用户名: 密码: 验证码:
固体推进剂用无机纳米材料的合成及催化性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首先,我们通过液相还原的方法,在磁场作用下采用水合肼为还原剂合成出了由纳米片和纳米球组装成的花状Ni纳米金属粒子。研究发现在未添加任何表面活性剂的情况下合成出的样品没有发生任何氧化和团聚,长时间存放也未发生氧化,并探讨了磁场作用对粒子形成的作用机理。采用相似的路径,在液相的开放体系中,依然以水合肼作为还原剂合成出了尺寸均一的Cu纳米金属粒子;我们最大的成功就是不加入表面活性剂,而是采用引入痕量Ni的方法改变了此类金属还原过程为了避免氧化必须引入表面活性剂的问题,为Cu纳米金属粒子的合成提供了新的方法。通过对实验条件的考察,择优出反应的最佳条件,提出反应的可能进程,并研究了制备出的Ni、Cu纳米金属粒子样品的对固体推进剂的高能组分高氯酸铵(NH4ClO4, AP)的催化性能研究,证明二者均具有较好的正催化性能。
     其次,在Ni、Cu纳米金属粒子的研究基础之上,我们也合成出了Ni-Cu双金属纳米材料,择优出反应的最佳条件,通过研究反应机理,研究出此双金属材料的形成过程及形成机理;我们且把制备出的Ni-Cu双金属纳米材料进行了对高氯酸铵(NH4ClO4, AP)的催化性能研究,研究发现Ni-Cu双金属纳米材料对高氯酸铵(NH_4ClO_4,AP)分子的高温、低温热分解放热峰温度降低的幅度比单一金属而言更大,这说明制备的双金属纳米材料比混合的粉末更有利于Ni与Cu之间发生协同作用,更能对高氯酸按的热分解起到催化作用。且Ni-Cu双金属纳米材料结合了两种金属的特性或优点,弥补单一金属性能的不足。
     最后,我们对CaCO3和BaCO3纳米粒子制备和催化性能进行了研究。采用碳化方法制备出了CaCO3纳米粒子,发现Mg~2+的引入可以起到控制晶型的作用,并对各类反应条件进行逐一分析;采用室温固相研磨方法制备出了BaCO3纳米粒子,发现EDTA的引入可以起到控制晶型的作用,并对各类反应条件进行逐一分析。通过反应机理研究发现,CaCO3和BaCO3纳米粒子对高氯酸铵(NH4ClO4,AP)分子燃烧的催化作用趋势完全相似,且其对高氯酸铵燃烧的催化机理基本完全相似,在高氯酸铵的燃烧中二者均属于负催化剂。可以起到调燃的作用。
     本论文详细的阐述了Ni纳米金属粒子、Cu纳米金属粒子、Ni-Cu双金属纳米材料、CaCO3纳米粒子以及BaCO3纳米粒子的合成方法以及最优条件的考察,并考察了这一系列纳米材料在固体推进剂中的高能组分高氯酸铵(NH4ClO4,AP)的燃烧过程中催化性能应用,为固体推进剂中催化剂的使用在理论和实践中的应用提供了有利的依据,具有实际的研究意义。
We synthesised Ni, Cu nanometallic l and Ni-Cu doublemetallic nanomaterial without surfactant, studied the morphology and formation mechanism of samples. Meanwhile we also studied the synthesis process of CaCO3 nanoparticles and BaCO3 nanoparticles, the morphology and formation mechanism. Studying the two part of system was in order to investigate the catalytic application of these nanomaterials for ammonium perchlorate, which was one of important rocket propellent.
     Firstly, this work focused on a synthetic method to produce flower-like nickel nanostructures under the induction of magnetic field. Flower-like nickel nano-structures were obtained by using nontoxic reactants, nontoxic solvents, and low reaction temperature. It was improved that t amples matained better stability.We also found the samples did not oxide after a long time. We studied the reaction condition, the purity of samples and the morphology and formation mechanism of samples.And we synthesized high purity Cu nanometallic material by addition of trace Ni. And this trace Ni used as seeds to accelerate the reduction of Cu and keep Cu nanometallic pure and stable. We studied the reaction condition, the purity of samples and the morphology and formation mechanism of samples.
     At the same time, with the synthesis research foundation of Ni-Cu nanometallic material, we synthesized Ni-Cu doublemetallic nanomaterial by using nontoxic reactants, nontoxic solvents, and nonextra nitrogen gas. We studied the influence of reaction condition, and also proved. Ni-Cu nanometallic material was fcc structure. The average sizer of sphere samples was 50nm, and the dispersivity was good.
     Secondly, we prepared fusiformate CaCO3 nanoparticles through carbonating with Mg2+ existence. In the experiment,we studied that the size of CaCO3 nanoparticles changed with the velocity of carbon dioxide, the samples morphology of CaCO3 nanoparticles changed with pH value, the crystal morphology of CaCO3 nanoparticles changed with mixing speed. CaCO3 nanoparticles was hexahedronal calcite structure. The average sizer of was 100nm, and the dispersivity was good.
     Finally, we synthesized BaCO3 nanoparticles through a room temperature solid phase method. In the experiment,we discovered that the attrition time, the calcining heat, the reactant proportion, the amount of EDTA seemed to influence the size and and morphology of BaCO3 nanoparticles.We also studied the reaction mechanism. BaCO3 nanoparticles was orthogonal structure. The average sizer of was 500nm, and the dispersivity was good.
     The series of preparation process was only one of goal, the final goal was that the nanomaterials could be applicated. We added the synthesized nanomaterials to annonium perchlorater, and carried on the thermal analysis to study the catalyzed performance. The synthesized nanomaterials attributed to two kind:Ni, Cu nanometallic material and Ni-Cu doublemetallic nanomaterial was one kind,which belonged to positive catalytical effect,and the catalytical effect of Ni-Cu doublemetallic nanomaterial was better than Ni and Cu nanometallic material; CaCO3 nanoparticles and BaCO3 nanoparticles was the other kind, which belonged to negative catalytical effect, and the catalytical effect was consistent. In the actual application, we did not use the sole nanomaterials as catalyst in the rocket propellent. We usually used two and avove catalysts, in order to achieve the coordination goal and the synergism.
     In this paper, we not only succeedly synthesised Ni, Cu nanometallic material and Ni-Cu doublemetallic nanomaterial, but also synthesised CaCO3 nanoparticles and BaCO3 nanoparticles. And we deeply tudied and induced the reaction mechanism of every system, which provided the theory basis and the application basis of catalytical effect for annonium perchlorater. In the actual research work, limited to the experimental condition and time, still a lot of work waited for further studying and consummating. For example, we should continouly determinate the intensity of the combustion pressure, dynamics analysis and so on.
引文
[1]Henglein. Small-particle research:Pysicochemical properties extremely small colloidal metal and semiconductor particles[J]. Chem. Rev.,1989, 89:1861-1873.
    [2]Caviechi R E, Silsbee R H. Coulomb suppression of tunnelingrate froms mall metal particles [J]. Phys. Rew. Lett.,1984,52:1453-1456.
    [3]M. C. Roco, R. S. Williams, P. Alivisatos, Interagency Working Group in Nanoscience Engineering and Technology(IWGN)Workshop Report:Nanotechnology Research Directions, Vision for Nanotechnology R and D in the Next Decade, Published by Int, Tech. Research Institutes, WTEC Division, Loyola College,1999, pp.ⅹⅹⅴ,58,118,67, ⅹⅹⅶ,70,7,102,103.
    [4]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [5]Henglein A. Small-particle research:physicochemical properties of extremely small colloidal metal and semiconductor particles [J]. Chem. Rev.,1989,89: 1861-1873.
    [6]岳林海,水淼,徐铸德.纳米级粒径超细碳酸钙热分解动力学[J].无机化学学报,1999,15(2):225-229.
    [7]Aumann C E, Skofronic G L and Martin J A. Oxidation behavior of aluminum nanopowders[J]. JVac. Sci. Technol.,1995,13(3):1178-1183.
    [8]Sanshiro sdko, kazunari OH SHIMAF and Tetsuo Fujita. Surface oxidation film of metallic small particle [J]. Journalof the physical Society of Japan,1990, 59(2):662-666.
    [9]Ivanov V G, Gavtilyuk O V. Oxidation and self-ignition of electroexplosive ultrafine metal powders in air [J]. Fizika-Goreniya-Ivzrva,1999,35(6):53-60.
    [10]Masuda H, Fukuda K. Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina [J]. Science,1995, 268:1466-1468.
    [11]Braun E, Eichen Y, Sivan U, et al. DNA-templated assembly and electrode attachment of a conducting silver wire [J]. Nature,1998,391:775-778.
    [12]Xiong Y J, Wiley B, Chen J Y, et al. Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties [J]. Angew. Chem., Int. Ed.,2005,44:7913-7917.
    [13]Aumann C E, Skofronic G L and Martin J A. Oxidation behavior of aluminum nanopowders[J]. J Vac Sci. Technol.,1995,13(3):1178-1183.
    [14]冯端.金属物理学[M].北京:科学出版社,1987(1),3241-3245.
    [15]Zong R L, Zhou J, Li Q, et al. Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane [J]. J. Phys. Chem. B,2004,108:16713-16716.
    [16]Wiley B, Sun Y, Mayers B, et al. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver [J]. Chem. Eur. J.,2005,11:454-463.
    [17]Wiley B J, Xiong Y, Li Z Y, et al. Right Bipyramids of Silver:A New Shape Derived from Single Twinned Seeds [J]. Nano Lett.,2006,6:765-768.
    [18]Siekkinen A R, McLellan J M, Chen J, et al. Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide [J]. Chem. Phys. Lett.,2006,432:491-496.
    [19]Sun Y, Mayers B, Xia Y. Metal nanostructures with hollow interiors [J]. Adv. Mater.,2003,15:641-646.
    [20]Wu Y, Livneh T, Zhang Y X, et al. Templated Synthesis of Highly Ordered Mesostructured Nanowires and Nanowire Arrays [J]. Nano Lett.,2004,4: 2337-2342.
    [21]Ah C S, Yun Y J, Park H J, et al. Size-Controlled Synthesis of Machinable Single Crystalline Gold Nanoplates [J]. Chem. Mater.,2005,17:5558-5561.
    [22]Yang J H, Qi L M, Lu C H, et al. Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating [J]. Angew. Chem., Int. Ed.,2005,44:598-603.
    [23]Bregar V B, Advantages of ferromagnetic nanoparticle composites in microwave absorbers [J]. IEEE Trans.Magn.,2004,40 (3):1679-1684.
    [24]Champion Y, Bigot J. Synthesis and structural analysis of aluminum nanocrystalline powders [J]. Nanos-tructured Materials,1998,10(7):1097-1110.
    [25]Kelm M, Lilie J, Henglein A, Janata E.Pulse radi-olytic study of nickel-carbon formation[J]. The Journal of Physical Chemistry,1974,78 (9):882-887.
    [26]Revesz A, Lendvai J. Thermal properties of ballmilled nanocrystalline Fe, Co, Cr powders [J].Nanostructured Materials,1998,10(1):13-24.
    [27]Sanchez-Lopez J C, Fernandez A. The melting behavior of passivated nanocrystalline aluminum [J]. Nanostructured Materials,1996,7(8):813-822.
    [28]Sanchez-Lopez J C, Gonzalez-Elipe A R and Fernanndez A. Passivation of nanocrystalline Al prepared by the gas phase condensation method [J]. An x-ray photoelectron spectroscopy study, J Mater. Res.1998,13(3):703-710.
    [29]Yang P, Liber C M. Nanorod-superconductor composites:A path way to materials with high critical current densities [J].Science,1996,273:1836-1840.
    [30]Michael Wagner. Sturcture and thermodynamic properties of nanocrystalline metals [J]. Physical Review B,1992,45(2):635-639.
    [31]Hans J, Fecht. Intrinsic instability and entropy stabilization of grain boundaries [J]. Physical Review Letters,1998,65(5):610-613.
    [32]Ivanov G V, Tepper F, Piehler H. Self propagating sintering of nanosize powders advances in powder[C]. Metallurgy and Particulate Materials,1996, 3(11):445-451.
    [33]岳林海,水淼,徐铸德.纳米级粒径超细碳酸钙热分解动力学[J].无机化学学报,1999,15(2):225-229.
    [34]Aumann C E, Skofronic G L and Martin J A. Oxidation behavior of aluminum nanopowders[J]. J Vac.Sci.Technol.B,1995,13(3):1178-1183.
    [35]冯端.金属物理学[M].北京:科学出版社,1987(1).
    [36]Sanshiro sdko, Kazunari ohshimaf and Tetsuo Fujita. Surface oxidation film of metallic small particle [J].Journal of the physical Society of Japan,1990,59 (2):662-666.
    [37]Ivanov V G, Gavtilyuk O V. Oxidation and self-ignition of electro-explosive ultrafine metal powders in air[J].FIZIKA-GORENIYA-I-VZRYVA,1999,35(6):53-60.
    [38]Shevchenko V G, Kononenko V I, Latosh I N, et al. Effect of the size factor and alloying on oxidation of aluminum powders [J].Combustion, Explosion and Shock Waves,1994,30(5):635-637.
    [39]Ogata S, Carmpbell T J. Parallel molecular dynamics Simulations for the oxidation of an aluminum nanocluster [J]. J.Phys:Condens.Matter,1998, 10:11449-11458.
    [40]Timothy Campbell, Rajiv. Kalai, Aiichiro Nakano, et al. Dynamics of oxidation of aluminum nanoclusters using variable charge molecular-dynamic simulations on Parallel Computers [J]. Physical Review Letters,1999,82(24):4866-4869.
    [41]S. A. Harfenist, Z. L. Wang, M. M. Alvarez, I. vezmar, R. L. Whetten, Adv. Mater.,1997,9,817.
    [42]Kimoto K, Kamiya Y, Nonoyama M, et al. An Electron Microscope Study on Fine Metal Particles Prepared by Evaporation in Argon Gas at Low Pressure [J]. Jpn. J. Appl. Phys.,1963,2:702-713.
    [43]Epifani M, Giannini C, Tapfer L, et al. Sol-Gel Synthesis and Characterization of Ag and Au Nanoparticles in SiO2, TiO2, and ZrO2 Thin Films [J]. J. Am. Ceram. Soc.,2000,83:2385-2393.2
    [44]Boutonnet M, Kizling J, Stenius P. The preparation of monodisperse colloidal metal particles from micro-emulsions [J]. Colloids Surf.,1982,5:209-225.
    [45]Zhou Y, Yu S H, Wang C Y, et al. A novel ultraviolet irradiation photo-reduction technique for preparation of single crystal Ag nanorods and Ag dendrites [J]. Adv. Mater.,1999,11:850-852.
    [46]Chen H, Gao Y, Zhang H, et al. Transmission-Electron-Microscopy Study on Fivefold Twinned Silver Nanorods [J]. J. Phys. Chem. B,2004,108: 12038-12043.
    [47]Jiang L P, Shu X, Zhu J M, et al. Ultrasonic-assisted synthesis of monodisperse single-crystalline silver nanoplates and gold nanorings [J]. Inorg. Chem.,2004, 43:5877-5883.
    [48]Mu C, Yu Y X, Wang R M, et al. Uniform metal nanotube arrays by multi-step template replication and electrodeposition [J]. Adv. Mater.,2004,16:1550-1553.
    [49]尾屿文治等.纳米材料导论[M].湖北:武汉工业大学出版社,1991.
    [50]王世敏 等.纳米材料制备技术[M].北京:化学工业出版社,2002.
    [51]Zein El Abedin S, Saad A Y, Farag H K, et al. Electrodeposition of selenium, indium and copper in an air- and water-stable ionic liquid at variable temperatures [J]. Electrochim. Acta,2007,52:2746-2754.
    [52]Yi Q, Huang W, Yu W, et al. Hydrothermal Synthesis of Titanium-Supported Nickel Nanoflakes for Electrochemical Oxidation of Glucose [J]. Electroanalysis, 2008,20:2016-2022.
    [53]Xia Y, Halas N J. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures[J]. MRS Bull.,2005,30:338-348.
    [54]Murphy C J, Gole A M, Hunyadi S E, et al. Orendorff One-Dimensional Colloidal Gold and Silver Nanostructures [J]. Inorg. Chem.,2006,45: 7544-7554.
    [55]Wiley B, Sun Y, Mayers B, et al. Shape-Controlled Synthesis of Metal Nanostructures:The Case of Silver [J]. Chem. Eur. J.,2005,11:454-463.
    [56]Zong R L, Zhou J, Li Q, et al. Synthesis and Optical Properties of Silver Nanowire Arrays Embedded in Anodic Alumina Membrane [J]. J. Phys. Chem. B,2004,108:16713-16716.
    [57]Sanders P G, Eastman J A, Weertman J R. Elastic and tensile behavior of nanocrystalline copper and palladium [J]. Acta Mater.,1997,45:4019-4025.
    [58]Cai W P, Zhang L D. Characterization and the optical switching phenomenon of porous silica dispersed with silver nano-particles within its pores [J]. J. Phys.: Condens. Matter.,1996,8:L591-L596.
    [59]Rosi N L, Eckert J, Eddaoudi M, et al. Hydrogen Storage in Microporous Metal-Organic Frameworks [J]. Science,2003,300:1127-1129.
    [60]陆厚根.粉体技术导论[M].上海:同济大学出版社,1998.
    [61]Nanotechnology Research Direction:Vision for Nanotechnology R&D in the next Decade, IWWGN Workshop Report,1999,9.
    [62]纳米科技背景资料.科学技术部基础研究司资料.2001,1.
    [63]李景新,黄因慧.纳米材料及其技术研究进展[J].材料导报,2001,15(8):29-31.
    [64]National Nanotechnology Initiatives:The Initiative and Its Implementation Plan, 2008,8.
    [65]方芳,朱敏.纳米材料中的界面[J].材料导报,2001,15(9):17-19.
    [66]蔡俊青.造纸专用碳酸钙制备及其动力学研究[D].天津:河北工业大学,2004.
    [67]Dinamani M, Vishnu Kamath P. Electrochemical synthesis of calcium carbonate coatings on stainless steel substrates [J]. Materials Researeh Bulletin,2002,37 (4):661-669.
    [68]赵东清.石灰石制备轻质及纳米碳酸钙的研究[D].北京:北京工业大学材料科学与工程学院,2007.
    [69]海老昭修[P].日本公开特许公报,平4-77312.
    卫志贤,郑岚,刘荣杰.超细碳酸钙的制备[J].化工进展,1998,17(5):
    [70]胡庆福,胡晓波,宋丽英.碳酸钙工业发展之浅析[J].无机盐工业,1999,31(5):18-21.
    [71]日本特许公开.昭54-27200.
    [72]Rautaray D, Sainkar S R. Ca2+ and anion colloidal particles as templates for the growth of star shaped calcite crystal assemblies [J]. Langmuir,2003,19: 10095-10099.
    [73]袁伟,金鑫.片状晶形轻质碳酸钙的制备方法[P].CN1080909A.1994,1.19.
    [74]Aizenberg J. A bio-inspired approach to controlled crystallization at the nanoscale [J]. Bell Labs Technical Journal,2005,10(3):129-141.
    [75]Wen Y, Xiang L, Jin Y. Synthesis of plate-like calcium carbonate via carbonation route [J]. Materials Letters,2003,57(16-17):2565-2571.
    [76]Pach L, Duncan S, Roy R, Komarneni S. Morphological control of precipitated calcium carbonates and phosphates by colloidal additives [J]. Materials Sicience.1996,31(24):6565-6569.
    [77]Clemente R R, Morales J G. Microwave precipitation of CaCO3 from homogeneous solutions [J]. Cryst. Growth,1996,169(2):39-346.
    [78]Kitamura M, Konno H, Yasui A, Masuoka H. Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions[J]. Crystal Growth,2002,236(1-3):323-332.
    [79]郑岚,卫志贤,刘荣杰.立方形超细碳酸钙的制备研究[J].无机盐工业,1998,30(6):5-7.
    [80]方卫民,沈富良,童九如.立方体状沉淀碳酸钙工艺条件的选择[J].化学世界,1999,40(3):126-129.
    [81]诸葛兰剑,张士成,韩跃新,蒋军华.超细碳酸钙的合成及结晶过程[J].硅酸盐学报,1999,27(2):159-163.
    [82]陈先勇,唐琴,史伯安,周贵云.单分散球形纳米碳酸钙制备研究[J].非金属矿,2005,28(2):1-3.
    [83]Huang S C, Naka K, Chujo Y. A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly (acrylic acid)s [J]. Langmuir,2007,23(24):12086-12095.
    [84]谢英惠,何豫基,任宝山.多种形状超细碳酸钙的研究[J].河北工业大学学报,2000,29(6):60-63.
    [85]Hu Z S, Deng Y L. Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants [J]. Colloid and Interface Science,2003, 266(2):359-365.
    [86]孙红娟,常有军.鼓泡法制备文石型碳酸钙晶须的实验研究[J].中国矿业,2005,14(2):77-79.
    [87]Wang C Y, Sheng Y, Zhao X, Pan Y, Hari-Bala, Wang Z C. Synthesis of hydrophobic CaCO3 nanoparticles[J]. Materials Letters,2006,60(6):854-857.
    [88]胡小芳,苏志学,吴成宝.碳化法制备纳米碳酸钙工艺研究进展[J].广州化工,2005,33(5):10-13.
    [89]高俊刚,杨丽庭,李燕芳.改性聚氯乙烯新材料[M].北京:化学工业出版社,2002.
    [90]Johnson S A, Ollivier P J, Mallouk T E. Ordered mesoporous polymers of tunable pore size from colloidal silica templates [J]. Science,1999,283(5404):963-965.
    [91]邹德荣.纳米碳酸钙对RTV的硅橡胶性能的影响[J].有机硅材料,2002,16(2):7-9.
    [92]Hu Y, Chen J, Chen W, Li X. Synthesis of nickel sulfide submicrometer-sized hollow spheres using a y-irradiation route [J]. Adv. Fuct. Mater.,2004,14(4): 383-386.
    [93]Ahmadi T S, Wang Z L, Green T C, Henglein A, E1Sayed M A. Shape-controlled synthesis of colloidal platinum nanoparticles [J]. Science,1996,272:1924-1925.
    [94]冯筱晴,刘俊康,钦大东,王玮,殷福珊.ADDP改性纳米碳酸钙及其在PP塑料中的应用[J].江南大学学报(自然科学版),2003,2(5):502-504.
    [95]Kim F, Kwan S, Akana J, Yang P D. Langmuir-blodgett nanorod assembly [J]. Am. Chem. Soc.,2001,123:4360-4361.
    [96]黄承亚.链状纳米碳酸钙的合成研究[J].无机盐工业,1995,6:7-10.
    [97]刘伯元.中国非金属矿开发与应用[M].北京:冶金工业出版社,2003.
    [98]颜鑫,刘跃进,王佩良.我国超细碳酸钙生产技术现状、应用前景与发展趋势[J].中国粉体技术,2002,8(4):39-40.
    [99]于洋.造纸用碳酸钙粒子的合成及表征[D].长春:吉林大学化学学院,2008.
    [100]Y amada H, Hara N. Formation Process of Calcium Carbonate in the Reaction System Ca(OH)2-H2O-CO2[J]. Gypsum and lime,1986,20(3):221-225.
    [101]侯进,陈国华,李玫,应骏.超细碳酸钙粒子形态控制研究进展[J].2003,23(Z1):75-77.
    [102]Chem P C, Cheng G Y, Kou M H, etal. Nucleation and morphology ofbarium carbonate crystals in a semi-batch crystallizer[J]. Journal of crystal Growth, 2001,226(4):458-472.
    [103]Malecki A, Labus S, Oblakowski J. The role of BaCO3 in high temperature synthesis of electronic material[J]. Mater Res Bull,1995,30(6):731-737.
    [104]Sondi I, Matijevic E. Homogeneous precipitation ienzymecta-lyzed reaction
    Strontium and barium carbonate[J]. Chem Mater,2003,15(6):1322-1326.
    [105]陈龙武,王玉栋,甘礼华.球状和低轴比棒状碳酸钡纳米微粒的制备[J].同济大学学报,2005,33(3):346-349.
    [106]李道华,叶向荣,忻新泉.BaCO3纳米晶的固相反应合成及表征[J].应用化学,1999,16(5):97-99.
    [107]Zhang Z, Dai S, Fan X, et al.Controlled synthesis of CdS nano-particles inside ordered mesoporous silica using ion-exchange reaction[J].J Phys ChemB,2001, 105 (29):6755-6758.
    [108]陈英军,王媛.我国碳酸钡的市场现状和发展方向[J].现代化工,2005,22(5):53-55.
    [109]Chen P C, ChengG Y, KouMH, et. al Nucleation andmorphology ofbarium carbonate crystals in a semi-batch crystallizer[J]. Journal of Crystal Growth, 2002.237-239.
    [110]刘树信,霍冀川,杨定明等.不同晶形超细碳酸钡粒子的制备研究[J].人工晶体学报,2005,34(3):531-535.
    [111]Huo JC,Liu S X,YangD M, et a.l Control on crystal forms of ultrafine barium carbonate particles and study on itsmechanism[J].Chinese J Struct. Chem., 2005,24(11):1290-1297.
    [112]Sond,i Matijevic I, Egon. Homogeneous precipitation by enzyme-catalyzed reactions. Strontium and barium carbonates[J]. Chemistry of Materials,2003, 15(6):1322-1326.
    [113]张娥.周小菊.针状碳酸钡的合成工艺研究[J].矿冶工程,2004,1(24):70-72.
    [114]刘树信,霍冀川,杨定明等.均相沉淀法制备不同晶形碳酸钡的研究[J].无机盐工业,2005,37(4):15-17.
    [115]刘树信,霍冀川,杨定明等.柱状碳酸钡粒子的制备研究[J].硅酸盐通报,2005,2:28-31.
    [116]于洺,张玉亭.乳状液法制备憎液溶胶BaCO3均匀粒子制备[J].物理化学学报,1997,13(1):74-78.
    [117]化学工业出版社组织编写.中国化工产品大全.第二版(上卷),北京:化学工业出版社,1998,1:53-54.
    [118]日本化学会编1无机化合物合成手册.安家驹,陈之川译.北京:化学工业出版社,1986,11:95.
    [119]岸弘道,桥本芳一.高纯度炭酸E.Aの制造法.日本公开特许,昭55-20,229(1980).
    [120]叶薇英,高闵榕,余秀贞.碳酸钡的生产方法.CN 87104108A(1988).
    [121]李春英,桑兆昌,巩淑清,等.高纯低锶针状BaCO 3的研制.河北化工1992(1):18-19.
    [122]李春英,桑兆昌,巩淑清,等.以精制BaS制取针状高纯低锶BaCO3的研究.现代化工,1993,13(11):19-20.
    [123]Yu S H,Coffen H, Xu A W, et a.l Complex spherical BaCO3superstructures self-assembled by a facile mineralization process under control of simple[J]. CrystalGrowth&Design,2004, (4):33-37.
    [124]Su L H, Qiao S R, Xiao J, et a.l Preparation and characterization of fine barium carbonate particles[J]. MaterialsResearch society Symposium-Proceedings, 2003,737:347-350.
    [125]MelzerK Martin A. Mossbauer study of the reaction between barium carbonate and iron(III) oxide[J].Physica Status Solidi (A) Applied Research,1988,107(2): 163-168.
    [126]陈英军,王 缓.我国碳酸钡的市场现状和发展方向[J].现代化工,2002, 22(5):53-55.
    [127]王德才.火药学.第1版.南京:华东工学院,1988.
    [128]王泽山.火炸药科学技术.第一版.北京:北京理工大学出版,2002
    [129]赵凤起,覃光明,蔡炳源.纳米材料在火炸药中的应用研究现状及发展方向.火炸药学报,2001,24(41):61-65
    [130]徐复铭,王泽山.重视创新,实现火炸药的跨越式发展.火炸药学报,2001,24(2):1-5
    [131]Korobeiniehev. Masss pectrometrie Study of eombustion and thermal decomposition of GA. PC ombustion and Flmae.2002,129:136-150
    [132]高红,赵勇.纳米材料及纳米催化剂的制备[J].天津化工,2003,17,5:14-15.
    [133]郑华均,刘化章.纳米催化剂的制备及应用的研究进展[J].浙江化工,2003,34(2):5-8.
    [134]张汝冰,张宏英,李凤生.含能催化复合纳米材料的制备研究[J].火炸药学报,2000,23(3):9-12.
    [135]洪伟良,刘剑洪,田德余等.纳米催化剂的特性及其在固体推进剂中的应用[J].飞航导弹,2000,4:43-45.
    [136]李上文,杨栋.推进剂铅-铜-炭催化燃速模型[J].推进技术,1995,3:46-51.
    [137]刘筱薇,仵海东.纳米金属材料研究进展[J].热加工工艺,2001,3:55-58.
    [138]沈兴海,高宏成.纳米微粒的微乳液制备法.化学通报.1995,4(11):6.
    [139]Ibrahim. A. Lavenia E.J. Partieulate—reinforee metal matrix composites review. J Mater. Sei,1991,26:1137.
    [140]De Dennes P. G, Taupin C. Microemulsion and the flexibility of oil/water interface. J. Phy, Chem,1982,86:2294.
    [141]朱学文,廖列文,崔英德.均匀沉淀法制备纳米四氧化三钻微粉.无机盐工业,2002,34(1):3-4.
    [142]洪伟良,赵凤起,刘剑洪等.制备纳米氧化铜粉体的新方法.火炸药学报,2000,(3):7.
    [143]赵凤起,覃光明,蔡炳源.纳米材料在火炸药中的应用研究现状及发展方向.火炸药学报,2001,(4):61-65.
    [144]青会祥,樊学忠,刘关利.纳米材料在推进剂应用中的研究进展.含能材 料,2003,11(6):94-98.
    [145]Meda L., Marra G, Galeftti L., etal. Nano-composites of rocket solid propellants. ComPosites Seience and Technology.2005,65:769-773
    [146]Tepper F, et.al. Intermetallic Alloy Formation from Nanosize Metal PowderProdueed by Eleetro-exploding Wires[A].1996 World Congress on Metallurgy and Particulate Materials[C]. Washington D C.
    [147]Ivanov G V etal.4th International symposium of special Opicsin Chemical Propulsion[C]. Stoekholm,996.
    [148]Carvalheira. P, G M. H. J. L.Gadiot, Klekr. W. P. C. Themral decomposition ofPhase-stabilised ammonium nirtate(PSAN), hydroxyl-temrinated polybutadiene (HTPB) based ProPellants. The effet of iron(III) oxide burning-rate catalyst. Thermochimiea Aeta.1995,269(270):273-293
    [149]Meneh M M, etal. Propellant Burning rate Enhance mentsand Thermal Behavior of Ultra-fine Powder(Alex)[A].29th Int Annu Conf of ICT[C].1998.
    [150]陈沛,赵凤起,杨栋等.纳米级金属粉对GAP热分解特性的影响.推进技术,2000,21(5):73-76
    [151]洪伟良,赵凤起,刘剑洪等.纳米Bi2O3、SnO2的制备及对RXD热分解特性的影响.火炸药学报,2003,26(1):37-46
    [152]陈福泰,罗运军,多英全等.纳米级碳酸铅在NEPE推进剂中的应用.推进技术,2000,21(1):82-85.
    [153]李泉,曾广赋,席时权.纳米粒子.化学通报.1995,(6):29.
    [154]罗元香,陆路德,汪信等.纳米级过渡金属氧化物对高氯酸钱催化性能的研究.含能材料,2002,10(4):148-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700