用户名: 密码: 验证码:
陶瓷刀具与不锈钢的扩散特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当陶瓷切削难加工材料时,尤其是干切削,由于陶瓷刀具自身导热性差,热量容易在刀具刃口附近积聚,这种热能积聚为元素扩散提供了扩散激活能,使得陶瓷刀具与难加工材料或者切屑之间发生元素扩散成为可能,陶瓷刀具也会因为扩散磨损而降低其切削性能。本文通过试验与理论相结合的方法,研究了陶瓷刀具材料与难加工材料301不锈钢之间的元素扩散情况,分析了其元素扩散规律和元素扩散流失对刀具性能的影响,为提高陶瓷刀具使用寿命和设计新型陶瓷刀具提供理论依据。
     通过对菲克扩散定律的分析,得到了适合陶瓷刀具与301不锈钢之间的元素扩散浓度表达式。根据元素扩散的浓度表达式,进一步通过计算,模拟了陶瓷刀具材料与301不锈钢扩散副中Ti元素和Fe元素的扩散规律,从而为合理解释和分析扩散试验的结果提供了理论依据。同时,对元素扩散的微观机理进行了探讨。
     选用Al_2O_3/TiC和Si_3N_4/TiC两种以TiC为增韧方式的陶瓷刀具材料与301不锈钢进行元素扩散试验。通过试验,全面分析了在相同扩散条件下两种陶瓷刀具材料中的Ti元素与301不锈钢中Fe元素的扩散,研究了温度和持续受热时间对元素扩散程度的影响。扩散结果分析得出:在相同温度和时间扩散条件下,Al_2O_3/TiC陶瓷刀具材料与301不锈钢之间的元素扩散程度比Si_3N_4/TiC陶瓷刀具材料要更严重。扩散温度相比扩散时间对扩散的影响更大,温度越高,陶瓷刀具材料与301不锈钢之间的元素扩散越剧烈;扩散温度越高,达到同样元素扩散程度所需的时间越短。为了减少刀具的扩散磨损,根据试验可以采取以下两个方面的措施:一是利用冷却系统,降低刀具切削温度;二是在不能降低温度前提下,避免长时间切削,即在元素加速扩散的起始时间前完成加工。
     对元素扩散后的陶瓷刀具材料与301不锈钢组成的扩散副结合面两侧进行了显微硬度测试,测试结果反映出:靠近扩散副界面处发生扩散的材料硬度相对于远离扩散副界面未发生元素扩散的材料硬度,有了明显变化。陶瓷刀具材料在靠近扩散界面处的硬度明显比未扩散前的硬度低,随着距离扩散结合面越来越远,陶瓷刀具材料的硬度逐渐恢复到正常水平。而301不锈钢由于元素扩散,在靠近扩散界面处的硬度有明显上升,在逐渐远离扩散界面一段距离后,301不锈钢的硬度也逐渐降低到正常硬度值。虽然元素扩散深度有限,但是元素扩散的流失对陶瓷刀具材料硬度的影响深度要远大于元素扩散深度。
When ceramic tools cut hard materials, especially in dry cutting, the thermal is easy to accumulate near the edge of ceramic tools owing to its low thermal conductivity. The thermal energy can provide activation energy for elements diffusion, which is possible to make elements diffusion between ceramic tools and the difficult processed materials couple. Because of this, ceramic tool will reduce cutting performance. Through theory analysis and experiment research, this paper studied the elements diffusion process between ceramic tools and difficult-to-machine material, 301 stainless steel, systemically investigated the laws of diffusion and the influence of cutting tools performance on element diffusion. The aim of this paper is to prolong the life of ceramic tools and to provide theory for designing new ceramic tools.
     Expression of element diffusion concentration that adapt to ceramic tools and 301 stainless steel was calculated through Fick’s second laws of diffusion analysis. Through further calculate, we simulated the diffusion rules on the element Ti which is in ceramic tools and the element Fe which is in 301 stainless steel. It provided foundation of theory for analyzing diffusion experiments. Microscopic mechanism in element diffusion between ceramic tools and 301 stainless steel has been observed and discussed.
     Two ceramic tools of Al_2O_3/TiC and Si_3N_4/TiC, both of which had been toughened by TiC were chosen for element diffusion experiment with 301 stainless steel. Through experiments, the diffusion of Ti and Fe was comprehensively analyzed, and the connection of temperature and time with diffusion effect between ceramic tools material and 301 stainless steel was reviewed systemically. The analysis showed that the diffusion degree of Al_2O_3/TiC with 301 was serious than Si_3N_4/TiC with 301 under the same high temperature and keeping-temperature time; diffusion temperature has more effect on diffusion than time. To same diffusion degree, the higher diffusion temperature is, the shorter time needs. According to the result of experiments, we should take same actions for decrease the diffusion wear of cutting tools: the first is to reduce the cutting temperature; the second is better to finish cutting process before the initiative time of accelerating diffusion.
     Tool hardness was tested after diffusion experiment. It is showed that tool hardness of materials had diffused obviously changed. Hardness near the diffusion interface greatly decreased, and hardness far away from the interface got to a normal level gradually. But the hardness of workpiece near diffusion interface was obviously higher than its normal hardness, and gradually decreased to normal hardness far away diffusion interface. Although it is only dozen microns took place between ceramic tool materials and 301 stainless steel, the effect caused by diffusion was more than the distance of elements diffusion.
引文
[1] E.O.Ezugwu. Key improvements in the machining of difficult-to-cut aerospace superalloys[J]. Machine Tools & Manufacture. 2005, 45:1353-1367
    [2]郭景坤.关于先进结构陶瓷的研究[J].无机材料学报. 1999, 14(2):193-199
    [3]邵刚勤,段兴龙,袁润章.纳米陶瓷、复相陶瓷及纳米复相陶瓷[J].材料科学与工艺. 2003,11(2): 211-214
    [4]金志浩,高积强,乔冠军.工程陶瓷材料[M].西安:西安交通大学出版社. 2000
    [5] Chonghai Xu, Xing Ai, Chuanzhen Huang. Fabrication and performance of an advanced ceramic tool material[J]. Wear,2001,249:503-508.
    [6] Chonghai Xu, Chuanzhen Huang, Xing Ai. Mechanical Property and Cutting Performance of Yttrium-reinforced Al_2O_3/Ti(C,N) Composite Ceramic Tool Material[J]. Journal of Materials Engineering and Performance,2001,10(1):102-107.
    [7] LIANG Shu-quan, TAN Xiao-ping, LI Shao-qiang et al. Structure and mechanical properties of ZrO2-mullite nano-ceramics in SiO2-Al_2O_3-ZrO2 system[J]. J.Cent. South Univ. Technol, 2007,14(1):1-6.
    [8] Bin Li, Jianxin Deng, Ze Wu. Effect of cutting atmosphere on dry machining performance with Al_2O_3/ZrB2/ZrO2 ceramic tool[J]. Int J Adv Manuf Technol, 2010,49:459-467.
    [9]邓建新,艾兴,姜积中. Al_2O_3-SiCw陶瓷刀具材料中晶须最佳含量及其对刀具抗破损性能的影响[J].山东工业大学报, 1995,25(3):272-269
    [10] K. H. Jack. The Significance and Structure and Phase Equilibria in The Development of Silicon Nitride and Sialon Ceramics[J]. Sci Ceram, 2003,11: 125-142.
    [11] Hai-Doo Kim, Hua-Tay Lin, Michael J. Hoffmann et al. Development and Industrial Application of Silicon Nitride Based Ceramics[J].Key Engineering Materials, 2005,287:3-9.
    [12]沈兆光,张玉环,王铮et al. Si_3N_4陶瓷-白口铸铁在无润滑条件下的磨损性能分析[J].机械科学与技术, 2001,20(3):442-443.
    [13]薛强,艾兴,赵军et al.纳米TiC对Si_3N_4基复合陶瓷材料性能和微观结构的影响[J].山东大学学报(工学版),2008,38(3):1-4.
    [14]张宇凝,阎峰云,吴澜尔. SiC-Si_3N_4复合材料力学性能的研究[J].中国粉体技术,2008,5:38-41.
    [15] Won Tae Kwon, Young-Wook Kim. Cutting Performance of Si_3N_4 Based SiC Ceramic Cutting Tools [J]. KSME International Journal,2004,18(3):388-394.
    [16]张荣波,徐崇海,冯曰美et al.陶瓷刀具材料近期研究进展[J].机械工程师,2008,1:55-58.
    [17]于涛.先进陶瓷刀具材料及质量的研究现状与发展趋势[J].中国机械工程,1998,9(8): 57-60.
    [18]邓建新,曹同坤,艾兴. Al_2O_3/TiC/CaF2自润滑陶瓷刀具切削过程中的减摩机理[J].机械工程学报, 2006 42(7): 109-112
    [19] Deng Jianxin, Cao Tongkun, Liu Lili. Self-lubricating behaviors of Al_2O_3/TiB2 ceramic tools in dry high-speed machining of hardened steel[J]. the European Ceramic Society, 2005(25): 1073-1079
    [20] Deng Jianxin, Cao Tongkun, Yang Xuefeng et al. Self-lubricating of sintered ceramic tools with CaF2 additions in dry cutting[J]. Machine Tools & Manufacture, 2006(46): 957-963
    [21]高濂,宫本大树, GAO Lia et al.高温等静压烧结Al_2O_3-ZrO2纳米陶瓷[J].无机材料学报,1999 14(3):495-498
    [22] Okuyama, Sakuma T. High temperature plastic flow in TiC-20%wt% Mo2C-20% Ni cermet [J]. Materials Science and Engineering,1995 (4):63-68
    [23]宋世学,艾兴,赵军et al. Al_2O_3/TiC纳米复合刀具材料的力学性能与增韧强化机理[J].机械工程材料,2003 27(12):35-38
    [24] Young-mok KO, Won Tae Kwon. Cutting performance of Al_2O_3- SiC nanocomposite tools[J]. Journal of Materials Science,2005 40:785-787
    [25]张永俐,罗素华. SiC-Al梯度功能材料(FGM)的制备[J].材料科学与工程, 1999, 17(4): 36-41
    [26] Ai Xing, Zhao Jun, Huang Chuanzhen, et al. Development of an advanced ceramic tool material– functionally gradient cutting ceramics[J]. Materials Science and Engineering, 1998, 248:125-131
    [27]张慧.新型陶瓷刀具材料及其发展前景[J].机械研究与应用,2006,(01):1-4
    [28] Maysa Terada, Marcio F.Hupalo, Isolda Costa et al. Effect of alpha prime due to 475℃aging on fracture behavior and corrosion resistance of DIN 1.4575 and MA 956 high performance ferritic stainless steels[J]. J Mater Sci, 2008, 43:425-433
    [29] L.Sánchez, M.P.Hierro, F.J.Pérez. Effect of Chromium Content on the Oxidation Behavior of Ferritic Steels for Applications in Steam Atmospheres at High Temperatures[J]. Oxid Met, 2009, 71:173-186
    [30] M.Narayana Rao. High performance stainless steels for critical engineering applications[J]. Transactions of The Indian Institute of Metals , 2010, 63(2-3):321-330
    [31]朱孔林.应加快开发能适应不锈钢市场波动的高性能铁素体不锈钢[J].世界钢铁, 2009,3: 62-70
    [32]鲍崇高,邢建东,高义民et al.碳钢奥氏体不锈钢材料在水电工程中应用的局限性[J].机械工程学报, 2004, 40(12):86-90
    [33]张少堂.钢铁材料手册第五卷[M].北京:中国标准出版社, 2001:59
    [34]孙霞,刘春明.铸造低碳马氏体不锈钢的现状与发展趋势[J].铸造, 2007,56(1):1-5
    [35] J.Buhagiar, H.Dong, T.Bell. Low temperature plasma surface alloying of medical grade austenitic stainless steel with carbon and nitrogen[J]. BHM,2006,151(11):446-450
    [36] Zhao Cheng, C.X.Li. Low temperature plasma nitrocarburising of AISI 316 austenitic stainless steel[J]. Surface & Coating Technology,2005,191:195-200
    [37]赵程.奥氏体不锈钢的低温离子氮碳共渗研究[J].中国表面工程,2003,(05):23-26
    [38]刘含莲,黄传真,朱洪涛et al. Al_2O_3基纳米复合陶瓷刀具切削不锈钢的试验研究[J].制造技术与机床,2011,1:30-32
    [39]中国特钢企业协会不锈钢分会.不锈钢手册[M].北京:中国科学技术出版社,2003: 414-426.
    [40]刘伟,李强,焦德志et al.冷轧301L奥氏体不锈钢的变形和应变硬化行为[J].金属学报,2008,44(7): 775-780.
    [41]陈波,高明,马颖澈et al.冷轧对含少量Mo的301不锈钢组织和性能影响[J].材料研究学报,2010,24(3):278-281.
    [42]苏柯,谢红兵,岳译新. SUS301L系列不锈钢在轻量化城轨车辆车体上的应用[J].电力机车与城轨车辆. 2010,33 (6): 23-25.
    [43] V.S.Bakunov, A.V. Belyakov. On the subject of analysis of ceramic structure[J]. Neory. Mater. 1995,32 (2): 243-248.
    [44] V.S.Bakunov, A.V. Belyakov. Diffusion creep in oxide ceramics and point defects in crystals [J]. Glass and Ceramics. 2001,58: 9-10.
    [45] P.BOMLAL, N.SIRIKULRAT. Diffusion effects of alumina on microstructures and positive temperature coefficient resistivity (PTCR) characteristics of barium-strontium titanate ceramics[J]. Journal of Materials Science. 2005, 40: 779-784.
    [46] PAUL HEITJANS, SYLVIO INDRIS. Fast diffusion in nanocrystalline ceramics prepared by ball milling [J]. Journal of Materials Science. 2004, 39: 5091-5096.
    [47] X.H.Yin, M.S.Li, T.P.Li et al. Diffusion bonding of Ti3AlC2 ceramic via a Si interlayer[J]. J Mater Sci. 2007,42: 7081-7085.
    [48]杨敏,邹增大,王新洪et al. Si_3N_4陶瓷/Nb/Cu/Ni/Inconel600界面反应层形成机制研究[J].材料科学与工艺. 2006,14(4): 400-407.
    [49]蒋庆磊,李亚江,王娟et al. Al_2O_3-TiC复合陶瓷与不锈钢扩散钎焊接头组织分析[J].焊接技术. 2007,36(5): 19-21.
    [50] Li Wang, Musheng, Yongfa Zhu. Study of interface diffusion and reaction between Zr3N4 and stainless steel[J].Surf. Interface Anal. 2003,35: 814-817.
    [51]黄传真,艾兴.加工镍基合金时切削力和切削温度的特点[J].工具技术,1995, 29(5):35 -38.
    [52]韩荣第,严春华. SiCw/Al复合材料切削温度的试验研究[J].哈尔滨工业大学学报,1996,28(2): 135-139.
    [53] S.Lei, Y.C.Shin, F.P.Incropera. Thermo-mechanical modeling of orthogonal machining process by finite element analysis [J]. International Jounral of Machine Tools & Manufacture, 1999, 39: 731-750.
    [54] A. Molinari, M.Nouari. Modeling of tool wear by diffusion in metal cutting[J]. Wear, 2002, 252:135 -149.
    [55] Deng Jianxin, Li Yousheng, Song Wenlong. Diffusion wear in dry cutting of Ti-6Al-4V with WC/Co carbid tools[J]. Wear, 2008,11-12: 1776-1783.
    [56] S.Zhang, J.F.Li, J.X.Deng, et al. Investigation on diffusion wear during high-speed machining Ti-6Al-4V alloy with straight tungsten carbide tools[J]. Int J Adv Manuf Technol, 2009,44: 17-25.
    [57]宋新玉,赵军,姜俊玲.加工Inconel 718时陶瓷刀具的磨损机理[J].中国机械工程, 2009,20(7): 763-767.
    [58] Zhao Jun, Deng Jianxin, Zhang Jianhua, et al. Failure Mechanisms of a Whisker-reinforced Ceramic Tool When Machining Nickel-based Alloys[J]. Wear, 1997,208(1/2): 220-225.
    [59] Dilbag Singh, P.Venkateswara Rao. Flank wear prediction of ceramic tools in hard turning[J]. Int J Adv Manuf Technol, 2010,50: 479-493.
    [60]庄大明,刘家浚,朱宝亮et al.干摩擦条件下Si_3N_4基和Ti(CN)基陶瓷对1Cr18Ni9Ti不锈钢的磨损机理[J],摩擦学学报, 1996,16(3): 193-201.
    [61]刘有容,刘家浚,朱宝亮. Si_3N_4基陶瓷刀具的摩擦磨损规律与机理分析[J],摩擦学学报,1997,02: 105-114.
    [62]黄继华.金属及合金中的扩散[M].北京:冶金工业出版社, 2002: 1-6.
    [63]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998.
    [64]孙振岩,刘春明.合金中的扩散与相变[M].沈阳:东北大学出版社, 2002: 21-48.
    [65]张世禄,陈友军.高等数学(上册)[M].北京:电子工业出版社, 2010: 219.
    [66] Paul Shewnom. Diffusion in Solids(second edition)[M]. USA: John Wiley & Sons, Inc. , 1998: 77.
    [67]戚正风.固态金属中的扩散与相变[M].北京:机械工业出版社, 1998: 64.
    [68] Lu Xianghong, Yang Yanqin, Luo Xian, et al. Exerimetal and Theoretical Study of Diffusion Bonding in Fabricating and Annealing Ti Matrix Composite[J]. Rare Metal Materials and Engineering, 2007(10): 1709-1716.
    [69]刘文卿.试验设计[M].北京:清华大学出版社, 2005(1): 103—112.
    [70]艾兴.陶瓷刀具切削加工[M].北京:机械工业出版社, 1988: 102.
    [71]邱轶兵.试验设计与数据处理[M].合肥:中国科学技术大学出版社, 2008: 271.
    [72] A.J.Whitehead, T.F.Page, I.Hlggins.Degradation of SiC whickers at elevated temperature [J]. Ceram Eng Sci Proc, 1989,10(7/8): 986-997
    [73] Maeda M, K N ahamura, T Ohkuba Oxilation of silicon carbide in a wet atmosphere [J]. JMater Scj, 1988. 23: 3933-3938
    [74]宋世学,赵军,艾兴. Al_2O_3/TiC纳米复合陶瓷刀具材料的氧化行为[J].济南大学学报, 2009. 23(7): 225-228
    [75]谭舒平,韩杰才. TiC-Al_2O_3陶瓷裂纹治愈及强度的研究[J].材料热处理学报,2009, 30 (4): 22-24
    [76]赵选民.试验设计方法[M].北京:科学出版社, 2006: 46-55
    [77]孙荣禄,杨文杰,张九海.钛合金与不锈钢扩散焊接头的组织和性能[J].焊接技术. 1997. 26(4): 4-6
    [78] Molinari A, Nouari M. Modeling of tool wear by diffusion in metal cutting[J]. wear. 2002: 252(1-2): 135-149.
    [79] Jiang H, Rajiv S. A cobalt diffusion based model for predicting crater wear of carbide tools in machining titanium alloys[J]. Journal of engineering materials and technology. 2005, 127(1): 136-144.
    [80]张其土. Si_3N_4陶瓷材料的氧化行为及其抗氧化研究[J].陶瓷学报. 2000. 21(1): 23-27
    [81] C.Baldock, P.J.Harris, A.R.Piercy et al. Eexerimental determination of the diffusion coefficient in two-dimensions in ferrous sulphate gels using the finite element method[J]. Australasian Physical & Engineering Sciences in Medicine. 2001. 24(1): 19-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700