的YG8硬质合金刀具、普通的高速钢刀具、Ti(C,N)基金属陶瓷刀具和新型氧化铝基陶瓷刀具进行干式车削304奥氏体不锈钢的对比试验,从加工表面的洁净度、核环境下的表面耐蚀性和表面完整性方面做了研究。结果表明,与传统的刀具相比,新型方案A陶瓷刀具在加工表面的清洁度、表面耐蚀性和表面光洁度方面有一定的优势。
     另外,对新型A1203基陶瓷具切削304钢的切削温度和切削力进行了在线检测,并研究了切削温度和切削力的变化规律及影响因素,结果表明,新型的陶瓷刀具更适合高速切削,在精加工阶段和半精加工阶段,新型的方案A陶瓷刀具车削304钢的切削温度和切削力要远低于硬质合金刀具。
     最后,本文对新型A1203陶瓷刀具干式切削304奥氏体不锈钢的磨损特性及磨损机理进行了研究,试验结果表明,在精加工阶段,新型的方案A陶瓷的刀具的耐磨性最好,发生轻微的粘结磨损;方案B陶瓷刀具出现了块状崩刃;硬质合金刀具发生了严重的粘结磨损。
Nuclear power is a clean, pollution-free energy for sustainable development and gets more and more attention from countries of the world. The key scientific issue of nuclear pump manufacturing has been listed as973projects in our country. It is the key to promote nuclear power automation. Based on the cleanliness and integrity surface machining requirements for the key components of nuclear main pump, summarying and studying traditional and non-traditional machining methods, in order to solve the problem of the existing cutting tools difficult to machining a high undefiled and integrated surface, two new Al2O3-based ceramic cutting tools are prepared, to do the research from the surface cleanliness, corrosion resistance, surface roughness analysis, the cutting temperature and cutting force, tool wear mechanism.
     First, based on the nuclear equipment manufacturing requirements,a non-contain metal-binding agents or pure ingredients Al2O3ceramic tool is prepared by selecting a reasonable formula and sintering process, The compact structure and mechanical properties are also discussed.
     Secondly, the comparation dry-turning of304austenitic stainless steel experiment is conducted among the new alumina-based ceramic cutting tools and traditional YG8hard alloy cutting tool, high-speed steel cutting tool, Ti (C, N) based on alumina, analyzing the surface cleanliness and integrity, the surface corrosion under nuclear environment is also studied. The results showed that compared with traditional tools, the novel A ceramic cutting tool have an obvious advantage in machined surface cleanliness, corrosion resistance and integrity.
     In addition, do on-line detection of the cutting temperature and cutting force, analyzing the variation law and the influencing factors, the results show that the new type of ceramic tool is more suitable for high-speed cutting, and in the stage of finishing and semi-finishing, the cutting temperature and cutting force of the new type of ceramic tool cutting304is far lower than the hard alloy cutting tools, in particular the novel A ceramic tool have an obvious advantage.
     Finally, the wear characteristics and wear mechanism of the dry cutting of the304austenitic stainless steel are analyzed, test results show that in the finishing stage, the novel A ceramic tool have the best wear resistance in the three type of cutting tools, a minor adhesive wear occurs on tool point of the novel A ceramic tool; novel B ceramic tool appear block chipping in the tool point because of its lower toughness and more severe adhesive wear happened on the hard alloy cutting tool.
引文
[1]Mazen M, Abu Khader. Recent advances in nuclear power:A review [J] Progress in Nuclear Energy.2009,51:225-235.
    [2]彭俊,俞军.世界核电现状和发展趋势简介[J].核安全,2007(4):56-58.
    [3]邹树梁.世界核电现状及其发展趋势[J].东方电气评论,2001,15(2):65:78.
    [4]赵媛.世界核电发展趋势与我国核电建设[J].地域研究与开发,2000,19(1):42-45.
    [5]国家发展和改革委员会.核电中长期发展规划(2005-2020)[G],2007.
    [6]国家“973计划”项目.“核主泵制造的关键科学问题”摘要部分[G],2008.
    [7]法国核岛设备设计和建造规则协会.压水堆核岛机械设备设计和建造规则(RCC-M).法国,2007.
    [8]秦武,李志鹏,沈宗沼,靳卫华.核反应堆冷却剂循环泵的现状及发展[J].水泵技术2007(03):1-6.
    [9]舒梅,张景玉,廖隆源.核电站主泵质量保证及核安全文化[J].东方电机,2006(2):62-67.
    [10]American Society for Testing Materials. ASMT A380-99(2006) Standard practice for cleaning, descaling, and passivation of stainless steel parts, equipment, and systems[S]. Philadelphia, United States:ASTM,1999(2006):1-13.
    [11]American Society of Mechanical Engineers. AEME锅炉及压力容器规范Ⅱ材料[S].上海发电设备成套设计研究院,上海核工程研究设计院译.上海:上海科学技术文献出版社,2004.
    [12]French Association for Design, Construction and In-service Inspection Rules for Nuclear Island Components. RCC-M Design and construction rules for mechanical components of PWR nuclear island. Section V-Fabri cat ion [S]. Pairs, French:AFCEN, 2000:1-48.
    [13]国家“973计划”项目.“核主泵制造的关键科学问题”摘要部分[G],2008.
    [14]于涛.先进陶瓷刀具材料及质量的研究现状与发展趋势[J].中国机械工程,1998,9(8):57-60.
    [15]于晓东.陶瓷刀具用A1203基复合材料的制备[D].沈阳:东北大学,2009
    [16]李德伟.新型氧化铝基陶瓷刀具的研制及性能研究[D].大连大连理工大学,2011.
    [17]邓建新,艾兴Al2O3-TiB:陶瓷刀具的研制及切削性能研究[J].硬质合金:1994,11(4):8-13
    [18]邓建新等.Al2O3-TiB2.陶瓷刀具材料的特性及其应用[J].工具技术:1994,28(9):34-37
    [19]S. R.Choi, N. P. Bansal. Strength and fracture toughness of Zirconia/alumina composites for solid oxide fuel cells. Ceramic. engineering. Sci. Proc.2003, 23(3):741-750.
    [20]邓建新,艾兴,姜积中.A1203-SiCw陶瓷刀具材料中晶须最佳含量及其对刀具抗破损性能的影响.山东工业大学报:1995,25(3):272-277.
    [21]赵立新,郑立允TiN/TiAlN涂Ti(C,N)基金属陶瓷刀具的切削性能[J].金属热处理,2009,34(2):18-20.
    [22]C.Z.Huang, H.L.Liu, J.Wang. Study on mechanical properties of multi-scale and multi-phase nanocomposite ceramic tool materials[J]. ASME, C2006-21054:429-438.
    [23]宋世学,艾兴,赵军等.Al2O3/TiC纳米复合刀具材料的力学性能与增韧强化机理[J].机械工程材料,2003 27(12):35-38.
    [24]张慧.新型陶瓷刀具材料及其发展前景[J].机械研究与应用,2006,(01):1-4.
    [25]Deng Jianxin, Liu Lili, Liu Jianhua, etal. Failure mechanisms of TiB2 particle and SiC whisker reinforced Al2O3 ceramic cutting tools when machining nickel-based alloys[J]. International Journal of Machine Tools Manufacture,2005(45): 1393-1401.
    [26]C. H. Xu, Y.M.Feng, R.B.Zhang. Wear behavior of Al2O3/Ti (C, N)/SiC new ceramic tool material when machining tool steel and cast iron[J]. Journal of Materials Processing Technology,2009(209):4633-4637.
    [27]董良金等.sialon复相陶瓷刀具材料的研制[J].无机材料学报,1996(2).
    [28]杨发展,艾兴,赵军等.新型复合陶瓷刀具材料研究[J].材料工程,2008(21):455.
    [29]肖纪美等.不锈钢的金属学问题[M].北京:冶金工业出版社,2006:242-257.
    [30]刘家俊.陶瓷刀具切削304不锈钢的磨损性能[J].材料研究学报.1997,11(2):163-168
    [31]刘洪普.金属陶瓷刀具加工高氮奥氏体不锈钢试验研究[J].武汉理工人学学报,2009,31(24):38-41.
    [32]张凯等Al2O3-SiCp新型陶瓷刀具加工奥氏体不锈钢的性能研究[J].山东农业大学学报,1995,26(4):487-490.
    [33]王继梅.不锈钢1Cr18Ni9Ti的高速车削技术试验研究[D].济南:山东大学,2004.
    [34]马建斌.奥氏体不锈钢1Cr18Ni9Ti的低温切削性能研究[D].太原:太原科技大学,2010.
    [35]刘强,张弘弢等.涂层硬质合金刀具切削奥氏体不锈钢切削力的试验研究[J].工具技术:2008:42(4):22-25.
    [36]石增敏,郑勇等.金属陶瓷刀具切削不锈钢的磨损机理研究[J].材料导报:2007,21(8):244-146.
    [37]俞康泰.陶瓷添加剂应用技术[M].北京:化学工业出版社,2006:18-59.
    [38]李岩等.304L不锈钢在核电一回路水中应力腐蚀行为研究[J].科技导报,2011,29:17
    [39]宋冠宇.核级奥氏体不锈钢加工过程中的铁污染的产生及检测[D].大连:大连理工大学,2011.007.
    [40]H. P.Seifert, S.Ritter, H. J. Leberu. Corrosion fatigue crack growth behavior of austenitic stainless steels under light water reactor conditions,2011 (15):1.
    [41]祝贺.陶瓷刀具与不锈钢的扩散特性研究[D].湖北:湘潭大学,2011.
    [42]周建强.热电偶法测量不导电陶瓷刀具切削温度新途径[J].山东工业大学学报:1994, 11(1):72-75.
    [43]徐昊.基于红外热像技术的高速车削加工温度测量[D].广州:华南理工大学,2010.
    [44]李腾忠.数控机床加工中的动力学[D].镇江市:江苏大学,2010.
    [45]张铁.三向压电式车削测力仪的性能研究与结构设计[D].大连市:大连理工大学,2007.
    [46]戴登钊.陶瓷刀具切削奥氏体不锈钢时的切削性能研究[D].湘潭市:湘潭大学,2011.
    [47]董丽华.切削奥氏体不锈钢刀具粘结破损机理的研究[J].哈尔滨科学技术大学学报:1990,14(2):103-109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700