用户名: 密码: 验证码:
纳米铁系金属复合材料去除地下水中硝酸盐污染的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来随工农业的快速发展,地下水中硝酸盐的污染已成为一个相当重要的环境问题,且污染具有日益恶化的趋势,目前已引起人们的普遍关注。结合纳米技术对环境污染进行修复是当今世界一个新的发展方向。纳米材料具有粒径小,比表面积大以及表面活性高等特点,并可直接注入地下对污染区域实现原位修复,因此合成新型高效的纳米材料去除地下水中硝酸盐污染已成为环境中的一个研究热点课题。
     目前应用于地下水中硝酸盐去除的技术主要有生物反硝化、离子交换技术、膜分离法和化学还原修复等技术;其中生物处理法具有高效低耗的特点,但会导致出水中含有细菌和残留有机物,必须进行后续处理;离子交换和膜分离等物理化学处理技术只是将硝酸盐污染物进行了浓缩或转移,并没有对其进行彻底去除,同时产生高浓度再生废液同样需要处理;而在化学还原反硝化中,应用负载型催化剂可将大部分硝酸盐转化为N2,但催化还原过程中需要以H2作为还原剂,而H2容易爆炸,不便于工程施用;纳米Fe0可快速还原地下水中的硝酸盐,但其产物主要为NH4+-N,只有很小部分硝酸盐可能被转化为N2。
     针对以上问题,本文采用液相还原法制备了纳米级Fe/Ni、Fe/Cu、Fe/Pd和Fe/Pd/Cu金属复合材料,并首次将纳米Fe/Ni和纳米Fe/Pd/Cu颗粒应用于地下水中硝酸盐污染物的去除,采用TEM-EDS、SEM、XRD、BET等分析手段对纳米材料的结构、组成进行了表征,系统的研究了不同催化剂金属对硝酸盐还原中间产物和最终产物的影响,同时对纳米颗粒还原NO3-的反应机理进行了探讨。与普通铁屑相比,纳米Fe0具有很高的反应活性,金属催化剂Ni、Cu、Pd的引入进一步提高了NO3-的去除速率,且不同催化剂种类对还原速率及还原产物具有不同的影响。
     对比普通铁屑与纳米零价铁去除NO3-的反应,溶液pH是影响铁屑反应速率的主要影响因素,酸性条件有利于铁屑还原去除NO3-,而纳米Fe0即使在中性初始pH条件下也具有较高的反应活性;将铁屑与纳米Fe0分别应用于地浸采铀实际地下水,普通铁屑反应5 h,硝酸盐去除率为93% ,而纳米Fe0 15分钟即可将硝酸盐污染物完全去除,但约96%的NO3-被转化为NH4+-N。
     在纳米Fe/Ni去除硝酸盐的研究中,当Ni负载量为5.0%时,且在中性pH条件下,纳米颗粒具有最高的反应活性;新鲜制备的Fe/Ni纳米双金属颗粒,在空气中缓慢氧化22h后可稳定存在于空气中,但其反应活性降为原来的十分之一,与纳米Fe0反应活性相当,继续老化44 h对纳米Fe/Ni的反应活性影响不大;反应中有少量NO2-作为中间副产物被检出,但最终与NO3-一起被同时去除,NH4+转化率在84.6%~90.6%范围内,改变Ni负载量、溶液初始pH值、初始浓度等实验条件对改善产物选择性的贡献很小;认为硝酸盐的脱硝反应经历了NO3-→NO2-→NH4+两个转化步骤,为连续分步反应,其中NO3-→NO2-为整个反应的速度控制步骤。
     以Cu为催化剂催化还原硝酸盐,当Cu负载量为5.0%时,纳米Fe/Cu与硝酸盐反应具有最快的去除速率,30min可将硝酸盐完全去除;反应过程中有30%的NO3-可被还原为中间副产物NO2-,提高nano-Fe/Cu的反应活性,有利于NO2-在溶液中的积累,但NO2-可进一步被转化为NH4+或N2,NH4+最终转化率为79.4%~82.8%;纳米Fe/Cu复合材料还原NO3-的反应历程与纳米Fe/Ni相似,为连续分步反应,与nano-Fe/Ni反应体系不同的是,金属Cu催化剂对NO2-具有较高的选择性, NO3-→NO2-转化速率较快,而NO2-→NH4+的转化速率较慢。
     本文同时合成了纳米Fe/Pd以及纳米Fe/Pd/Cu复合材料,并对其催化还原硝酸盐的反应进行了初步探讨。实验结果表明,以Fe0为还原剂,分别以Ni、Cu、Pd不同金属为催化剂去除地下水中的硝酸盐,具有不同的还原效果,其中纳米Fe/Cu反应体系的反应活性最高,对中间产物NO2-的选择性最大,且对NH4+具有较小的选择性,在硝酸盐污染物的环境修复中具有很好的发展前景。
Recently, with the development of industry and agriculture, nitrate pollution in ground water has been an importantly environmental problem and with the tendency of gradually deterioration. Nowadays, it has been prevalently considered by people. Using nanotechnology to remediate environmental pollution is a new direction of environmental remediation in the world. Nanoscale materials have the characteristic of small diameter, high specific surface area to mass ratios and great surface reactivity. In addition, nanoparticles could be injected directly to contaminated field and realize in situ remediation of ground water. So synthesizing new and high efficiency nanoscale materials to reduce nitrate has become the focus of water research.
     Technologies applied to remove nitrate in ground water include biological denitrification, ion exchange, membrane separation and chemical reduction. Nitrate removal with biological approach may obtain high efficiency and low cost, but it may lead to the existence of bacteria and organic compounds in water, it request further treatment. For physico-chemical approaches, nitrate is only shift to another form, and not removed completely, on the other hand, it may bring large volumes of waste solution with high concentration which also needs to be treated. Application of loading catalyst could transform mostly nitrate to N2, but during the catalytic process, H2 is used as reductant which is easy to blast and difficult to construction. Nitrate could be rapidly reduced by nanoscale Fe0 particles, but the main product is NH4+-N, only a little nitrate may be transformed to N2.
     To overcome these drawbacks, liquid-phase synthesized method was applied to prepare nanoscale Fe/Ni、Fe/Cu、Fe/Pd and Fe/Pd/Cu compound materials. In the nanoscale materials, nano-Fe/Ni and nano-Fe/Pd/Cu particles were firstly used to reduce nitrate contamination in groundwater. Nanoparticles were characterized by TEM-EDS, SEM, XRD and BET techniques. Nitrate reduction with different nanoscale materials was investigated systemically. At the same time, the reduction mechanism with nanoparticle was discussed in our work. Nanosized Fe0 behaved high reactivity during the denitrification of nitrate compared with common iron powder. The introduction of Ni, Cu and Pd further enhance the removal rate, and different catalyst makes differently degree effects on reduction rate and product.
     For iron powder, solution pH is an important parameter influencing nitrate reduction and low pH is favorable for the denitrification of nitrate. Different from iron powder, nanosized Fe0 performed large reaction rate even under the condition of neutral solution pH. Using iron powder and nano-Fe0 to treat in-situ uranium leaching groundwater, under laboratory conditions, nitrate removal rate was 93% in 5 h by iron powder but nitrate was removed completely by nanosized Fe0 within 15 min. About 96% nitrate was reduced to NH4+-N.
     In nano-Fe/Ni reaction system, when Ni loading was 5.0%, nanoparticles showed the highest reactivity under neutral initial solution pH. After slowly ageing 22 h, the reactivity of freshly prepared nanoscale Fe/Ni particles decreased about 10 times, but with the followed 44 h ageing, little decreasing of reactivity was observed which is equivalent to freshly synthesized nano-Fe0. Nitrite was detected as the intermediate product during the reduce process and disappeared companied with nitrate vanishing. NH4+-N transformation rate was at the range of 84.6%~90.6%. Little improve of selectivity to N2 was obtained through changing Ni contents, initial solution pH and nitrate concentration et al. experimental conditions. According to the analysis of product, it was considered that nitrate reduction by Ni/Fe nanoparticles undergo two steps: (1) NO3- was reduced to NO2- with the tendency of increasing at first and disappeared from solution at last; (2) NO2- was then reduced to NH4+. The first transformation process was the control step.
     Using Cu as catalyst catalytic reduce nitrate contaminant, when Cu content was 5.0% nano-Fe/Cu bimetallic particles showed the rapidest removal rate, and nitrate was removed entirely within 30 min. During the process of nitrate reduction, about 30% nitrate was transformed to intermediate product NO2-. Increasing the reactivity of nanoscale Fe/Cu particles was favorable to the accumulation of NO2- in the solution. At the end of reaction, NO2- was reduced to NH4- N or N2 and NH4- N transformation rate was at the range of 79.4%~82.8%. For nano-Fe/Cu bimetallic material, the reaction course of nitrate reduction was similar to nano-Fe/Ni system, and it also suffers two steps. But the difference between Fe/Ni and Fe/Cu nano-material was that metallic catalyst Cu has better selectivity to NO2- than Ni. Further more, the transformation process from NO3- to NO2- was quick, reversely, the transformation from NO2- to NH4+ was slow.
     Nano-Fe/Pd and nanoscale Fe/Pd/Cu compound materials were also synthesized in our work, the denitrification of nitrate with these nanosized particles were discussed preliminarily. The results showed that using Fe0 as reductant, different reduction results could be obtained with the different catalyst Ni、Cu and Pd. For Fe0 systemic nanoscale particles prepared in our laboratory, nano-Fe/Cu has the highest reactivity and selectivity to NO2-, but the lowest selectivity to NH4+. So it is a promising remediation technology for nitrate contamination.
引文
[1] 陈传友,王春元,窦以松. 水资源与可持续发展. 北京: 中国科学技术出版社,1999.8
    [2] 赵胜玉. 我国一半城市地下水污染较重. 城市管理,2004 (2 ) : 44
    [3] 周学志. 地下水开发利用的环境问题及防治措施研究. 环境科学丛刊,1992, 13 (3): 1
    [4] 冯尚友. 水资源持续利用与管理导论. 北京:科学出版社,2000.7
    [5] 孙景云,左犀. 地下水饮用水源地的保护. 环境科学,1996, 17(5): 20~24
    [6] 张丽君,刘树臣. 21 世纪世界水资源研究趋势. 国土资源情报,2001, 12: 1~5
    [7] 汪珊,孙继朝,李政红. 西北地区地下水质量评价. 水文地质工程地质,2004, 4: 96~100
    [8] 郭秀红,孙继朝,李政红,汪珊. 我国地下水质量分布特征浅析. 水文地质工程地质,2005, 3: 51-54
    [9] 李政红,孙继朝,汪珊,郭秀红. 黄淮海平原地下水质量综合评价. 水文地质工程地质,2005, 4: 51~55
    [10] 陈建耀,王亚,张洪波,赵新峰. 地下水硝酸盐污染研究综述. 地理科学进展,2006, 25(1): 34~44
    [11] Spalding R. F. Exner M. E. Occurrence of nitrate in groundwater—a review. Journal of Environmental Quality, 1993(22): 392~402
    [12] Canter L. W. Nitrate in Groundwater. Lewis publishers, New York, 1997
    [13] Hiscock K. M. Review of natural and artificial denitrification of ground water. Water Research, 1991, 25(9):1099~1111
    [14] Costa J. L., Massone H., Martinez D., et al. Nitrate contamination of aquifer and accumulation in the unsaturated zone. Agricultural Water Management, 2002, 57: 33~47
    [15] Van Maanen J., Van Dijk A., Mulder K., et al. Consumption of drinking water with high nitrate levels causes hypertrophy of the thyroid. Toxicol. Lett. 1994, 72: 365~374
    [16] Abu Maila Y., El-Nahal I., Al-Agha M. R. Seasonal variations and mechanisms of groundwater nitrate pollution in the Gaza strip. Environmental Geology, 2004, 47: 84-90
    [17] 张维理,田哲旭,张宁 等. 我国北方农用氮肥造成地下水硝酸盐污染的调查. 植物营养与肥料学报,1995,1(2):80-87
    [18] 金赞芳,王飞儿,陈英旭 等. 城市地下水硝酸盐污染及其成因分析. 土壤学报,2004, 41(2):252-258
    [19] 张思聪,沈子寅. 唐山平原区地下水硝酸盐污染. 水力发电学报,2002,1: 68~75
    [20] 冯锦霞,朱建军,陈立. 我国地下水硝酸盐污染防治及评估预测方法. 地下水,2006, 28(4): 58~62
    [21] 吕殿青,同延安,孙本华 等. 氮肥施用对环境污染影响的研究. 植物营养与肥料学报,1998, 4(1):8-15
    [22] 姜桂华,王文科,杨晓婷 等. 关中盆地潜水硝酸盐污染分析及防治对策. 水资源保护,2002,2: 6~8
    [23] 毕二平,李政红. 石家庄市地下水中氮污染分析. 水文地质工程地质,2001, 2: 31~34
    [24] Super M, Heese H, MsvKenxit D, et al. An epidemiologic study of well-water nitrates in a group of South West African Namibian infants. Water Research, 1981(15): 1265~1270
    [25] Kostraba J. N., Gay E. C., Reviewrs M., et al. Nitrate levels in community drinking waters and risk of IDDM. Diabetes Care. 1992(15): 1505~1508
    [26] Grahan L, Roger P, Patricia M, et al. Non-Hodgkin’s Lymphoma and nitrate in drinking water: a study in Yorkshire, United Kingdom. J. Epidemiology Community Health. 1999(53): 383~384
    [27] Dorsch M. M., Scargg R., Mcmichael A. E. A. Congential malformation and maternal drinking water supply in rural South Australia: a case-control study. Am. J. Epidemiol 1984, 119(4): 473~486
    [28] Jennifer H. B., Roger C. P., Particia A. M., et al. Nitrate in drinking water and the incidence of gastric, esophageal, and brain cancer in Yorkshire, England. Cancer Causes and Control, 1998(9): 153~159
    [29] Jan M. S., Van M., Hanma J., et al. Nitrate in drinking water and risk of childhood diabetes in the Netherlands. Diabetes Care 1999, 22(10): 1750
    [30] Janos S., Istvan K., Orsolya F., et al. Association between gastric cancer mortality and nitrate content of drinking water: Ecologocal study on small area inequalities. European Journal of Epidemiology, 2001(17): 443~447
    [31] Rademacher J. J., Young T. B., Kanarek M. S. Gastric cancer mortality and nitrate levels in Wisconsin drinking water. Archive of Environmental Health, 1992, 47(4): 292~297
    [32] Steindorf K., Schlehofer B., Becher H., et al. Wahrendorf J. Nitrate in drinking water: A case-control study on primary brain tumours with an embedded drinking water survey in Germany. International Journal. Epidemilogy, 1994,(23): 451~457
    [33] Nolan B. T., et al. Risk of Groundwater of the United States-A National Perspective. Environmental Science & Technology, 1997, 31(8): 2229~2236
    [34] 刘兆昌,张兰生 等编著.《地下水系统的污染与控制》. 中国环境科学出版社,北京,1991
    [35] 杨琰,蔡鹤生,刘存富 等. NO3-中 15N 和 18O 同位素新技术在岩溶地区地下水氮污染研究中的应用—以河南林州食管癌高发区研究为例. 中国岩溶, 2004, 23 (3) : 206~212
    [36] 林年丰. 医学环境地球化学. 吉林科学技术出版社,长春,1991, 43~45
    [37] 宋建治,胡书礼,刘同义 等. 地下水中 NO3-对环境保护的影响. 矿产保护与利用,2005,5: 52~54
    [38] 孙彭力,王慧君. 氮素化肥的环境污染. 环境保护与防治,1995,17(1): 38~41
    [39] Word Health Organization (WHO). Guidelines for Drinking Water Quality, Recommendations 1984(2): 290~292
    [40] Environmental Protection Agency (EPA) 1989, National Primary and Secondary Drinking Water Regulations: Proposed Rule, Fed. Teg., 54: 22077
    [41] Pontius F. W. Nitrate and cancer: is there a link. J. AWWA 1993,85(4): 12~14
    [42] Health Canada. Guidelines for Canadian Drinking Water Quality, 6th ed. Ministry of health, Ottawa. 1996
    [43] European Community, Council directive of July 1980 relating to the quality of water intended for human consumption, Official J. European Community, Brussels, Belgium, 1980,23(229): 11~29
    [44] 冯绍元,郑耀泉.农田氮素的转化与损失及其对水环境的影响.农业环境保护,1996,15(6):277~280
    [45] 张庆忠,陈欣,沈善敏. 农田土壤硝酸盐积累与淋失研究进展. 应用生态学报,2002,13(12): 233~238
    [46] 尉元明,朱丽霞,康凤琴. 甘肃不同生态区化肥施用量对农业环境的影响. 干旱区研究,2004, 21(1): 59~63
    [47] 高旺盛,黄进勇,吴大付 等.黄淮海平原典型集约农区地下水硝酸盐污染初探. 生态农业研究,1999, 7(4):41~43
    [48] 巩建华,柯尊伟,李季. 河北省藁城市蔬菜种植区化肥施用与地下水硝酸盐污染研究.农村生态环境,2004, 20(1): 56~59
    [49] 高阳俊,张乃明. 滇池流域地下水硝酸盐污染现状分析. 云南地理环境研究,2003,15(4):39~42
    [50] 易秀,薛澄泽. 氮肥在嵝土中的渗漏污染研究. 农业环境保护,1993, 12 (6): 50~52
    [51] 王铁军,郑西来. 崔俊芳.莱西地区施肥对地下水硝酸盐污染的过程. 中国海洋大学学报,2006, 36(2): 307~312
    [52] Belgiorno V., Napoll R. M. Groundwater quality monitoring. Water Science Technology, 2000, 42(1-2):37~41
    [53] 宋秀杰,丁庭华. 北京市地下水污染的现状及对策. 环境保护,1999(11): 44~47
    [54] 李贵宝. 污水资源化及其农业利用(污灌)的对策. 中国农村水利水电,2001,(11):9~12
    [55] Elaruvy N., Halos A., Ravina I., et al. Cost assessment of groundwater pollution. Water Science Technology, 2000,42(1-2):135~140
    [56] 金速. 辽宁省地下水硝酸盐污染成因分析及其防治对策探讨. 辽宁地质,1997, 1: 63~69]
    [57] 徐芳香,陆雍森. 我国地下水中硝酸盐污染防治及水源保护区划分. 污染防治技术,1999,12(1): 20~23
    [58] 吴耀国. 地下水环境中反硝化作用. 环境污染治理技术与设备,2002, 3(3):`27~31
    [59] Francisco J. Nitrogen Rremoval from Wastewaters at low C/N Ratios with Ammonium and Zcetatesa Electron Donors. Bioresource Technology, 2001, (79): 165~170
    [60] Peter K. Biological Denitrification in a Continuous-flow Pilot Bioreactor Containing Immobilized Pseudomonas Butanovora Cells. Bioresource Echnology, 2003 (87): 75~80
    [61] Ying-chih C. Determination of Optimal COD/Nitrate Rratio for Biological Eenitrification. International Biodeterioration & Biodegradation, 2003(51): 43~49
    [62] Bruce O. Hydrogenotrophic Denitrification in a Micro porous Membrane Bioreactor. WaterResearch, 2002(36): 4683~4690
    [63] Ewa W. Removal of Nitrates from Ground water by a Hubrid Process of Biological Denitrification and Microfiltration Membrane. Process Biochemistry, 2001(37): 57~64
    [64] Oh S. E. Effect of Organics on Sulfur-utilizing Autotrophic Denitrification under Miaxotrophic. Conditions of Biotechnology, 2001(92): 1~8
    [65] Kuan-Chun L. Effects of pH and Precipitation on Autohydrogenotrophic Denitrification using the Hollow-fiber Membrane-biofilm reactor. Water Research, 2003(37): 1551~1556
    [66] Schipper L A. Nitrate Removal from Ground Water Using a Denitrification Wall Amended with Sawdust: Field Trials[J]. J Environmental Quality,1998(27): 664~668
    [67] 张少辉. 地下水中硝酸盐去除的新工艺. 中国沼气,2002, 20(3): 13~23
    [68] Powell R.M., Puls R. W. Generation by Dissolution of Instrinsic or Augmented Aluminaosilicate Minerals for in-Situ Contaminant Remediation by Zero-Valent State Iron. Environ. Sci. Technol., 1997, 31: 2244~2251
    [69] Louis A. S. Nitrate Removal from Groundwater and Denitrification Rates in a Porous Treatment Wall amended with Sawdust. Ecological Engineering, 2000(14): 269~278
    [70] 朱南文,高廷耀,周增炎. 饮用水生物脱氮技术现状. 水处理技术,1999,25(4): 214~219
    [71] Lee D. U. Effects of External Carbon Source and Empty Bed Contact Time on Simultaneous Heterotrophic and Sulfur-utilizing Autotrophic Denitrification. Process Biochemistry, 2001, 36:1215–1224
    [72] Sakakibara Y., Kuroda M. Electric prompting and control of denitrification. Biotechnology. Bioengineering, 1993(42): 535~537
    [73] Szilvia S. Hydrogen-dependent denitrfication in a two-reactor bio-electrochemical system. Water Research, 2001, 35(3): 715~719
    [74] 曲久辉,范彬,刘锁祥 等. 电解产氢自养反硝化去除地下水中硝酸盐氮的研究. 环境科学,2001,22(6): 711~715
    [75] Katsuki K. Nitrate removal by a combination of elemental sulfur-based denitrification and membrane filtration, Water Research,2002 (36): 1758~1766
    [76] 王海燕,曲久辉,雷鹏举. 电化学氢自养与硫自养集成去除饮用水中的硝酸盐. 环境科学学报,2002, 22(6): 711~715
    [77] Dong-Uk L. Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification. Process Biochemistry, 2001(36): 1215~1224
    [78] Dorshelmer W. T., Drewry C. B., Fritsch D. P., et al. Removing Nitrate from Groundwater. Water Engineering & Management, 1997,(12): 20~24
    [79] Martin Christopher J., Kartinen Emest O. Jr., Condon Jim. Examination of processes for multiple contaminant removal from groundwater. Desalination. 1995, 102(1-3): 35~45
    [80] Kapoor A., Viraraghavan T. Nitrate removal from drinking water-review. Journal of Environmental Engineering, 1997, 123(4): 371~380
    [81] 范彬,曲久辉,刘锁祥 等. 饮用水中硝酸盐的脱除. 环境污染治理技术与设备,2000,1(3): 44~50
    [82] 刘玉林,何杰,谢同凤. 离子交换树脂去除饮用水中硝酸盐的改进研究. 淮南工业学院学报,2001,21(4): 56~58
    [83] Vorlop K. D., Tacke T. Erste schritte auf dem Weg zur edelmetall-katalysierten nitrat- and nitrit-Entfernung aus Trinkwasser. Chem Ing. Tech, 1989(61): 836~845
    [84] Albin P. Kinetics of the catalytic liquid-phase hydrogenation of aqueous nitrate solutions. Applied Catalysis B: Environmental. 1996(11): 81~98
    [85] Giorgio S. Sol-gel palladium catalysts for nitrate and nitrite removal from drinking water. Catalysis Today, 1996, 27: 209~214
    [86] Epron F., Gauthard F., Carole P., et al. Catalytic reduction of nitrate and nitrite on Pt-Cu/ Al2O3 catalysts in aqueous solution: Role of the interaction between copper and platinum in the reaction. Journal of Catalysis, 2001, 198: 309~318
    [87] Sakamoto Y., Kamiya Y., Okuhara T. Selective hydrogenation of nitrate to nitrite in water over Cu-Pd bimetallic clusters supported on active carbon. Journal of Molecular Catalysis A: Chemical, 2006, 250: 80~86
    [88] Horold S. Development of catalysts for a selective nitrate and nitrite removal from drinking water. Catalysis Today, 1993(26): 21~30
    [89] Jacinto S., Hannelore V. Catalytic hydrogenation of nitrates in water over a bimetallic catalyst. Applied Catalysis B: Environmental, 2005, 57: 247~256
    [90] Edelmann A., Schieber W., Vinek H. Oxidation state of bimetallic PdCu catalysts during liquid phase nitrate reduction, Catalysis Letters, 2000, 69: 11~16
    [91] Prüsse U., Vorlop K. D. Supported bimetallic palladium catalysts for water-phase nitrate reduction. Journal of Molecular Catalysis A: Chemical. 2001 (173): 313~328
    [92] Barrabés N., Just J., Dafinov A., et al. Catalytic reduction of nitrate on Pt-Cu and Pd-Cu on active carbon using continuous reactor: The effect of copper nanoparticles. Applied Catalysis B: Environmental, 2006, 66: 77~85
    [93] Ying-Xue C. Appropriate conditions or maximizing catalytic reduction efficiency of nitrate into nitrogen gas in groundwater. Water Research, 2003(7): 2498~2495
    [94] Ilinitch O. M., Nosova L. V., Gorodetskii V. V., et al. Catalytic reduction of nitrate and nitrite ions by hydrogen: investigation of the reaction mechanism over Pd and Pd-Cu catalysts. Journal of Molecular Catalysis A: Chemical, 2000, 158: 237~249
    [95] Pintar A., Batista J., Mu?evi? I. Palladium-copper and palladium-tin catalysts in the liquid phase nitrate hydrogenation in a batch-recycle reactor. Applied Catalysis B: Environmental, 2004, 52:49~60
    [96] Gauthard F., Epron F., Barbier J. Palladium and platinum-based catalysts in the catalytic reduction of nitrate in water: effect of copper, silver, or gold addition. Journal of Catalysis, 2003, 220: 182~191
    [97] 张燕,陈英旭,刘宏远. Pd-Cu/γ-Al2O3 催化还原硝酸盐的研究.催化学报,2003, 24(4):270-274
    [98] Berndt H., M?nnich I., Lücke B., et al. Tin promoted palladium catalysts for nitrate removal from drinking water. Applied Catalysis B: Environmental, 2001, 30: 111~122
    [99] Prüsse U. Improving the catalytic nitrate reduction. Catalysis Today, 2000(55): 79~90
    [100] Strukul G., Gavagnin R., Pinna F., et al. Use of palladium based catalysts in the hydrogenation of nitrate in drinking water: from powders to membranes. Catalysis Today 2000(55): 139~149
    [101] Gao W., Guan N., Chen J., et al. Titania supported Pd-Cu bimentallic catalyst for reduction of nitrate in drinking water. Applied Catalysis B: Environmental, 2003, 46: 341~351
    [102] Pfaff C., Melo L., Betancourt P. Pt-Cu/ZSM-5 for removal of nitrates from drinking water. React. Kinet. Catal. Lett. 2002, 77(2): 263~266
    [103] Rodr?guez R., Pfaff C., Melo L., et al. Characterization and catalytic performance of a bimetallic Pt-Sn/HZSM-5 catalyst used in denitratation of drinking water. Catalysis Today, 2005, 107-108: 100~105
    [104] Matatov-M Y. Cloth catalysis in water denitrification: Pd on glass fibers. Apple. Catal. B: environ, 2000(27): 127~132
    [105] Lemaignen L., Tong C., Begon V., et al. Catalytic denitrification of water with palladium-based catalysts supported on activated carbons. Catalysis Today, 2002, 75: 43~48
    [106] Kludtke. Nitrate removal of drinking water by means of catalytically active membranes. Membrane Science, 1998(151): 3~11
    [107] Daub K. Studies on the use of catalytic membranes for reduction of nitrate in drinking water. Chem. Eng. Sci, 1999(54): 1577~1582.
    [108] Yuasa Y., et al. JP08192169[96,192,169]JPN. Kokai Tokyo Koho[P],1996-06-30
    [109] Fanning J. C. The chemical reduction of nitrate in aqueous solution. Coordination Chemistry Reviews, 2000, 199: 159~179
    [110] Luk G. K. Experiment Investigation on the Chemical Reduction of Nitrate from Groundwater. Advances in Environment Research, 2002(6): 441~453
    [111] Murphy A. P. Chemical removal of nitrate from water. Nature, 1991(350): 223~229
    [112] Huang Y. H., Zhang T. C. Enhancement of nitrate reduction in Fe0-packed columns by selected cations. Journal of Environmental Engineering, 2005, 131(4): 603~611
    [113] Chen Y. M., Li C. W., Chen S. S. Fluidized zero valent iron bed reactor for nitrate removal, Chemosphere, 2005, 59: 753~759
    [114] Hu H. Y., Goto N., Fujie K., et al. Reductive treatment characteristics of nitrate by metallic iron in aquatic solution. Journal of Chemical Engineering of Japan, 2001, 34(9): 1097~1102
    [115] Liao C. H., Kang S. F., Hsu Y. W. Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research, 2003,37: 4109~4118
    [116] Young G. K., Bungay H. R., Brown L. M., et al. Chemical reduction of nitrate in water. J. Water Pollut. Control Federation, 1964, 36:395~398
    [117] Huang C. P. Nitrate Reduction by Metallic Iron. Water Research, 1997, 32(8):2257~2264
    [118] Zawaideh L. L., Zhang T. C. The effects of pH and addition of an organic buffer (HEPES) on nitrate transformation in Fe0-water systems, Wat. Sci. Tech., 1998, 38(7):107-115
    [119] Ruangchainikom C., Liao C. H., Anotai J., et al. Characteristics of nitrate reduction by zero-valent iron powder in the recirculated and CO2–bubbled system. Water Research, 2006, 40: 195~204
    [120] Cheng F., Muftikian R.. Quintus Fernando, Nic Korte, Reduction of nitrate to ammonia by zero-valent iron. Chemosphere, 1997, 35(11): 2689-2695
    [121] Alowitz M. J., Scherer M. M. Kinetics of nitrate, nitrite and Cr(VI) reduction by iron metal. Environmental Science & Technology, 2002, 36(3): 299~306
    [122] Huang Y. H., Zhang T. C., Shea P. J., et al. Effects of oxide coating and selected cations on nitrate reduction by iron metal. J. Environ. Qual. 2003, 32: 1306~1315
    [123] Huang Y. H., Zhang T. C. Effects of low pH on nitrate reduction by iron powder. Water Research, 2004, 38: 2631~2642
    [124] Choe S., Liljestrand H. M., Khim J. Nitrate reduction by zero-valent iron under different pH regimes. Applied Geochemistry, 2004, 19: 335-342
    [125] Shrimali M., Singh K. P. New methods of nitrate removal from water. Environmental Pollution, 2001, 112: 351~359
    [126] Furukawa Y., Kim J. W., Watkins J., et al. Formation of Ferrihydrite and Associated Iron Corrosion Products in Permeable Reactive Barriers of Zero-Valent Iron. Environ. Sci. Technol.2002, 36:5469-5475
    [127] Neeraj G., Tad C. F. Hydrogeologic modeling for permeable reactive barriers. Journal of Hazardous Materials.1999 (68):19–39
    [128] Park J. B., Lee S. H., Lee J. W., et al. Lab scale experiments for permeable reactive barriers against contaminated groundwater with ammonium and heavy metals using clinoptilolite (01-29B). Journal of Hazardous Materials.2002, (B95):65–79
    [129] Snape I., Morris C.E., Cole C.M. The use of permeable reactive barriers to control contaminant dispersal during site remediation in Antarctica. Cold Regions Science and Technology. 2001, (32):157–174
    [130] Blowes D. W., Ptacek C. J., Benner S. G., et al. Treatment of inorganic contaminants using permeable reactive barriers. Journal of Contaminant Hydrology. 2000, (45): 123–137
    [131] Arun R. G. Design and construction techniques for permeable reactive barriers. Journal of Hazardous Materials, 1999, (68): 41–71
    [132] David W. B., Carol J. ., John L. J. In-situ remediation of Cr (Ⅵ )-contaminated groundwater using permeable reactive walls: laboratory studies. Environmental Science & Technology, 1997, 31(12): 3348~3357
    [133] Ho S. V., Sheridan P. W., Athmer C. J., et al. Integrated in Situ Soil Remediation Technology: the Lasagna Process. Environmental Science & Technology, 1995(29): 2528~2534.
    [134] Chew C. F, Zhang T. C. In-situ Remediation of Nitrate-contaminated Ground Water by Electrokinetics/Iron Wall Process. Water Science and Technology, 1998, 38(7): 135~142
    [135] Paul W., Jenifer J. Nitrate Removal in zero-valent Iron Packed Columns. Water Research, 2003(37): 1818~1830
    [136] 周玲,李铁龙,金朝晖 等. 还原铁粉去除地下水中硝酸盐氮的研究.农业环境科学学报,2006,25(2):68~72
    [137] 王翠. 纳米科学技术与纳米材料概述. 延边大学学报,2001,27(l): 66 ~70
    [138] 牟国栋,王晓刚 等. 纳米科学技术的发展和纳米材料的特性. 西安矿业学院学报,1998, 18( 4): 332~335.
    [139] Zhang W. X. Nanoscale iron particles for environmental remediation: An overview. Journal of Nanoparticle Research, 2003 (5): 323~332
    [140] Zhang W. X. Environmental technologies at the nanoscale. Environmental Science & Technology, 2003, 37(1):102-108
    [141] Li X. Q., Elliott D.W., Zhang W. X. Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Critical Reviews in Solid State and Materials Sciences, 2006, 31: 111-122
    [142] Mace C. Controlling Groundwater VOCs: Do nanoscale ZVI particles have any advantages over microscale ZVI or BNP? Pollution Engineering, 2006, April: 24~28
    [143] Vance D. B. Nanoscale iron colloids: The maturation of the technology for field scale applications, Pollution Engineering, 2005, July: 16~18
    [144] Huber D. L. Synthesis, properties, and applications of iron nanoparticles. Small, 2005, 1(5): 482~501
    [145] Dror I., Baram D., Berkowitz B. Use of nanosized catalysts for transformation of chloro-organic pollutants. Environmental Science & Technology, 2005, 39: 1283~1290
    [146] Liu Y., Majetich S. A., Tilton R. D., et al. TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology, 2005, 39: 1338~1345
    [147] Ponder S. M., Darab J. G., Mallouk T. E. Remediation of Cr(Ⅵ ) and Pb(Ⅱ ) aqueous solutions using supported nanoscale zero-valent iron. Environmental Science & Technology, 2000, 34:2564-2569
    [148] Kanel S. R., Greneche J. M., Choi H. Arsenic(Ⅴ ) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environmental Science & Technology, 2006, 40: 2045~2050
    [149] Kanel S. R., Manning B., Charlet L., et al. Removal of Arsenic(Ⅲ )from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 2005, 39: 1291~1298
    [150] Jegadeesan G., Mondal K., Lalvani S. B. Arsenate remediation using nanosized modified zerovalent iron particles. Environmental Progress, 2005, 24(3): 289~296
    [151] Cao J., Elliott D., Zhang W. X. Perchlorate reduction by nanoscale iron particles. Journal of Nanoparticle Research, 2005, 7: 499~506
    [152] 那娟娟,冉均国,苟立,等. 超声波/纳米铁粉协同脱氯降解四氯化碳,化工进展,2005, 24(12): 1401~1404
    [153] 戴友芝,张选军,宋勇. 超声波/纳米铁协同降解氯代苯酚的试验. 环境污染治理技术与设备,2005, 6(11): 19~22
    [154] 刘菲,黄园英,张国臣. 纳米镍/铁去除氯代烃影响因素的探讨. 地学前缘,2006,13(1): 150~154
    [155] 唐玉斌,吕锡武,陈芳艳. 纳米铁降解水中偶氮染料酸性红 B 的动力学研究. 环境科学与技术,2006, 29(10): 19~22
    [156] 程荣,王建龙,张伟贤. 纳米金属铁降解有机卤化物的研究进展. 化工进展,2006, 18(1): 93~99
    [157] 张选军,戴友芝,曹建平 等. 纳米铁协同超声降解氯苯的研究. 环境污染治理技术与设备,2004, 5(8): 32~34
    [158] 徐新华,金剑,卫建军 等. 纳米 Pd/Fe 双金属对 2,4-二氯酚的脱氯机理及动力学. 环境科学学报,2004, 24(4): 561~567
    [159] Orth W. S., Gillham R. W. Dechlorination of tricchloroethene in aqueous solution using Fe0. Environ. Sci. Technol., 1996, 30: 66-71
    [160] Sayles G. D., You G. R., Wang M. X., et al. DDT, DDD and DDE dechlorination by zero valent iron. Environ. Sci. Technol., 1997, 31(12): 3448-3454
    [161] Lien H. L., Zhang W. X. Transformation of chlorinated methanes by nanoscale iron particles. Journal of Environmental Engineering, 1999,November: 1042~1047
    [162] Lowry V. G., Johnson M. K. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004, 38(19): 5208
    [163] Lien H. L., Zhang W. X. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 191: 97-105
    [164] Wei J. J., Xu X. H., Liu Y., et al. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: Reaction pathway and some experimental parameters. Water Research, 2006, 40: 348~354
    [165] Feng H., Zhao D. Y. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environmental Science & Technology, 2005, 39: 3314-3320
    [166] Elliott D. W., Zhang W. X. Field assessment of nanoscale bimetallic particles for groundwater treatment. Environmental Science & Technology, 2001, 35: 4922-4926
    [167] Tee Y. H., Grulke E., Bhattacharyya D. Role of Ni/Fe nanoparticle composition on the degradation of trichloroethylene from water. Ind. Eng. Chem. Res. 2005,44: 7062-7070
    [168] Xu Y., Zhang W. X. Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res., 2000, 39: 2238-22444
    [169] Schrick B., Blough J. L., Jones A. D. Thomas E. Mallouk, Hydrodechlorination oftrichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem. Mater. 2002, 14: 5140-5147
    [170] Zhang W. X., Wang C. B., Lien H. L. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catalysis Today, 1998, 40: 387
    [171] Wang C. B., Zhang W. X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997, 31(7): 2154
    [172] Xu J., Dozier A., Bhattacharyya D. Synthesis of nanoscale bimetallic particles in polyelectrolyte membrane matrix for reductive transformation of halogenated organic compounds. Journal of nanoparticle research, 2005, 7: 449-467
    [173] Feng J., Lim T. T. Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: Comparison with commercial micro-scale Fe and Zn. Chemosphere, 2005, 59: 1267~1277
    [174] Jovanovic G. N., Plazl P. ?., Sakrittichai P., et al. Dechlorination of p-chlorophenol in a microreactor with bimetallic Pd/Fe catalyst. Ind. Eng. Chem. Res. 2005, 44: 5099~5106
    [175] Grittini C., Malcomson M., Fernando Q., et al. Rapid dechlorination of polychlorinated biphenyls on the surface of a Pd/Fe bimetallic system. Environmental Science & Technology, 1995, 29(11): 2898~2910
    [176] Feng J., Lim T. T. Iron-mediated reduction rates and pathways of halogenated methanes with nanoscale Pd/Fe: Analysis of linear free energy relationship. Chemosphere, 2007, 66: 1765~1774
    [177] Meyer D. E., Wood K., Bachas L. G., et al. Degradation of chlorinated organics by membrane-immobilized nanosized metals. Environmental Progress, 2004, 23(3): 232~242
    [178] Xu J., Bhattacharyya D. Membrane-based bimetallic nanoparticles for environmental remediation: Synthesis and reactive properties. Environmental Progress, 2005, 24(4): 358~366
    [179] Zhang W. H., Quan X., Wang J. X., et al. Rapid and complete dechlorination of PCP in aqueous solution using Ni-Fe nanoparticles under assistance of ultrasound. Chemosphere, 2006, 65: 58~64
    [180] Wu L., Ritchie S. M. C. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere, 2006, 63: 285~292
    [181] Li F., Vipulanandan C., Mohanty K. K. Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2003, 223: 103
    [182] 吴德礼,马鲁铭,徐文英 等. Fe/Cu 催化还原法处理氯代有机物的机理分析. 水处理技术,2005, 31(5): 30~33
    [183] 徐新华,卫建军,汪大翚. Pd/Fe 及纳米 Pd/Fe 对氯酚的脱氯研究.中国环境科学,2004, 24(1): 76~80
    [184] 徐新华,刘永,卫建军 等. 纳米级 Pd/Fe 双金属体系对水中 2, 4-二氯苯酚脱氯的催化作用. 催化学报,2004, 25(2): 138~142
    [185] Choe S., Chang Y. Y., Hwang K. Y., et al. Kinetics of reductive denitrification by nanoscale zero- valent iron. Chemosphere, 2000(41): 1307~1311
    [186] Chen S. S., Hsu H. D., Li C. W. A new method to produce nanoscale iron for nitrate removal. Journal of Nanoparticle Research, 2004, 6:639-647
    [187] Liou Y. H., Lo S. L., Kuan W. H., et al. Effect of precursor concentration on the characteristics of nanoscale zerovalent iron and its reactivity of nitrate. Water Research, 2006, 40, 2485-2492
    [188] Yang G. C. C., Lee H. L. Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research, 2005, 39: 884-894
    [189] Wang W., Jin Z. H., Li T. L., et al. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere, 2006, 65: 1396~1404
    [190] Sohn K., Kang S. W., Ahn S., et al. Fe (0) nanoparticles for nitrate reduction: stability, reactivity, and transformation. Environ. Sci. Technol. 2006, 40, 5514-5519
    [191] Liu Y., Lowry G. V. Effect of particle age (Fe0 content) and solution pH on NZVI reactivity: H2 evolution and TCE dechlorination. Environmental Science & Technology, 2006, 40(19): 6085~6090
    [192] Liou Y. H., Lo S. L., Lin C. J., et al. Chemical reduction of an unbuffered nitrate solution using catalyzed and uncatalyzed nanoscale iron particles. Journal of hazardous materials B, 2005, 127,102-110
    [193] Geiger C. L., Clausen C. A., Brooks K., et al. Nanoscale and microscale iron emulsions for treating DNAPL. Chlorinated solvent and DNAPL remediation ACS symposium series, 2003, 837: 132~140
    [194] 程军蕊,史维浚. 地浸采铀矿山地下水污染碱性中和清洗法治理研究. 东华理工学院学报,2004,27(3):230~234
    [195] 张振强. 地浸采铀技术与工艺. 资源调查与环境,2002, 23(3):200~204
    [196] 张振强,金成洙,李富梅. 地浸采铀中的环境污染与保护. 资源调查与环境,2004,25(4):276~282
    [197] 黄国夫.酸法地浸采铀的地下水生态环境问题,华东地质学院学报,1998, 21(1):7~13
    [198] 周锡堂,刘乃忠. 地浸铀矿山氮系污染物的某些行为研究,桂林工学院学报,2001,21(2):145~149
    [199] 阙为民,陈祥标. 硝酸盐作为酸法地浸氧化剂的研究. 铀矿冶,2000, 19(1): 24~31
    [200] 周锡堂,阙为民. 硝酸盐作为地浸采铀氧化剂工业化应用研究. 矿产保护与利用,2001, 1: 38~41
    [201] 王为民,廖列文,张明月.聚合物分散剂对纳米四氧化三钴制备的影响.无机盐工业,2005, 37(7): 28~31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700